(完整版)七年級數(shù)學(xué)下冊期末壓軸題考試題及答案(一)培優(yōu)試卷_第1頁
(完整版)七年級數(shù)學(xué)下冊期末壓軸題考試題及答案(一)培優(yōu)試卷_第2頁
(完整版)七年級數(shù)學(xué)下冊期末壓軸題考試題及答案(一)培優(yōu)試卷_第3頁
(完整版)七年級數(shù)學(xué)下冊期末壓軸題考試題及答案(一)培優(yōu)試卷_第4頁
(完整版)七年級數(shù)學(xué)下冊期末壓軸題考試題及答案(一)培優(yōu)試卷_第5頁
已閱讀5頁,還剩36頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

一、解答題1.如圖,在平面直角坐標(biāo)系中,已知,將線段平移至,點(diǎn)在軸正半軸上,,且.連接,,,.(1)寫出點(diǎn)的坐標(biāo)為;點(diǎn)的坐標(biāo)為;(2)當(dāng)?shù)拿娣e是的面積的3倍時(shí),求點(diǎn)的坐標(biāo);(3)設(shè),,,判斷、、之間的數(shù)量關(guān)系,并說明理由.2.已知AB∥CD,線段EF分別與AB,CD相交于點(diǎn)E,F(xiàn).(1)請?jiān)跈M線上填上合適的內(nèi)容,完成下面的解答:如圖1,當(dāng)點(diǎn)P在線段EF上時(shí),已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過點(diǎn)P作直線PH∥AB,所以∠A=∠APH,依據(jù)是;因?yàn)锳B∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當(dāng)點(diǎn)P,Q在線段EF上移動時(shí)(不包括E,F(xiàn)兩點(diǎn)):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請說明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請直接寫出∠M,∠A與∠C的數(shù)量關(guān)系.3.如圖,已知直線射線,.是射線上一動點(diǎn),過點(diǎn)作交射線于點(diǎn),連接.作,交直線于點(diǎn),平分.(1)若點(diǎn),,都在點(diǎn)的右側(cè).①求的度數(shù);②若,求的度數(shù).(不能使用“三角形的內(nèi)角和是”直接解題)(2)在點(diǎn)的運(yùn)動過程中,是否存在這樣的偕形,使?若存在,直接寫出的度數(shù);若不存在.請說明理由.4.如圖1,MN∥PQ,點(diǎn)C、B分別在直線MN、PQ上,點(diǎn)A在直線MN、PQ之間.(1)求證:∠CAB=∠MCA+∠PBA;(2)如圖2,CD∥AB,點(diǎn)E在PQ上,∠ECN=∠CAB,求證:∠MCA=∠DCE;(3)如圖3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度數(shù).5.如圖,∠EBF=50°,點(diǎn)C是∠EBF的邊BF上一點(diǎn).動點(diǎn)A從點(diǎn)B出發(fā)在∠EBF的邊BE上,沿BE方向運(yùn)動,在動點(diǎn)A運(yùn)動的過程中,始終有過點(diǎn)A的射線AD∥BC.(1)在動點(diǎn)A運(yùn)動的過程中,(填“是”或“否”)存在某一時(shí)刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請說明理由;(3)當(dāng)AC⊥BC時(shí),直接寫出∠BAC的度數(shù)和此時(shí)AD與AC之間的位置關(guān)系.6.已知:ABCD.點(diǎn)E在CD上,點(diǎn)F,H在AB上,點(diǎn)G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問∠M與α之間有怎樣的數(shù)量關(guān)系(用含α的式子表示∠M)?請寫出你的猜想,并加以證明.7.閱讀理解:計(jì)算×﹣×?xí)r,若把與分別各看著一個整體,再利用分配律進(jìn)行運(yùn)算,可以大大簡化難度.過程如下:解:設(shè)為A,為B,則原式=B(1+A)﹣A(1+B)=B+AB﹣A﹣AB=B﹣A=.請用上面方法計(jì)算:①×-×②-.8.閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,于是小明用來表示的小數(shù)部分,事實(shí)上,小明的表示方法是有道理的,因?yàn)榈恼麛?shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是的小數(shù)部分,又例如:∵,即,∴的整數(shù)部分為2,小數(shù)部分為。請解答(1)的整數(shù)部分是______,小數(shù)部分是_______。(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求的值。(3)已知x是的整數(shù)部分,y是其小數(shù)部分,直接寫出的值.9.已知,在計(jì)算:的過程中,如果存在正整數(shù),使得各個數(shù)位均不產(chǎn)生進(jìn)位,那么稱這樣的正整數(shù)為“本位數(shù)”.例如:2和30都是“本位數(shù)”,因?yàn)闆]有進(jìn)位,沒有進(jìn)位;15和91都不是“本位數(shù)”,因?yàn)?,個位產(chǎn)生進(jìn)位,,十位產(chǎn)生進(jìn)位.則根據(jù)上面給出的材料:(1)下列數(shù)中,如果是“本位數(shù)”請?jiān)诤竺娴睦ㄌ杻?nèi)打“√”,如果不是“本位數(shù)”請?jiān)诤竺娴睦ㄌ杻?nèi)畫“×”.106();111();400();2015().(2)在所有的四位數(shù)中,最大的“本位數(shù)”是,最小的“本位數(shù)”是.(3)在所有三位數(shù)中,“本位數(shù)”一共有多少個?10.小學(xué)的時(shí)候我們已經(jīng)學(xué)過分?jǐn)?shù)的加減法法則:“同分母分?jǐn)?shù)相加減,分母不變,分子相加減;異分母分?jǐn)?shù)相加減,先通分,轉(zhuǎn)化為同分母分?jǐn)?shù),再加減.”如:,反之,這個式子仍然成立,即:.(1)問題發(fā)現(xiàn)觀察下列等式:①,②,③,…,猜想并寫出第個式子的結(jié)果:.(直接寫出結(jié)果,不說明理由)(2)類比探究將(1)中的的三個等式左右兩邊分別相加得:,類比該問題的做法,請直接寫出下列各式的結(jié)果:①;②;(3)拓展延伸計(jì)算:.11.對數(shù)運(yùn)算是高中常用的一種重要運(yùn)算,它的定義為:如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作:x=logaN,例如:32=9,則log39=2,其中a=10的對數(shù)叫做常用對數(shù),此時(shí)log10N可記為lgN.當(dāng)a>0,且a≠1,M>0,N>0時(shí),loga(M?N)=logaM+logaN.(I)解方程:logx4=2;(Ⅱ)log28=(Ⅲ)計(jì)算:(lg2)2+lg2?1g5+1g5﹣2018=(直接寫答案)12.閱讀下列材料:小明為了計(jì)算的值,采用以下方法:設(shè)①則②②-①得,請仿照小明的方法解決以下問題:(1)________;(2)_________;(3)求的和(,是正整數(shù),請寫出計(jì)算過程).13.如圖,已知點(diǎn),點(diǎn),且,滿足關(guān)系式.(1)求點(diǎn)、的坐標(biāo);(2)如圖1,點(diǎn)是線段上的動點(diǎn),軸于點(diǎn),軸于點(diǎn),軸于點(diǎn),連接、.試探究,之間的數(shù)量關(guān)系;(3)如圖2,線段以每秒2個單位長度的速度向左水平移動到線段.若線段交軸于點(diǎn),當(dāng)三角形和三角形的面積相等時(shí),求移動時(shí)間和點(diǎn)的坐標(biāo).14.如圖,已知//,點(diǎn)是射線上一動點(diǎn)(與點(diǎn)不重合),分別平分和,分別交射線于點(diǎn).(1)當(dāng)時(shí),的度數(shù)是_______;(2)當(dāng),求的度數(shù)(用的代數(shù)式表示);(3)當(dāng)點(diǎn)運(yùn)動時(shí),與的度數(shù)之比是否隨點(diǎn)的運(yùn)動而發(fā)生變化?若不變化,請求出這個比值;若變化,請寫出變化規(guī)律.(4)當(dāng)點(diǎn)運(yùn)動到使時(shí),請直接寫出的度數(shù).15.如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別為(1,0)、(-2,0),現(xiàn)同時(shí)將點(diǎn)分別向上平移2個單位,再向左平移1個單位,分別得到點(diǎn)的對應(yīng)點(diǎn),連接、、.(1)若在軸上存在點(diǎn),連接,使S△ABM=S□ABDC,求出點(diǎn)的坐標(biāo);(2)若點(diǎn)在線段上運(yùn)動,連接,求S=S△PCD+S△POB的取值范圍;(3)若在直線上運(yùn)動,請直接寫出的數(shù)量關(guān)系.16.閱讀材料:如果x是一個有理數(shù),我們把不超過x的最大整數(shù)記作.例如,,,,那么,,其中.例如,,,.請你解決下列問題:(1)__________,__________;(2)如果,那么x的取值范圍是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.17.如圖1,在平面直角坐標(biāo)系中,,且滿足,過作軸于.(1)求的面積.(2)若過作交軸于,且分別平分,如圖2,求的度數(shù).(3)在軸上存在點(diǎn)使得和的面積相等,請直接寫出點(diǎn)坐標(biāo).18.在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,現(xiàn)將線段先向上平移3個單位,再向右平移1個單位,得到線段,連接,.(1)如圖1,求點(diǎn),的坐標(biāo)及四邊形的面積;圖1(2)如圖1,在軸上是否存在點(diǎn),連接,,使?若存在這樣的點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,試說明理由;(3)如圖2,在直線上是否存在點(diǎn),連接,使?若存在這樣的點(diǎn),直接寫出點(diǎn)的坐標(biāo);若不存在,試說明理由.圖2(4)在坐標(biāo)平面內(nèi)是否存在點(diǎn),使?若存在這樣的點(diǎn),直接寫出點(diǎn)的坐標(biāo)的規(guī)律;若不存在,請說明理由.19.某校規(guī)劃在一塊長AD為18m、寬AB為13m的長方形場地ABCD上,設(shè)計(jì)分別與AD,AB平行的橫向通道和縱向通道,其余部分鋪上草皮,如圖所示,若設(shè)計(jì)三條通道,一條橫向,兩條縱向,且它們的寬度相等,其余六塊草坪相同,其中一塊草坪兩邊之比AM∶AN=8∶9,問通道的寬是多少?20.每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機(jī)器,現(xiàn)有甲、乙兩種型號的機(jī)器可選,其中每臺的價(jià)格、產(chǎn)量如下表:甲型機(jī)器乙型機(jī)器價(jià)格(萬元/臺)ab產(chǎn)量(噸/月)240180經(jīng)調(diào)查:購買一臺甲型機(jī)器比購買一臺乙型機(jī)器多12萬元,購買2臺甲型機(jī)器比購買3臺乙型機(jī)器多6萬元.(1)求a、b的值;(2)若該公司購買新機(jī)器的資金不超過216萬元,請問該公司有哪幾種購買方案?(3)在(2)的條件下,若公司要求每月的產(chǎn)量不低于1890噸,請你為該公司設(shè)計(jì)一種最省錢的購買方案.21.如圖,,是的平分線,和的度數(shù)滿足方程組,(1)求和的度數(shù);(2)求證:.(3)求的度數(shù).22.如圖,已知和的度數(shù)滿足方程組,且.(1)分別求和的度數(shù);(2)請判斷與的位置關(guān)系,并說明理由;(3)求的度數(shù).23.學(xué)校計(jì)劃為“我和我的祖國”演講比賽購買獎品.已知購買3個A獎品和2個B獎品共需120元;購買5個A獎品和4個B獎品共需210元.(1)求A,B兩種獎品的單價(jià);(2)學(xué)校準(zhǔn)備購買A,B兩種獎品共30個,且A獎品的數(shù)量不少于B獎品數(shù)量的.請?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.24.對a,b定義一種新運(yùn)算T,規(guī)定:T(a,b)=(a+2b)(ax+by)(其中x,y均為非零實(shí)數(shù)).例如:T(1,1)=3x+3y.(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;(2)已知關(guān)于x,y的方程組,若a≥﹣2,求x+y的取值范圍;(3)在(2)的條件下,已知平面直角坐標(biāo)系上的點(diǎn)A(x,y)落在坐標(biāo)軸上,將線段OA沿x軸向右平移2個單位,得線段O′A′,坐標(biāo)軸上有一點(diǎn)B滿足三角形BOA′的面積為9,請直接寫出點(diǎn)B的坐標(biāo).25.某數(shù)碼專營店銷售A,B兩種品牌智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如表所示:AB進(jìn)價(jià)(元/部)33003700售價(jià)(元/部)38004300(1)該店銷售記錄顯示,三月份銷售A、B兩種手機(jī)共34部,且銷售A種手機(jī)的利潤恰好是銷售B種手機(jī)利潤的2倍,求該店三月份售出A種手機(jī)和B種手機(jī)各多少部?(2)根據(jù)市場調(diào)研,該店四月份計(jì)劃購進(jìn)這兩種手機(jī)共40部,要求購進(jìn)B種手機(jī)數(shù)不低于A種手機(jī)數(shù)的,用于購買這兩種手機(jī)的資金低于140000元,請通過計(jì)算設(shè)計(jì)所有可能的進(jìn)貨方案.26.某體育拓展中心的門票每張10元,一次性使用考慮到人們的不同需求,也為了吸引更多的顧客,該拓展中心除保留原來的售票方法外,還推出了一種“購買個人年票”(個人年票從購買日起,可供持票者使用一年)的售票方法.年票分A、B兩類:A類年票每張120元,持票者可不限次進(jìn)入中心,且無需再購買門票;B類年票每張60元,持票者進(jìn)入中心時(shí),需再購買門票,每次2元.(1)小麗計(jì)劃在一年中花費(fèi)80元在該中心的門票上,如果只能選擇一種購買門票的方式,她怎樣購票比較合算?(2)小亮每年進(jìn)入該中心的次數(shù)約20次,他采取哪種購票方式比較合算?(3)小明根據(jù)自己進(jìn)入拓展中心的次數(shù),購買了A類年票,請問他一年中進(jìn)入該中心不低于多少次?27.材料1:我們把形如(、、為常數(shù))的方程叫二元一次方程.若、、為整數(shù),則稱二元一次方程為整系數(shù)方程.若是,的最大公約數(shù)的整倍數(shù),則方程有整數(shù)解.例如方程都有整數(shù)解;反過來也成立.方程都沒有整數(shù)解,因?yàn)?,3的最大公約數(shù)是3,而10不是3的整倍數(shù);4,2的最大公約數(shù)是2,而1不是2的整倍數(shù).材料2:求方程的正整數(shù)解.解:由已知得:……①設(shè)(為整數(shù)),則……②把②代入①得:.所以方程組的解為,根據(jù)題意得:.解不等式組得0<<.所以的整數(shù)解是1,2,3.所以方程的正整數(shù)解是:,,.根據(jù)以上材料回答下列問題:(1)下列方程中:①,②,③,④,⑤,⑥.沒有整數(shù)解的方程是(填方程前面的編號);(2)仿照上面的方法,求方程的正整數(shù)解;(3)若要把一根長30的鋼絲截成2長和3長兩種規(guī)格的鋼絲(兩種規(guī)格都要有),問怎樣截才不浪費(fèi)材料?你有幾種不同的截法?(直接寫出截法,不要求解題過程)28.某加工廠用52500元購進(jìn)A、B兩種原料共40噸,其中原料A每噸1500元,原料B每噸1000元.由于原料容易變質(zhì),該加工廠需盡快將這批原料運(yùn)往有保質(zhì)條件的倉庫儲存.經(jīng)市場調(diào)查獲得以下信息:①將原料運(yùn)往倉庫有公路運(yùn)輸與鐵路運(yùn)輸兩種方式可供選擇,其中公路全程120千米,鐵路全程150千米;②兩種運(yùn)輸方式的運(yùn)輸單價(jià)不同(單價(jià):每噸每千米所收的運(yùn)輸費(fèi));③公路運(yùn)輸時(shí),每噸每千米還需加收1元的燃油附加費(fèi);④運(yùn)輸還需支付原料裝卸費(fèi):公路運(yùn)輸時(shí),每噸裝卸費(fèi)100元;鐵路運(yùn)輸時(shí),每噸裝卸費(fèi)220元.(1)加工廠購進(jìn)A、B兩種原料各多少噸?(2)由于每種運(yùn)輸方式的運(yùn)輸能力有限,都無法單獨(dú)承擔(dān)這批原料的運(yùn)輸任務(wù).加工廠為了盡快將這批原料運(yùn)往倉庫,決定將A原料選一種方式運(yùn)輸,B原料用另一種方式運(yùn)輸,哪種方案運(yùn)輸總花費(fèi)較少?請說明理由.29.使方程(組)與不等式(組)同時(shí)成立的末知數(shù)的值稱為此方程(組)和不等式(組)的“理想解”.例:已知方程2x﹣3=1與不等式x+3>0,當(dāng)x=2時(shí),2x﹣3=2×2﹣3=1,x+3=2+3=5>0同時(shí)成立,則稱x=2是方程2x﹣3=1與不等式x+3>0的“理想解”.(1)已知①,②2(x+3)<4,③<3,試判斷方程2x+3=1的解是否是它們中某個不等式的“理想解”,寫出過程;(2)若是方程x﹣2y=4與不等式的“理想解”,求x0+2y0的取值范圍.30.如圖,已知點(diǎn),,.(1)求的面積;(2)點(diǎn)是在坐標(biāo)軸上異于點(diǎn)的一點(diǎn),且的面積等于的面積,求滿足條件的點(diǎn)的坐標(biāo);(3)若點(diǎn)的坐標(biāo)為,且,連接交于點(diǎn),在軸上有一點(diǎn),使的面積等于的面積,請直接寫出點(diǎn)的坐標(biāo)__________(用含的式子表示).【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1),;(2)點(diǎn)D的坐標(biāo)為或;(3)之間的數(shù)量關(guān)系,或,理由見解析.【分析】(1)由二次根式成立的條件可得a和b的值,由平移的性質(zhì)確定BC∥OA,且BC=OA,可得結(jié)論;(2)分點(diǎn)D在線段OA和在OA延長線兩種情況進(jìn)行計(jì)算;(3)分點(diǎn)D在線段OA上時(shí),α+β=θ和在OA延長線α-β=θ兩種情況進(jìn)行計(jì)算;【詳解】解:(1)∵,∴a=2,b=3,∴點(diǎn)C的坐標(biāo)為(2,3),∵A(4,0),∴OA=BC=4,由平移得:BC∥x軸,∴B(6,3),故答案為:,;(2)設(shè)點(diǎn)D的坐標(biāo)為∵△ODC的面積是△ABD的面積的3倍∴∴①如圖1,當(dāng)點(diǎn)D在線段OA上時(shí),由,得解得∴點(diǎn)D的坐標(biāo)為②如圖2,當(dāng)點(diǎn)D在OA得延長線上時(shí),由,得解得∴點(diǎn)D的坐標(biāo)為綜上,點(diǎn)D的坐標(biāo)為或.(3)①如圖1,當(dāng)點(diǎn)D在線段OA上時(shí),過點(diǎn)D作DE∥AB,與CB交于點(diǎn)E.由平移知OC∥AB,∴DE∥OC∴又∴.②如圖2,當(dāng)點(diǎn)D在OA得延長線上時(shí),過點(diǎn)D作DE∥AB,與CB得延長線交于點(diǎn)E由平移知OC∥AB,∴DE∥OC∴又∴.綜上,之間的數(shù)量關(guān)系,或.【點(diǎn)睛】此題考查四邊形和三角形的綜合題,點(diǎn)的坐標(biāo)和三角形面積的計(jì)算方法,平移得性質(zhì),平行線的性質(zhì)和判定,解題的關(guān)鍵是分點(diǎn)D在線段OA上,和OA延長線上兩種情況.2.(1)兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線的判定與性質(zhì)即可完成填空;(2)結(jié)合(1)的輔助線方法即可完成證明;(3)結(jié)合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關(guān)系.【詳解】解:過點(diǎn)P作直線PH∥AB,所以∠A=∠APH,依據(jù)是兩直線平行,內(nèi)錯角相等;因?yàn)锳B∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過點(diǎn)P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過點(diǎn)P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點(diǎn)睛】考核知識點(diǎn):平行線的判定和性質(zhì).熟練運(yùn)用平行線性質(zhì)和判定,添加適當(dāng)輔助線是關(guān)鍵.3.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=20°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)設(shè)∠EGC=3x,∠EFC=2x,則∠GCF=3x-2x=x,分兩種情況討論:①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°?40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,設(shè)∠EGC=3x°,∠EFC=2x°,①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,則∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,則∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),反向延長CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【點(diǎn)睛】本題主要考查了平行線的性質(zhì),掌握兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯角相等是解題的關(guān)鍵.4.(1)證明見解析;(2)證明見解析;(3)120°.【分析】(1)過點(diǎn)A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)由兩直線平行,同旁內(nèi)角互補(bǔ)得到∴、∠CAB+∠ACD=180°,由鄰補(bǔ)角定義得到∠ECM+∠ECN=180°,再等量代換即可得解;(3)由平行線的性質(zhì)得到,∠FAB=120°﹣∠GCA,再由角平分線的定義及平行線的性質(zhì)得到∠GCA﹣∠ABF=60°,最后根據(jù)三角形的內(nèi)角和是180°即可求解.【詳解】解:(1)證明:如圖1,過點(diǎn)A作AD∥MN,∵M(jìn)N∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如圖2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),線段、角、相交線與平行線,準(zhǔn)確的推導(dǎo)是解決本題的關(guān)鍵.5.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點(diǎn)睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.6.(1)見解析;(2),證明見解析.【分析】(1)由平行線的性質(zhì)得到,等量代換得出,即可根據(jù)“同位角相等,兩直線平行”得解;(2)過點(diǎn)作,過點(diǎn)作,根據(jù)平行線的性質(zhì)及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過點(diǎn)作,過點(diǎn)作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),熟記平行線的判定與性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.7.(1);(2).【分析】①根據(jù)發(fā)現(xiàn)的規(guī)律得出結(jié)果即可;②根據(jù)發(fā)現(xiàn)的規(guī)律將所求式子變形,約分即可得到結(jié)果.【詳解】(1)設(shè)為A,為B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=;(2)設(shè)為A,為B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=.【點(diǎn)睛】考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.8.(1)3;﹣3;(2)4;(3)x﹣y=7﹣.【分析】(1)由3<<4可得答案;(2)由2<<3知a=﹣2,由6<<7知b=6,據(jù)此求解可得;(3)由2<<3知5<3+<6,據(jù)此得出x、y的值代入計(jì)算可得.【詳解】(1)∵3<<4,∴的整數(shù)部分是3,小數(shù)部分是﹣3;故答案為3;﹣3.(2)∵2<<3,∴a=﹣2,∵6<<7,∴b=6,∴a+b﹣=﹣2+6﹣=4.(3)∵2<<3,∴5<3+<6,∴3+的整數(shù)部分為x=5,小數(shù)部分為y=3+﹣5=﹣2.則x﹣y=5﹣(﹣2)=5﹣+2=7﹣.【點(diǎn)睛】本題考查了估算無理數(shù)的大小,解決本題的關(guān)鍵是熟記估算無理數(shù)的大?。?.(1)×,√,×,×;(2)3332;1000;(3)(個).【分析】(1)根據(jù)“本位數(shù)”的定義即可判斷;(2)要想保證不進(jìn)位,千位、百位、十位最大只能是3,個位最大只能是2,故最大的四位“本位數(shù)”是3332;千位最小為1,百位、十位、個位最小為0,故最小的“本位數(shù)”是1000;(3)要想構(gòu)成“本位數(shù)”,百位可以為1,2,3,十位可以為0,1,2,3,個位可以為0,1,2,所有的三位數(shù)中,“本位數(shù)”一共有(個).【詳解】解:(1)有進(jìn)位;沒有進(jìn)位;有進(jìn)位;有進(jìn)位;故答案為:×,√,×,×.(2)要想保證不進(jìn)位,千位、百位、十位最大只能是3,個位最大只能是2,故最大的四位“本位數(shù)”是3332;千位最小為1,百位、十位、個位最小為0,故最小的“本位數(shù)”是1000,故答案為:3332,1000.(3)要想構(gòu)成“本位數(shù)”,百位可以為1,2,3,十位可以為0,1,2,3,個位可以為0,1,2,所有的三位數(shù)中,“本位數(shù)”一共有(個).【點(diǎn)睛】本題考查了新定義計(jì)算題,準(zhǔn)確理解新定義的內(nèi)涵是解題的關(guān)鍵.10.(1);(2)①;②;(3).【分析】(1)根據(jù)題目中的式子可以寫出第n個式子的結(jié)果;(2)①根據(jù)題目中的式子的特點(diǎn)和(1)中的結(jié)果,可以求得所求式子的值;②根據(jù)題目中的式子的特點(diǎn)和(1)中的結(jié)果,可以求得所求式子的值;(3)根據(jù)題目中式子的特點(diǎn),可以求得所求式子的值.【詳解】解:(1)由題目中的式子可得,,故答案為:;(2)①,故答案為:;②,故答案為:;(3).【點(diǎn)睛】本題考查數(shù)字的變化類、有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)題目中式子的變化特點(diǎn),求出所求式子的值.11.(I)x=2;(Ⅱ)3;(Ⅲ)-2017.【分析】(I)根據(jù)對數(shù)的定義,得出x2=4,求解即可;(Ⅱ)根據(jù)對數(shù)的定義求解即;;(Ⅲ)根據(jù)loga(M?N)=logaM+logaN求解即可.【詳解】(I)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴l(xiāng)og28=3,故答案為3;(Ⅲ)解:(lg2)2+lg2?1g5+1g5﹣2018=lg2?(lg2+1g5)+1g5﹣2018=lg2+1g5﹣2018=1-2018=-2017故答案為-2017.【點(diǎn)睛】本題主要考查同底數(shù)冪的乘法,有理數(shù)的乘方,是一道關(guān)于新定義運(yùn)算的題目,解答本題的關(guān)鍵是理解給出的對數(shù)的定義.12.(1);(2);(3)【分析】(1)設(shè)式子等于s,將方程兩邊都乘以2后進(jìn)行計(jì)算即可;(2)設(shè)式子等于s,將方程兩邊都乘以3,再將兩個方程相減化簡后得到答案;(3)設(shè)式子等于s,將方程兩邊都乘以a后進(jìn)行計(jì)算即可.【詳解】(1)設(shè)s=①,∴2s=②,②-①得:s=,故答案為:;(2)設(shè)s=①,∴3s=②,②-①得:2s=,∴,故答案為:;(3)設(shè)s=①,∴as=②,②-①得:(a-1)s=,∴s=.【點(diǎn)睛】此題考查代數(shù)式的規(guī)律計(jì)算,能正確理解已知的代數(shù)式的運(yùn)算規(guī)律是難點(diǎn),依據(jù)規(guī)律對于每個式子變形計(jì)算是關(guān)鍵.13.(1);(2);(3),點(diǎn)C的坐標(biāo)為【分析】(1)由題意易得,然后可求a、b的值,進(jìn)而問題可求解;(2)由(1)及題意易得,然后根據(jù)建立方程求解即可;(3)分別過點(diǎn)作軸于點(diǎn)P,軸于點(diǎn)Q,由題意易得,然后可得,進(jìn)而可求t的值,最后根據(jù)(2)可得三角形的面積為3,則問題可求解.【詳解】解:(1)∵,∴,∴,∴點(diǎn),點(diǎn);(2)由(1)可得點(diǎn),點(diǎn),∵軸于點(diǎn),軸于點(diǎn),軸于點(diǎn),∴,,∵,∴,∵,且,∴,化簡得;(3)分別過點(diǎn)作軸于點(diǎn)P,軸于點(diǎn)Q,如圖所示:∵線段以每秒2個單位長度的速度向左水平移動到線段,時(shí)間為,∴,∵三角形和三角形的面積相等,∴,∴,∴,解得:,∴,由(2)可得三角形的面積為,∴三角形的面積為3,即,∴,∴.【點(diǎn)睛】本題主要考查圖形與坐標(biāo)、算術(shù)平方根與偶次冪的非負(fù)性及等積法,熟練掌握圖形與坐標(biāo)、算術(shù)平方根與偶次冪的非負(fù)性及等積法是解題的關(guān)鍵.14.(1)120°;(2)90°-x°;(3)不變,;(4)45°【分析】(1)由平行線的性質(zhì):兩直線平行同旁內(nèi)角互補(bǔ)可得;(2)由平行線的性質(zhì)可得∠ABN=180°-x°,根據(jù)角平分線的定義知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根據(jù)BD平分∠PBN知∠PBN=2∠DBN,從而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,當(dāng)∠ACB=∠ABD時(shí)有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根據(jù)角平分線的定義可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行線的性質(zhì)可得∠A+∠ABN=90°,即可得出答案.【詳解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;(3)不變,∠ADB:∠APB=.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=;(4)∵AM∥BN,∴∠ACB=∠CBN,當(dāng)∠ACB=∠ABD時(shí),則有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠A+∠ABN=90°,∴∠A+2∠DBN=90°,∴∠A+∠DBN=(∠A+2∠DBN)=45°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和角平分線的定義,熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.15.(1)(0,4)或(0,-4);(2);(3)答案見解析【解析】(1)先根據(jù)S△ABM=S□ABDC,得出△ABM的高為4,再根據(jù)三角形面積公式得到M點(diǎn)的坐標(biāo);(2)先計(jì)算出S梯形OBDC=5,再討論:當(dāng)點(diǎn)P運(yùn)動到點(diǎn)B時(shí),S△POC的最小值=2,當(dāng)點(diǎn)P運(yùn)動到點(diǎn)D時(shí),S△POC的最大值=3,即可判斷S=S△PCD+S△POB的取值范圍的取值范圍;(3)分類討論:當(dāng)點(diǎn)P在BD上,如圖1,作PE∥CD,根據(jù)平行線的性質(zhì)得CD∥PE∥AB,則∠DCP=∠EPC,∠BOP=∠EPO,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;當(dāng)點(diǎn)P在線段BD的延長線上時(shí),如圖2,同樣有∠DCP=∠EPC,∠BOP=∠EPO,由于∠EPO-∠EPC=∠BOP-∠DCP,于是∠BOP-∠DCP=∠CPO;同理可得當(dāng)點(diǎn)P在線段DB的延長線上時(shí),∠DCP-∠BOP=∠CPO.解:(1)由題意,得C(0,2)∴□ABDC的高為2若S△ABM=S□ABDC,則△ABM的高為4又∵點(diǎn)M是y軸上一點(diǎn)∴點(diǎn)M的坐標(biāo)為(0,4)或(0,-4)(2)∵B(-2,0),O(0,0)∴OB=2由題意,得C(0,2),D(-3,2)∴OC=2,CD=3∴S梯形OBDC=點(diǎn)在線段上運(yùn)動,當(dāng)點(diǎn)運(yùn)動到端點(diǎn)B時(shí),△PCO的面積最小,為當(dāng)點(diǎn)運(yùn)動到端點(diǎn)D時(shí),△PCO的面積最大,為∴S=S△PCD+S△POB=S梯形OBDC-S△PCO=5-S△PCO∴S的最大值為5-2=3,最小值為5-3=2故S的取值范圍是:(3)如圖:當(dāng)點(diǎn)在線段上運(yùn)動時(shí),當(dāng)點(diǎn)在射線上運(yùn)動時(shí),當(dāng)點(diǎn)在射線上運(yùn)動時(shí),點(diǎn)睛:本題主要考查坐標(biāo)與圖形的性質(zhì)及三角形的面積.利用分類討論思想,并構(gòu)造輔助線利用平行線的性質(zhì)推理是解題的關(guān)鍵.16.(1)4,-7;(2);(3);(4)或或或【分析】(1)根據(jù)表示不超過x的最大整數(shù)的定義及例子直接求解即可;(2)根據(jù)表示不超過x的最大整數(shù)的定義及例子直接求解即可;(3)由材料中“,其中”得出,解不等式,再根據(jù)3x+1為整數(shù),即可計(jì)算出具體的值;(4)由材料中的條件可得,由,可求得的范圍,根據(jù)為整數(shù),分情況討論即可求得x的值.【詳解】(1),.故答案為:4,-7.(2)如果.那么x的取值范圍是.故答案為:.(3)如果,那么.解得:∵是整數(shù).∴.故答案為:.(4)∵,其中,∴,∵,∴.∵,∴,∴,∴,0,1,2.當(dāng)時(shí),,;當(dāng)時(shí),,;當(dāng)時(shí),,;當(dāng)時(shí),,;∴或或或.【點(diǎn)睛】本題考查了新定義下的不等式的應(yīng)用,關(guān)鍵是理解題中的意義,列出不等式求解;最后一問要注意不要漏了情況.17.(1)4;(2);(2)或.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)易得,,然后根據(jù)三角形面積公式計(jì)算;(2)過作,根據(jù)平行線性質(zhì)得,且,,所以;然后把代入計(jì)算即可;(3)分類討論:設(shè),當(dāng)在軸正半軸上時(shí),過作軸,軸,軸,利用可得到關(guān)于的方程,再解方程求出;當(dāng)在軸負(fù)半軸上時(shí),運(yùn)用同樣方法可計(jì)算出.【詳解】解:(1),,,,,,,,的面積;(2)解:軸,,,又∵,∴,過作,如圖①,,,,,分別平分,,即:,,;(3)或.解:①當(dāng)在軸正半軸上時(shí),如圖②,設(shè),過作軸,軸,軸,,,解得,②當(dāng)在軸負(fù)半軸上時(shí),如圖③,解得,綜上所述:或.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì):兩直線平行,內(nèi)錯角相等.也考查了非負(fù)數(shù)的性質(zhì)、坐標(biāo)與圖形性質(zhì)以及三角形面積公式.構(gòu)造矩形求三角形面積是解題關(guān)鍵.18.(1),,;(2)存在,或;(3)存在,或;(4)存在,的縱坐標(biāo)總是4或.或者:點(diǎn)在平行于軸且與軸的距離等于4的兩條直線上;或者:點(diǎn)在直線或直線上【分析】(1)根據(jù)點(diǎn)的平移規(guī)律,即可得到對應(yīng)點(diǎn)坐標(biāo);(2)由,可以得到,即可得到P點(diǎn)坐標(biāo);(3)由,可以得到,結(jié)合點(diǎn)C坐標(biāo),就可以求得點(diǎn)Q坐標(biāo);(4)由,可以AB邊上的高的長度,從而得到點(diǎn)的坐標(biāo)規(guī)律.【詳解】(1)∵點(diǎn),點(diǎn)∴向上平移3個單位,再向右平移1個單位之后對應(yīng)點(diǎn)坐標(biāo)為,點(diǎn)∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴設(shè)中,AB邊上的高為h則:∴∴點(diǎn)在直線或直線上【點(diǎn)睛】本題考查直角坐標(biāo)系中點(diǎn)的坐標(biāo)平移規(guī)律,由點(diǎn)到坐標(biāo)軸的距離確定點(diǎn)坐標(biāo)等知識點(diǎn),根據(jù)相關(guān)內(nèi)容解題是關(guān)鍵.19.1【分析】利用AM:AN=8:9,設(shè)通道的寬為xm,AM=8ym,則AN=9ym,進(jìn)而利用AD為18m,AB為13m,得出等式求出即可.【詳解】設(shè)通道的寬是xm,AM=8ym.因?yàn)锳M∶AN=8∶9,所以AN=9ym.所以解得答:通道的寬是1m.故答案為1.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用.20.(1);(2)有4種方案:3臺甲種機(jī)器,7臺乙種機(jī)器;2臺甲種機(jī)器,8臺乙種機(jī)器;1臺甲種機(jī)器,9臺乙種機(jī)器;10臺乙種機(jī)器.(3)最省錢的方案是購買2臺甲種機(jī)器,8臺乙種機(jī)器.【分析】(1)根據(jù)購買一臺甲型機(jī)器比購買一臺乙型機(jī)器多12萬元,購買2臺甲型機(jī)器比購買3臺乙型機(jī)器多6萬元這一條件建立一元二次方程組求解即可,(2)設(shè)買了x臺甲種機(jī)器,根據(jù)該公司購買新機(jī)器的資金不超過216萬元,建立一次不等式求解即可,(3)將兩種機(jī)器生產(chǎn)的產(chǎn)量相加,使總產(chǎn)量不低于1890噸,求出x的取值范圍,再分別求出對應(yīng)的成本即可解題.【詳解】(1)解:由題意得,解得,;(2)解:設(shè)買了x臺甲種機(jī)器由題意得:30+18(10-x)≤216解得:x≤3∵x為非負(fù)整數(shù)∴x=0、1、2、3∴有4種方案:3臺甲種機(jī)器,7臺乙種機(jī)器;2臺甲種機(jī)器,8臺乙種機(jī)器;1臺甲種機(jī)器,9臺乙種機(jī)器;10臺乙種機(jī)器.(3)解:由題意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤3∴整數(shù)x=2或3當(dāng)x=2時(shí)購買費(fèi)用=30×2+18×8=204(元)當(dāng)x=3時(shí)購買費(fèi)用=30×3+18×7=216(元)∴最省錢的方案是購買2臺甲種機(jī)器,8臺乙種機(jī)器.【點(diǎn)睛】本題考查了利潤的實(shí)際應(yīng)用,二元一次方程租的實(shí)際應(yīng)用,一元一次不等式的實(shí)際應(yīng)用,難度較大,認(rèn)真審題,找到等量關(guān)系和不等關(guān)系并建立方程組和不等式組是解題關(guān)鍵.21.(1)和的度數(shù)分別為和;(2)見解析;(3)【分析】根據(jù),解二元一次方程組,求出和的度數(shù);根據(jù)平行線判定定理,判定;由“是的平分線”:,再根據(jù)平行線判定定理,求出的度數(shù).【詳解】解:(1)①②,得,,代入①得和的度數(shù)分別為和.(2),(3)是的平分線,【點(diǎn)睛】本題運(yùn)用二元一次方程組給出已知條件,熟練掌握二元一次方程組的解法以及平行線相關(guān)定理是解題的關(guān)鍵.22.(1);(2),理由詳見解析;(3)40°【分析】(1)利用加減消元法,通過解二元一次方程組可求出和的度數(shù);(2)利用求得的和的度數(shù)可得到,于是根據(jù)平行線的判定可判斷AB∥EF,然后利用平行的傳遞性可得到AB∥CD;(3)先根據(jù)垂直的定義得到,再根據(jù)平行線的性質(zhì)計(jì)算的度數(shù).【詳解】解(1)解方程組,①-②得:,解得:把代入②得:解得:;(2),理由:∵,,,(同旁內(nèi)角互補(bǔ),兩直線平行),又,;(3),.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定、解二元一次方程組,熟練掌握平行線的性質(zhì)和判定定理是解題關(guān)鍵.23.(1)A的單價(jià)30元,B的單價(jià)15元(2)購買A獎品8個,購買B獎品22個,花費(fèi)最少【分析】(1)設(shè)A的單價(jià)為x元,B的單價(jià)為y元,根據(jù)題意列出方程組,即可求解;(2)設(shè)購買A獎品z個,則購買B獎品為個,購買獎品的花費(fèi)為W元,根據(jù)題意得到由題意可知,,,根據(jù)一次函數(shù)的性質(zhì),即可求解;【詳解】解:(1)設(shè)A的單價(jià)為x元,B的單價(jià)為y元,根據(jù)題意,得,,A的單價(jià)30元,B的單價(jià)15元;(2)設(shè)購買A獎品z個,則購買B獎品為個,購買獎品的花費(fèi)為W元,由題意可知,,,,當(dāng)時(shí),W有最小值為570元,即購買A獎品8個,購買B獎品22個,花費(fèi)最少;【點(diǎn)睛】本題考查二元一次方程組的應(yīng)用,一次函數(shù)的應(yīng)用;能夠根據(jù)條件列出方程組,將最優(yōu)方案轉(zhuǎn)化為一次函數(shù)性質(zhì)解題是關(guān)鍵.24.(1)x=1,y=1;(2);(3)或或或或或【分析】(1)根據(jù)新運(yùn)算定義建立方程組,解方程組即可得出答案;(2)應(yīng)用新運(yùn)算定義建立方程組,解關(guān)于、的方程組可得,進(jìn)而得出,再運(yùn)用不等式性質(zhì)即可得出答案;(3)根據(jù)題意得,由平移可得,根據(jù)點(diǎn)落在坐標(biāo)軸上,且,分類討論即可.【詳解】解:(1)根據(jù)新運(yùn)算的定義可得:,解得:;(2)由題意得:,解得:,,,,,;(3)由(2)知,,,將線段沿軸向右平移2個單位,得線段,,點(diǎn)落在坐標(biāo)軸上,且,或,或;①當(dāng)時(shí),,若點(diǎn)在軸上,,,或;若點(diǎn)在軸上,,,或;②當(dāng)時(shí),;點(diǎn)只能在軸上,,,或;綜上所述,點(diǎn)的坐標(biāo)為或或或或或.【點(diǎn)睛】本題考查了新運(yùn)算定義,解二元一次方程組,不等式性質(zhì),平移變換的性質(zhì),理解并應(yīng)用新運(yùn)算定義是解題關(guān)鍵.25.(1)該店三月份售出A種手機(jī)24部,B種手機(jī)10部;(2)共有5種進(jìn)貨方案,分別是A種手機(jī)21部,B種手機(jī)19部;A種手機(jī)22部,B種手機(jī)18部;A種手機(jī)23部,B種手機(jī)17部;A種手機(jī)24部,B種手機(jī)16部;A種手機(jī)25部,B種手機(jī)15部【分析】(1)設(shè)該店三月份售出A種手機(jī)x部,B種手機(jī)y部,由“三月份銷售A、B兩種手機(jī)共34部,且銷售A種手機(jī)的利潤恰好是銷售B種手機(jī)利潤的2倍”列出方程組,可求解;(2)設(shè)A種手機(jī)a部,B種手機(jī)(40﹣a)部,由“購進(jìn)B種手機(jī)數(shù)不低于A種手機(jī)數(shù)的,用于購買這兩種手機(jī)的資金低于140000元”列出不等式組,即可求解.【詳解】解:(1)設(shè)該店三月份售出A種手機(jī)x部,B種手機(jī)y部,由題意可得:,解得:,答:該店三月份售出A種手機(jī)24部,B種手機(jī)10部;(2)設(shè)A種手機(jī)a部,B種手機(jī)(40﹣a)部,由題意可得,解得:20<a≤25,∵a為整數(shù),∴a=21,22,23,24,25,∴共有5種進(jìn)貨方案,分別是A種手機(jī)21部,B種手機(jī)19部;A種手機(jī)22部,B種手機(jī)18部;A種手機(jī)23部,B種手機(jī)17部;A種手機(jī)24部,B種手機(jī)16部;A種手機(jī)25部,B種手機(jī)15部.【點(diǎn)睛】本題考查了一元一次不等式組解實(shí)際問題的運(yùn)用,二元一次方程組解實(shí)際問題的運(yùn)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.26.(1)應(yīng)該購買B類年票,理由見解析;(2)應(yīng)該購買B類年票,理由見解析;(3)小明一年中進(jìn)入拓展中心不低于30次【分析】(1)因?yàn)?0元小于120元,故無法購買A類年票,繼而分別討論直接購票與購買B類年票,這兩種方式何者次數(shù)更多即可.(2)本題根據(jù)進(jìn)入中心的次數(shù),分別計(jì)算小亮直接購票、購買A類年票、購買B類年票所消費(fèi)的總金額,最后比較總花費(fèi)大小即可.(3)小明選擇購買A類年票,說明A類年票更為劃算,故需滿足直接購票與購買B類年票所花費(fèi)的金額不低于120元,最后列不等式求解即可.【詳解】(1)由于預(yù)算限制,小麗不可能買A類年票;若直接購票,可以進(jìn)中心次;若購買B類年票,可進(jìn)中心次,所以應(yīng)該購買B類年票.(2)若直接購買門票,需花費(fèi)元;若購買A類年票,需花費(fèi)120元;若購買B類年票,需花費(fèi)元;所以應(yīng)該購買B類年票.(3)設(shè)小明每年進(jìn)拓展中心約x次,根據(jù)題意列出不等式組:,解得,故.所以小明一年中進(jìn)入拓展中心不低于30次.【點(diǎn)睛】本題考查實(shí)際問題以及不等式,解題關(guān)鍵在于對題目的理解,此類型題目需要分類討論做對比,其次需要從實(shí)際問題背景抽離數(shù)學(xué)關(guān)系,最后注意計(jì)算仔細(xì)即可.27.(1)①⑥;(2),,;(3)有四種不同的截法不浪費(fèi)材料,分別為2長的鋼絲12根,3長的鋼絲2根;或2長的鋼絲9根,3長的鋼絲4根;或2長的鋼絲6根,3長的鋼絲6根;或2長的鋼絲3根,3長的鋼絲8根【分析】(1)依據(jù)題中給出的判斷方法進(jìn)行判斷,先找出最大公約數(shù),然后再看能否整除c,從而來判斷是否有整數(shù)解;(2)依據(jù)材料2的解題過程,即可求得結(jié)果;(3)根據(jù)題意,設(shè)2長的鋼絲為根,3長的鋼絲為根(為正整數(shù)).則可得關(guān)于x,y的二元一次方程,利用材料2的求解方法,求得此方程的整數(shù)解,即可得出結(jié)論.【詳解】解:(1)①,因?yàn)?,9的最大公約數(shù)是3,而11不是3的整倍數(shù),所以此方程沒有整數(shù)解;②,因?yàn)?5,5的最大公約數(shù)是5,而70是5的整倍數(shù),所以此方程有整數(shù)解;③,因?yàn)?,3的最大公約數(shù)是3,而111是3的整倍數(shù),所以此方程有整數(shù)解;④,因?yàn)?7,9的最大公約數(shù)是9,而99是9的整倍數(shù),所以此方程有整數(shù)解;⑤,因?yàn)?1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論