人教版七年級數(shù)學(xué)下學(xué)期相期末壓軸題易錯題檢測試卷含解析_第1頁
人教版七年級數(shù)學(xué)下學(xué)期相期末壓軸題易錯題檢測試卷含解析_第2頁
人教版七年級數(shù)學(xué)下學(xué)期相期末壓軸題易錯題檢測試卷含解析_第3頁
人教版七年級數(shù)學(xué)下學(xué)期相期末壓軸題易錯題檢測試卷含解析_第4頁
人教版七年級數(shù)學(xué)下學(xué)期相期末壓軸題易錯題檢測試卷含解析_第5頁
已閱讀5頁,還剩28頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

一、解答題1.在平面直角坐標系中,點A(1,2),點B(a,b),且,點E(6,0),將線段AB向下平移m個單位(m>0)得到線段CD,其中A、B的對應(yīng)點分別為C、D.(1)求點的坐標及三角形ABE的面積;(2)當線段CD與軸有公共點時,求的取值范圍;(3)設(shè)三角形CDE的面積為,當時,求的取值范圍.解析:(1)B(3,4),7;(2);(3)或【分析】(1)由算術(shù)平方根的意義可求出a,b的值,可求出B點的坐標,過點B作BH⊥x軸于點H,過點A作AM⊥BH于點M,過點E作EN⊥AM于點N,連接EM,由三角形面積公式可得出答案;(2)當點C在x軸上時,此時m=2,當點D在x軸上時,m=4,由題意可得出答案;(3)根據(jù)點C和點D不同的位置,由坐標與圖形的性質(zhì)及三角形面積公式可得出答案.【詳解】解:(1)∵,∴,∴b=4,∴=0,∴a-3=0,∴a=3,∴B(3,4),∴過點B作BH⊥x軸于點H,過點A作AM⊥BH于點M,過點E作EN⊥AM于點N,連接EM,則S△ABE=S△ABM+S△EBM+S△AME=×2×2+×2×3+×2×2=7;(2)當點C在x軸上時,此時m=2,當點D在x軸上時,m=4,∴2≤m≤4時,線段CD與x軸有公共點;(3)當點C在x軸上時,此時m=2,C(1,0),D(3,2),S△CDE=5,當點D在x軸上時,此時m=4,C(1,-2),D(3,0),S△CDE=3,當點C在x軸下方時,點D在x軸上方時,且S△CDE=4,如圖2,分別過點C,D作x軸,y軸平行線交于點G,連接GE,過點E作EH⊥CG于點H,∵C(1,2-m),D(3,4-m),∴CG=2,DG=2,EH=m-2,∴S△CDE=S△CDG+S△EDG-S△CEG,∴4=×2×2+×2×3?×2?(m?2),∴m=3.∴當2≤m≤3時,4≤S≤5;當C,D均為x軸下方時,如圖3,∵CG=DG=2,GH=3,EH=m-2,∴S△CDE=S△ECG-S△CDG-S△EDG,∴S△CDE=×2?(m?2)-×2×2?×2×3=m-7,當m-7=4時,m=11,當m-7=5時,m=12,∴當11≤m≤12時,4≤S≤5.綜合以上可得,當2≤m≤3或11≤m≤12時,4≤S≤5.【點睛】本題是幾何變換綜合題,考查了三角形的面積,坐標與圖形的性質(zhì),平移的性質(zhì),正確進行分類討論是解題的關(guān)鍵.2.在平面直角坐標系中,點,的坐標分別為,,現(xiàn)將線段先向上平移3個單位,再向右平移1個單位,得到線段,連接,.(1)如圖1,求點,的坐標及四邊形的面積;圖1(2)如圖1,在軸上是否存在點,連接,,使?若存在這樣的點,求出點的坐標;若不存在,試說明理由;(3)如圖2,在直線上是否存在點,連接,使?若存在這樣的點,直接寫出點的坐標;若不存在,試說明理由.圖2(4)在坐標平面內(nèi)是否存在點,使?若存在這樣的點,直接寫出點的坐標的規(guī)律;若不存在,請說明理由.解析:(1),,;(2)存在,或;(3)存在,或;(4)存在,的縱坐標總是4或.或者:點在平行于軸且與軸的距離等于4的兩條直線上;或者:點在直線或直線上【分析】(1)根據(jù)點的平移規(guī)律,即可得到對應(yīng)點坐標;(2)由,可以得到,即可得到P點坐標;(3)由,可以得到,結(jié)合點C坐標,就可以求得點Q坐標;(4)由,可以AB邊上的高的長度,從而得到點的坐標規(guī)律.【詳解】(1)∵點,點∴向上平移3個單位,再向右平移1個單位之后對應(yīng)點坐標為,點∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴設(shè)中,AB邊上的高為h則:∴∴點在直線或直線上【點睛】本題考查直角坐標系中點的坐標平移規(guī)律,由點到坐標軸的距離確定點坐標等知識點,根據(jù)相關(guān)內(nèi)容解題是關(guān)鍵.3.在平面直角坐標系中,,滿足.(1)直接寫出、的值:;;(2)如圖1,若點滿足的面積等于6,求的值;(3)設(shè)線段交軸于C,動點E從點C出發(fā),在軸上以每秒1個單位長度的速度向下運動,動點F從點出發(fā),在軸上以每秒2個單位長度的速度向右運動,若它們同時出發(fā),運動時間為秒,問為何值時,有?請求出的值.解析:(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)過點作直線軸,延長交于,設(shè)出點坐標,根據(jù)面積關(guān)系求出點坐標,再求出的長度,即可求出值;(3)先根據(jù)求出點坐標,再根據(jù)面積關(guān)系求出值即可.【詳解】解:(1),,,,,故答案為,2;(2)如圖1,過作直線垂直于軸,延長交直線于點,設(shè)的坐標為,過作交直線于點,連接,,,,解得,,,又點滿足的面積等于6,,解得或;(3)如圖2,延長交軸于,過作軸于,過作軸于,,,解得,,,,解得,,,,由題知,當秒時,,,,,,,,解得或2.【點睛】本題是三角形綜合題,考查三角形的面積,熟練掌握直角坐標系的知識,三角形的面積,梯形面積等知識是解題的關(guān)鍵.4.如圖1,已知,點A(1,a),AH⊥x軸,垂足為H,將線段AO平移至線段BC,點B(b,0),其中點A與點B對應(yīng),點O與點C對應(yīng),a、b滿足.(1)填空:①直接寫出A、B、C三點的坐標A(________)、B(________)、C(________);②直接寫出三角形AOH的面積________.(2)如圖1,若點D(m,n)在線段OA上,證明:4m=n.(3)如圖2,連OC,動點P從點B開始在x軸上以每秒2個單位的速度向左運動,同時點Q從點O開始在y軸上以每秒1個單位的速度向下運動.若經(jīng)過t秒,三角形AOP與三角形COQ的面積相等,試求t的值及點P的坐標.解析:(1)①1,4;3,0;2,﹣4;②2;(2)見解析;(3)t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【分析】(1)①利用非負數(shù)的性質(zhì)求出a,b的值,可得結(jié)論.②利用三角形面積公式求解即可.(2)連接DH,根據(jù)△ODH的面積+△ADH的面積=△OAH的面積,構(gòu)建關(guān)系式,可得結(jié)論.(3)分兩種情形:①當點P在線段OB上,②當點P在BO的延長線上時,分別利用面積關(guān)系,構(gòu)建方程,可得結(jié)論.【詳解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2個單位,向下平移4個單位得到B,∴點C是由點O向右平移2個單位,向下平移4個單位得到的,∴C(2,﹣4),故答案為:1,4;3,0;2,﹣4.②△AOH的面積=×1×4=2,故答案為:2.(2)證明:如圖,連接DH.∵△ODH的面積+△ADH的面積=△OAH的面積,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①當點P在線段OB上,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此時P(0.6,0).②當點P在BO的延長線上時,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此時P(﹣1,0),綜上所述,t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【點睛】本題考查坐標與圖形變化-平移,非負數(shù)的性質(zhì),三角形的面積等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題.5.在平面直角坐標系中,點,滿足關(guān)系式.(1)求,的值;(2)若點滿足的面積等于,求的值;(3)線段與軸交于點,動點從點出發(fā),在軸上以每秒個單位長度的速度向下運動,動點從點出發(fā),以每秒個單位長度的速度向右運動,問為何值時有,請直接寫出的值.解析:(1),;(2)或;(3)或【分析】(1)根據(jù)一個數(shù)的平方與絕對值均非負,且其和為0,則可得它們都為0,從而可求得a和b的值;(2)過點P作直線l垂直于x軸,延長交直線于點,設(shè)點坐標為,過作交直線于點,根據(jù)面積關(guān)系求出Q點坐標,再求出PQ的長度,即可求出n的值;(3)先根據(jù)求出C點坐標,再根據(jù)求出D點坐標,根據(jù)題意可得F點坐標,由得關(guān)于t的方程,求出t值即可.【詳解】(1),,且,,(2)過作直線垂直于軸,延長交直線于點,設(shè)點坐標為,過作交直線于點,如圖所示∵∴解得,點坐標為∵∴解得:或(3)當或時,有.如圖,延長BA交x軸于點D,過A點作AG⊥x軸于點G,過B點作BN⊥x軸于點N,∵∴解得:∴∵∴解得:∵∴當運動t秒時,∴∵CE=t∴,∵∴解得:或.【點睛】本題主要考查三角形的面積,含絕對值方程解法,熟練掌握直角坐標系的知識,三角形的面積,梯形的面積等知識是解題的關(guān)鍵,難點在于對圖形進行割補轉(zhuǎn)化為易求面積的圖形.6.在平面直角坐標系中,點坐標為,點坐標為,過點作直線軸,垂足為,交線段于點.(1)如圖1,過點作,垂足為,連接.①填空:的面積為______;②點為直線上一動點,當時,求點的坐標;(2)如圖2,點為線段延長線上一點,連接,,線段交于點,若,請直接寫出點的坐標為______.解析:(1)①6;②的坐標為,;(2).【解析】【分析】(1)①易證四邊形AECO為矩形,則點B到AE的距離為OA,AE=OC=3,OA=CE=4,S△ABE=AE?OA,即可得出結(jié)果;②設(shè)點的坐標為,分兩種情況:點在點上方,連接,得=++=8,點在點的下方,得=8,分別列出方程解方程即可得出結(jié)果;(2)由S△AOF=S△QBF,則S△AOB=S△QOB,△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,得出OA=CQ,即可得出結(jié)果.【詳解】解:(1)①∵CD⊥x軸,AE⊥CD,∴AE∥x軸,四邊形AECO為矩形,點B到AE的距離為OA,∵點A(0,4),點C(3,0),∴AE=OC=3,OA=CE=4,∴S△ABE=AE?OA=×3×4=6,故答案為:6;②設(shè)點的坐標為.(i)∵點坐標為,點坐標為,∴.∵,∴.∴點在點上方,連接(如圖1).根據(jù)題意得∵,∴,∴,∴.∴當點的坐標為.(ii)點在點的下方,連接(如圖2).∵.∴.∴點在點的下方,根據(jù)題意得∵,∴,∴,∴.∴當點的坐標為.(2)(2)∵S△AOF=S△QBF,如圖3所示:∴S△AOB=S△QOB,∵△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,∴OA=CQ,∴點Q的坐標為(3,4),故答案為:(3,4).【點睛】本題是三角形綜合題,主要考查了圖形與點的坐標、矩形的判定與性質(zhì)、三角形面積的計算等知識,熟練掌握圖形與點的坐標,靈活運用割補法表示三角形面積列出方程是解題的關(guān)鍵.7.已知,AB∥DE,點C在AB上方,連接BC、CD.(1)如圖1,求證:∠BCD+∠CDE=∠ABC;(2)如圖2,過點C作CF⊥BC交ED的延長線于點F,探究∠ABC和∠F之間的數(shù)量關(guān)系;(3)如圖3,在(2)的條件下,∠CFD的平分線交CD于點G,連接GB并延長至點H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.解析:(1)證明見解析;(2);(3).【分析】(1)過點作,先根據(jù)平行線的性質(zhì)可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質(zhì)可得,由此即可得證;(2)過點作,同(1)的方法,先根據(jù)平行線的性質(zhì)得出,,從而可得,再根據(jù)垂直的定義可得,由此即可得出結(jié)論;(3)過點作,延長至點,先根據(jù)平行線的性質(zhì)可得,,從而可得,再根據(jù)角平分線的定義、結(jié)合(2)的結(jié)論可得,然后根據(jù)角的和差、對頂角相等可得,由此即可得出答案.【詳解】證明:(1)如圖,過點作,,,,,即,,;(2)如圖,過點作,,,,,即,,,,,;(3)如圖,過點作,延長至點,,,,,平分,平分,,由(2)可知,,,又,.【點睛】本題考查了平行線的性質(zhì)、對頂角相等、角平分線的定義等知識點,熟練掌握平行線的性質(zhì)是解題關(guān)鍵.8.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點,點為上一點,連接,若的平分線交線段于點,連接,若,過點作交的延長線于點,且,求的度數(shù).解析:(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點E作,延長DC至Q,過點M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過點E作,延長DC至Q,過點M作,,,AF平分FH平分設(shè),.【點睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進行推理是解此題的關(guān)鍵.9.已知直線AB//CD,點P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.解析:(1)PB′⊥QC′;(2)當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進而得結(jié)論;(2)分三種情況:①當0<t≤15時,②當15<t≤30時,③當30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運用方程思想解決幾何問題.10.已知,AB∥CD,點E為射線FG上一點.(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當點E在FG延長線上時,此時CD與AE交于點H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關(guān)系,請說明你的結(jié)論;(3)如圖3,當點E在FG延長線上時,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數(shù).解析:(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過過作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過三角形內(nèi)角和得到,由角平分線定義及得到,求出的值再通過三角形內(nèi)角和求.【詳解】解:(1)過作,,,,,,故答案為:;(2).理由如下:過作,,,,,,,;(3),設(shè),則,,,又,,,平分,,,,即,解得,,.【點睛】本題主要考查了平行線的性質(zhì)和判定,正確做出輔助線是解決問題的關(guān)鍵.11.如圖,∠EBF=50°,點C是∠EBF的邊BF上一點.動點A從點B出發(fā)在∠EBF的邊BE上,沿BE方向運動,在動點A運動的過程中,始終有過點A的射線AD∥BC.(1)在動點A運動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請說明理由;(3)當AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關(guān)系.解析:(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.12.閱讀下面材料:小亮同學(xué)遇到這樣一個問題:已知:如圖甲,ABCD,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問題的證明,請你幫他把證明過程補充完整.證明:過點E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請你參考小亮思考問題的方法,解決問題:如圖乙,已知:直線ab,點A,B在直線a上,點C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點E.①如圖1,當點B在點A的左側(cè)時,若∠ABC=60°,∠ADC=70°,求∠BED的度數(shù);②如圖2,當點B在點A的右側(cè)時,設(shè)∠ABC=α,∠ADC=β,請你求出∠BED的度數(shù)(用含有α,β的式子表示).解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過點E作EF∥AB,當點B在點A的左側(cè)時,根據(jù)∠ABC=60°,∠ADC=70°,參考小亮思考問題的方法即可求∠BED的度數(shù);②如圖2,過點E作EF∥AB,當點B在點A的右側(cè)時,∠ABC=α,∠ADC=β,參考小亮思考問題的方法即可求出∠BED的度數(shù).【詳解】解:(1)過點E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過點E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數(shù)為65°;②如圖2,過點E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數(shù)為180°﹣.【點睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).13.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當平分時,證明:平分.(2)若如圖2擺放時,則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點,作和的角平分線相交于點(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點與重合,平移后的得到,點的對應(yīng)點分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點順時針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當線段與的一條邊平行時,請直接寫出旋轉(zhuǎn)的時間.解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點E作EK∥MN,利用平行線性質(zhì)即可求得答案;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,運用平行線性質(zhì)和角平分線定義即可得出答案;(4)根據(jù)平移性質(zhì)可得D′A=DF,DD′=EE′=AF=5cm,再結(jié)合DE+EF+DF=35cm,可得出答案;(5)設(shè)旋轉(zhuǎn)時間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:①當BC∥DE時,②當BC∥EF時,③當BC∥DF時,分別求出旋轉(zhuǎn)角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設(shè)旋轉(zhuǎn)時間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:BC∥DE時,如圖5,此時AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時,如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時,如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點A順時針旋轉(zhuǎn)的時間為10s或30s或40s時,線段BC與△DEF的一條邊平行.【點睛】本題主要考查了平行線性質(zhì)及判定,角平分線定義,平移的性質(zhì)等,添加輔助線,利用平行線性質(zhì)是解題關(guān)鍵.14.如圖1,已知直線CD∥EF,點A,B分別在直線CD與EF上.P為兩平行線間一點.(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關(guān)系?并說明理由;(3)利用(2)的結(jié)論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請你寫出∠P與∠P1的數(shù)量關(guān)系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結(jié)論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質(zhì))即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結(jié)論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結(jié)論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點睛】本題考查了平行線的性質(zhì),角平分線的定義,熟記性質(zhì)與概念是解題的關(guān)鍵,此類題目,難點在于過拐點作平行線.15.如圖1,在平面直角坐標系中,A(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論