2025湖北省潛江市中考數(shù)學能力提升B卷題庫及答案詳解1套_第1頁
2025湖北省潛江市中考數(shù)學能力提升B卷題庫及答案詳解1套_第2頁
2025湖北省潛江市中考數(shù)學能力提升B卷題庫及答案詳解1套_第3頁
2025湖北省潛江市中考數(shù)學能力提升B卷題庫及答案詳解1套_第4頁
2025湖北省潛江市中考數(shù)學能力提升B卷題庫及答案詳解1套_第5頁
已閱讀5頁,還剩34頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省潛江市中考數(shù)學能力提升B卷題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖是一個含有3個正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,將它鑲嵌在一個圓形的金屬框上,使A,G,H三點剛好在金屬框上,則該金屬框的半徑是()A. B. C. D.2、小穎有兩頂帽子,分別為紅色和黑色,有三條圍巾,分別為紅色、黑色和白色,她隨機拿出一頂帽子和一條圍巾戴上,恰好為紅色帽子和紅色圍巾的概率是(

)A. B. C. D.3、的邊經(jīng)過圓心,與圓相切于點,若,則的大小等于()A. B. C. D.4、關于函數(shù),下列說法:①函數(shù)的最小值為1;②函數(shù)圖象的對稱軸為直線x=3;③當x≥0時,y隨x的增大而增大;④當x≤0時,y隨x的增大而減小,其中正確的有()個.A.1 B.2 C.3 D.45、已知關于x的方程有一個根為1,則方程的另一個根為(

)A.-1 B.1 C.2 D.-2二、多選題(5小題,每小題3分,共計15分)1、如圖,AB為的直徑,,BC交于點D,AC交于點E,.下列結論正確的是(

)A. B.C. D.劣弧是劣弧的2倍2、如圖,是的直徑,,交于點,交于點,是的中點,連接.則下列結論正確的是(

)A. B. C. D.是的切線3、如圖,已知拋物線.將該拋物線在x軸及x軸下方的部分記作C1,將C1沿x軸翻折構成的圖形記作C2,將C1和C2構成的圖形記作C3.關于圖形C3,給出的下列四個結論,正確的是(

)A.圖形C3恰好經(jīng)過4個整點(橫、縱坐標均為整數(shù)的點)B.圖形C3上任意一點到原點的最大距離是1C.圖形C3的周長大于2πD.圖形C3所圍成區(qū)域的面積大于2且小于π4、下列說法不正確的是(

)A.經(jīng)過三個點有且只有一個圓B.經(jīng)過兩點的圓的圓心是這兩點連線的中點C.鈍角三角形的外心在三角形外部D.等腰三角形的外心即為其中心5、如圖,在△ABC中,AB=BC,將△ABC繞點B順時針旋轉a度,得到△A1BC1,A1B交AC于點E,A1C1分別交AC,BC于點D,F(xiàn),下列結論:其中正確的有(

).A.∠CDF=a度B.A1E=CFC.DF=FCD.BE=BF第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、圓錐的底面直徑是80cm,母線長90cm.它的側面展開圖的圓心角和圓錐的全面積依次是______.2、如圖,正方形ABCD的邊長為1,⊙O經(jīng)過點C,CM為⊙O的直徑,且CM=1.過點M作⊙O的切線分別交邊AB,AD于點G,H.BD與CG,CH分別交于點E,F(xiàn),⊙O繞點C在平面內(nèi)旋轉(始終保持圓心O在正方形ABCD內(nèi)部).給出下列四個結論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點在同一個圓上;④四邊形CGAH面積的最大值為2.其中正確的結論有_____(填寫所有正確結論的序號).3、如圖,在中,,,.繞點B順時針方向旋轉45°得到,點A經(jīng)過的路徑為弧,點C經(jīng)過的路徑為弧,則圖中陰影部分的面積為______.(結果保留)4、在同一平面上,外有一點P到圓上的最大距離是8cm,最小距離為2cm,則的半徑為______cm.5、如圖,在平面直角坐標系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連接BD,則對角線BD的最小值為_____.四、簡答題(2小題,每小題10分,共計20分)1、若二次函數(shù)圖像經(jīng)過,兩點,求、的值.2、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.五、解答題(4小題,每小題10分,共計40分)1、在正方形ABCD中,過點B作直線l,點E在直線l上,連接CE,DE,其中,過點C作于點F,交直線l于點H.(1)當直線l在如圖①的位置時①請直接寫出與之間的數(shù)量關系______.②請直接寫出線段BH,EH,CH之間的數(shù)量關系______.(2)當直線l在如圖②的位置時,請寫出線段BH,EH,CH之間的數(shù)量關系并證明;(3)已知,在直線l旋轉過程中當時,請直接寫出EH的長.2、對于平面直角坐標系xOy中的圖形M和點P給出如下定義:Q為圖形M上任意一點,若P,Q兩點間距離的最大值和最小值都存在,且最大值是最小值的2倍,則稱點P為圖形M的“二分點”.已知點N(3,0),A(1,0),,.(1)①在點A,B,C中,線段ON的“二分點”是______;②點D(a,0),若點C為線段OD的“二分點”,求a的取值范圍;(2)以點O為圓心,r為半徑畫圓,若線段AN上存在的“二分點”,直接寫出r的取值范圍.3、在中,,,將繞點C順時針旋轉一定的角度得到,點A、B的對應點分別是D、E.(1)當點E恰好在AC上時,如圖1,求的大?。?2)若時,點F是邊AC中點,如圖2,求證:四邊形BEDF是平行四邊形(請用兩組對邊分別相等的四邊形是平行四邊形)4、解方程(1)(x+1)2﹣64=0(2)x2﹣4x+1=0(3)x2+2x-2=0(配方法)(4)x2-2x-8=0-參考答案-一、單選題1、A【分析】如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結合正方形的性質可得:再設利用勾股定理建立方程,再解方程即可得到答案.【詳解】解:如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結合正方形的性質可得:四邊形為正方形,則設而AB=2,CD=3,EF=5,結合正方形的性質可得:而又而解得:故選A【點睛】本題考查的是正方形的性質,三角形外接圓圓心的確定,圓的基本性質,勾股定理的應用,二次根式的化簡,確定過A,G,H三點的圓的圓心是解本題的關鍵.2、C【解析】【分析】利用列表法或樹狀圖即可解決.【詳解】分別用r、b代表紅色帽子、黑色帽子,用R、B、W分別代表紅色圍巾、黑色圍巾、白色圍巾,列表如下:RBWrrRrBrWbbRbBbW則所有可能的結果數(shù)為6種,其中恰好為紅色帽子和紅色圍巾的結果數(shù)為1種,根據(jù)概率公式,恰好為紅色帽子和紅色圍巾的概率是.故選:C.【考點】本題考查了簡單事件的概率,常用列表法或畫樹狀圖來求解.3、A【分析】連接,根據(jù)圓周角定理求出,根據(jù)切線的性質得到,根據(jù)直角三角形的性質計算,得到答案.【詳解】解:連接,,,與圓相切于點,,,故選:A.【點睛】本題考查的是切線的性質、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.4、B【解析】【分析】根據(jù)所給函數(shù)的頂點式得出函數(shù)圖象的性質從而判斷選項的正確性.【詳解】解:∵,∴該函數(shù)圖象開口向上,有最小值1,故①正確;函數(shù)圖象的對稱軸為直線,故②錯誤;當x≥0時,y隨x的增大而增大,故③正確;當x≤﹣3時,y隨x的增大而減小,當﹣3≤x≤0時,y隨x的增大而增大,故④錯誤.故選:B.【考點】本題考查二次函數(shù)的性質,解題的關鍵是能夠根據(jù)函數(shù)解析式分析出函數(shù)圖象的性質.5、C【解析】【分析】根據(jù)根與系數(shù)的關系列出關于另一根t的方程,解方程即可.【詳解】解:設關于x的方程的另一個根為x=t,∴1+t=3,解得,t=2故選:C.【考點】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=?,x1x2=.二、多選題1、ABD【解析】【分析】根據(jù)圓周角定理,等邊對等角,等腰三角形的性質,直徑所對圓周角是直角等知識即可解答【詳解】如圖,連接,,∵是的直徑,∴,又∵中,,∴點D是的中點,即,故選項正確;由選項可知是的平分線,∴,由圓周角定理知,,故選項正確;∵是的直徑,∴,∵,∴,∴,∵,∴,∴,即,∴,故選項錯誤;∵,∴,∴,在中,∵,∴,∴,∴,∴劣弧是劣弧的2倍,故選項正確.綜上所述,正確的結論是:.故選:【考點】本題考查了圓周角定理,等邊對等角,等腰直角三角形的判定和性質,直徑所對圓周角是直角等知識,解題關鍵是求出相應角的度數(shù)2、BCD【解析】【分析】首先由是的直徑,得出,推出,根據(jù)是的中點,得出是的中位線,得到,,再由,推出是的中位線,得,即是的切線,最后由假設推出不正確.【詳解】解:連接,.是的直徑,(直徑所對的圓周角是直角),;而在中,,是邊上的中線,選項符合題意);是的直徑,,,,,,選項符合題意),是的中位線,即:,是的中點,是的中位線,,.是的切線選項符合題意);只有當是等腰直角三角形時,,故選項錯誤,不符合題意,故選:BCD.【考點】本題考查的知識點是切線的判定與性質、等腰三角形的性質及圓周角定理,解題的關鍵是運用等腰三角形性質及圓周角定理及切線性質作答.3、ABD【解析】【分析】畫出圖象C3,以及以O為圓心,以1為半徑的圓,再作出⊙O內(nèi)接正方形,根據(jù)圖象即可判斷.【詳解】解:如圖所示,A.圖形C3恰好經(jīng)過(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4個整點,故正確;B.由圖象可知,圖形C3上任意一點到原點的距離都不超過1,故正確;C.圖形C3的周長小于⊙O的周長,所以圖形C3的周長小于2π,故錯誤;D.圖形C3所圍成的區(qū)域的面積小于⊙O的面積,大于⊙O內(nèi)接正方形的面積,所以圖形C3所圍成的區(qū)域的面積大于2且小于π,故正確;故選:ABD.【考點】本題考查了二次函數(shù)的圖象與幾何變換,數(shù)形結合是解題的關鍵.4、ABD【解析】【分析】A.根據(jù)確定圓的條件求解即可;B.根據(jù)確定圓心的方法求解即可;C.根據(jù)三角形外心的性質求解即可;D.根據(jù)三角形外心的性質求解即可;【詳解】解:A、如果三個點在一條直線上,不存在經(jīng)過這三個點的圓,故選項錯誤,符合題意;B、經(jīng)過兩點的圓的所有圓心在兩點連線的垂直平分線上,不僅僅是這兩點連線的中點,故選項錯誤,符合題意;C、鈍角三角形的外心是三邊垂直平分線的交點,在三角形外部,選項正確,不符合題意;D、等腰三角形的外心是三邊垂直平分線的交點,不是其中心,故選項錯誤,符合題意;故選:ABD.【考點】此題考查了確定圓的條件,確定圓心的方法,三角形的外心等知識,解題的關鍵是熟練掌握確定圓的條件,確定圓心的方法,三角形的外心.5、ABD【解析】【分析】根據(jù)等腰三角形的性質由BA=BC得∠A=∠C,再根據(jù)旋轉的性質得BA=BA1=BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,而根據(jù)對頂角相等得∠BFC1=∠DFC,于是可根據(jù)三角形內(nèi)角和定理得到∠CDF=∠FBC1=α;利用“ASA”證明△BAE≌△BC1F,則BE=BF,所以A1E=CF;由于∠CDF=α,則只有當旋轉角等于∠C時才有DF=FC.【詳解】解:∵BA=BC,∴∠A=∠C,∵△ABC繞點B順時針旋轉α度,得到△A1BC1,∴BA=BA1,BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,∵∠BFC1=∠DFC,∴∠CDF=∠FBC1=α,所以A正確,∴BA=BA1=BC=BC1,在△BAE和△BC1F中,∴△BAE≌△BC1F(ASA),∴BE=BF,故D正確而BA1=BC,∴A1E=CF,所以B正確;∵∠CDF=α,∴當旋轉角等于∠C時,DF=FC,所以C錯誤;故選ABD.【考點】本題主要考查了旋轉的性質,全等三角形的性質與判定,等腰三角形的性質,三角形內(nèi)角和定理,解題的關鍵在于能夠熟練掌握相關知識進行求解.三、填空題1、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關鍵在于運用扇形的弧長與面積公式進行求解.難點在于求出公式中的未知量.2、②③④【分析】根據(jù)切線的性質,正方形的性質,通過三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個結論;運用對角互補的四邊形內(nèi)接于圓,證明∠GHF+∠GEF=180°,取GH的中點P,連接PA,則PA+PC≥AC,當PC最大時,PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時,PA最小,計算即可.【詳解】∵GH是⊙O的切線,M為切點,且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無法確定HD=2BG,故①錯誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對角互補的四邊形內(nèi)接于圓,∴H,F(xiàn),E,G四點在同一個圓上,故③正確;∵正方形ABCD的邊長為1,∴=1=,∠GAH=90°,AC=取GH的中點P,連接PA,∴GH=2PA,∴=,∴當PA取最小值時,有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當PC最大時,PA最小,∵直徑是圓中最大的弦,∴PC=1時,PA最小,∴當A,P,C三點共線時,且PC最大時,PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點睛】本題考查了切線的性質,直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點共圓,正方形的性質,熟練掌握圓的性質,靈活運用直角三角形的性質,線段最短原理是解題的關鍵.3、##【分析】設與AC相交于點D,過點D作,垂足為點E,根據(jù)勾股定理逆定理可得為直角三角形,根據(jù)三邊關系可得,根據(jù)題意及等角對等邊得出,在中,利用正弦函數(shù)可得,結合圖形,利用扇形面積公式及三角形面積公式求解即可得.【詳解】解:設與AC相交于點D,過點D作,垂足為點E,∵,,,∴,∴為直角三角形,∴,∵繞點B順時針方向旋轉45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案為:.【點睛】題目主要考查勾股定理逆定理,旋轉的性質,等角對等邊的性質,正切函數(shù),扇形面積等,理解題意,結合圖形,綜合運用這些知識點是解題關鍵.4、5或3【分析】分點P在圓內(nèi)或圓外進行討論.【詳解】解:①當點P在圓內(nèi)時,⊙O的直徑長為8+2=10(cm),半徑為5cm;②當點P在圓外時,⊙O的直徑長為8-2=6(cm),半徑為3cm;綜上所述:⊙O的半徑長為5cm或3cm.故答案為:5或3.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.5、1【解析】【分析】由矩形的性質可知BD=AC,再結合頂點到x軸的距離最近可知當點A在頂點處時滿足條件,求得拋物線的頂點坐標即可求得答案.【詳解】解:∵AC⊥x軸,∴當點A為拋物線頂點時,AC有最小值,∵拋物線y=x2﹣2x+2=(x?1)2+1,∴頂點坐標為(1,1),∴AC的最小值為1,∵四邊形ABCD為矩形,∴BD=AC,∴BD的最小值為1,故答案為:1.【考點】本題主要考查了二次函數(shù)的性質及矩形的性質,確定出AC最小時的位置是解題的關鍵.四、簡答題1、b=-3,c=-4.【解析】【分析】將,代入中,求解二元一次方程組即可解題.【詳解】解:將,代入中得,解得:∴b=-3,c=-4.【考點】本題考查了含參數(shù)的二次函數(shù)的求解,屬于簡單題,熟悉求解二元一次方程組的方法是解題關鍵.2、.【解析】【分析】先根據(jù)可判斷出,再根據(jù)相似三角形的對應邊成比例列出方程解答即可.【詳解】解:,,,,,即,.的長為.【考點】本題考查相似三角形性質的應用.解題時關鍵是找出相似的三角形,然后根據(jù)對應邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.五、解答題1、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過點C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過點C作交BE于點M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當∠ABE=90°-15°=75°時,BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過點C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴,∴,故答案是:;(2),證明:過點C作交BE于點M,則,∴?,∴,∵,,∴,,∴,∴,∴,,∴是等腰直角三角形,∴,∵,∴,(3)或,∵,分兩種情況,當∠ABE=90°-15°=75°時,∵BC=CE,∴∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,∴∠DCE=∠BCE-∠BCD=150°=90°=60°,∵CE=CD,∴△CDE為等邊三角形,∴DE=CD=AB=2,∠DEC=60°,∴∠FEH=∠DEC=∠CEB=60°-15°=45°,∵CF⊥DE,∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,∴EF=HF=1,∴HE=,當∠ABE=90°+15°=105°,∵BC=CE,∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB=150°,∴∠DCE=360°-∠DCB-∠BCE=120°,∵CE=BC=CD,CH⊥DE,∴∠FCE=,∴∠FEC=180°-∠CFE-∠FCE=30°,∴CF=,∴EF=,∵∠HEF=∠CEB+∠CEF=15°+30°=45°,∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,∴FH=FE,∴EH=,∴或.【點睛】本題考查正方形性質,圖形旋轉性質,勾股定理,等邊三角形,等腰直角三角形性質,角平分線,線段和差,掌握正方形性質,圖形旋轉性質,勾股定理,等邊三角形,等腰直角三角形性質,角平分線,線段和差是解題關鍵.2、(1)①B和C;②或;(2)或【分析】(1)①分別找出點A,B,C到線段ON的最小值和最大值,是否滿足“二分點”定義即可;②對a的取值分情況討論:、、和,根據(jù)“二分點”的定義可求解;(2)設線段AN上存在的“二分點”為,對的取值分情況討論、,、,和,根據(jù)“二分點”的定義可求解.【詳解】(1)①∵點A在ON上,故最小值為0,不符合題意,點B到ON的最小值為,最大值為,∴點B是線段ON的“二分點”,點C到ON的最小值為1,最大值為,∴點C是線段ON的“二分點”,故答案為:B和C;②若時,如圖所示:點C到OD的最小值為,最大值為,∵點C為線段OD的“二分點”,∴,解得:;若,如圖所示:點C到OD的最小值為1,最大值為,滿足題意;若時,如圖所示:點C到OD的最小值為1,最大值為,∵點C為線段OD的“二分點”,∴,解得:(舍);若時,如圖所示:點C到OD的最小值為,最大值為,∵點C為線段OD的“二分點”,∴,解得:或(舍),綜上所得:a的取值范圍為或;(2)如圖所示,設線段AN上存在的“二分點”為,當時,最小值為:,最大值為:,∴,即,∵,∴∴;當,時,最小值為:,最大值為:,∴∴,即,∵,∴,∵,∴不存在;當,時,最小值為:,最大值為:,∴,即,∴,∵,∴不存在;當時,最小值為:,最大值為:,∴,即,∴,∵,∴,綜上所述,r的取值范圍為或.【點睛】本題考查坐標上的兩點距離,解一元二次方程解不等式以及點到圓的距離求最值,根據(jù)題目所給條件,掌握“二分點”的定義是解題的關鍵.3、(1)(2)見解析【解析】【分析】(1)根據(jù)旋轉的性質可得CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,根據(jù)等邊對等角即可求出∠CAD=∠CDA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論