難點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)訓(xùn)練試卷(含答案詳解)_第1頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)訓(xùn)練試卷(含答案詳解)_第2頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)訓(xùn)練試卷(含答案詳解)_第3頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)訓(xùn)練試卷(含答案詳解)_第4頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)訓(xùn)練試卷(含答案詳解)_第5頁
已閱讀5頁,還剩35頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數(shù)軸上,以原點(diǎn)O為圓心,對角線OB的長為半徑畫弧,交正半軸于一點(diǎn),則這個(gè)點(diǎn)表示的實(shí)數(shù)是()A.2.5 B.2 C. D.2、如圖,四邊形和四邊形都是矩形.若,則等于()A. B. C. D.3、下列說法中,不正確的是()A.四個(gè)角都相等的四邊形是矩形B.對角線互相平分且平分每一組對角的四邊形是菱形C.正方形的對角線所在的直線是它的對稱軸D.一組對邊相等,另一組對邊平行的四邊形是平行四邊形4、如圖,已知是平分線上的一點(diǎn),,,是的中點(diǎn),,如果是上一個(gè)動點(diǎn),則的最小值為()A. B. C. D.5、四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,且滿足,則這個(gè)四邊形是()A.任意四邊形 B.平行四邊形 C.對角線相等的四邊形 D.對角線垂直的四邊形6、如圖菱形ABCD,對角線AC,BD相交于點(diǎn)O,若BD=8,AC=6,則AB的長是()A.5 B.6 C.8 D.107、在Rt△ABC中,∠C=90°,若D為斜邊AB上的中點(diǎn),AB的長為10,則DC的長為()A.5 B.4 C.3 D.28、菱形ABCD的周長是8cm,∠ABC=60°,那么這個(gè)菱形的對角線BD的長是()A.cm B.2cm C.1cm D.2cm9、在銳角△ABC中,∠BAC=60°,BN、CM為高,P為BC的中點(diǎn),連接MN、MP、NP,則結(jié)論:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④當(dāng)∠ABC=60°時(shí),MN∥BC,一定正確的有()A.①②③ B.②③④ C.①②④ D.①④10、如圖,矩形ABCD中,AC交BD于點(diǎn)O,且AB=24,BC=10,將AC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE.連接AE,且F、G分別為AE、EC的中點(diǎn),則四邊形OFGC的面積是()A.100 B.144 C.169 D.225第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在平面直角坐標(biāo)系中,O是菱形ABCD對角線BD的中點(diǎn),AD∥x軸,AD=4,∠A=60°.將菱形ABCD繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)D落在x軸上,則旋轉(zhuǎn)后點(diǎn)C的對應(yīng)點(diǎn)的坐標(biāo)是_____________.2、如圖,在正方形紙片ABCD中,E是CD的中點(diǎn),將正方形紙片折疊,點(diǎn)B落在線段AE上的點(diǎn)G處,折痕為AF.若,則CF的長為_____.3、一個(gè)三角形三邊長之比為4∶5∶6,三邊中點(diǎn)連線組成的三角形的周長為30cm,則原三角形最大邊長為_________cm.4、如圖,在△ABC中,∠ACB=90°,以AC,BC和AB為邊向上作正方形ACED和正方形BCMI和正方形ABGF,點(diǎn)G落在MI上,若AC+BC=7,空白部分面積為16,則圖中陰影部分的面積是_____.5、如圖,菱形ABCD的對角線AC,BD相交于點(diǎn)O,E為DC的中點(diǎn),若,則菱形的周長為__________.6、已知長方形ABCD中,AB=4,BC=10,M為BC中點(diǎn),P為AD上的動點(diǎn),則以B、M、P為頂點(diǎn)組成的等腰三角形的底邊長是______________________.7、如圖,在中,,,,為上的兩個(gè)動點(diǎn),且,則的最小值是________.8、如圖所示,正方形ABCD的面積為6,△CDE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線BD上有一動點(diǎn)K,則KA+KE的最小值為_____________.9、如圖,在?ABCD中,點(diǎn)E是對角線AC上一點(diǎn),過點(diǎn)E作AC的垂線,交邊AD于點(diǎn)P,交邊BC于點(diǎn)Q,連接PC、AQ,若AC=6,PQ=4,則PC+AQ的最小值為________________.10、若一個(gè)菱形的兩條對角線的長為3和4,則菱形的面積為___________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,正方形網(wǎng)格中每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).試畫出一個(gè)頂點(diǎn)都在格點(diǎn)上,且面積為10的正方形.2、如圖,在正方形中,是直線上的一點(diǎn),連接,過點(diǎn)作,交直線于點(diǎn),連接.(1)當(dāng)點(diǎn)在線段上時(shí),如圖①,求證:;(2)當(dāng)點(diǎn)在直線上移動時(shí),位置如圖②、圖③所示,線段,與之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想,不需證明.3、如圖,在矩形中,為對角線.(1)用尺規(guī)完成以下作圖:在上找一點(diǎn),使,連接,作的平分線交于點(diǎn);(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,若,求的度數(shù).4、如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,過點(diǎn)A作射線l∥BC,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿射線l運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒(t>0),作∠PCB的平分線交射線l于點(diǎn)D,記點(diǎn)D關(guān)于射線CP的對稱點(diǎn)是點(diǎn)E,連接AE、PE、BP.(1)求證:PC=PD;(2)當(dāng)△PBC是等腰三角形時(shí),求t的值;(3)是否存在點(diǎn)P,使得△PAE是直角三角形,如果存在,請直接寫出t的值,如果不存在,請說明理由.5、在△ABC中,AB=AC=x,BC=12,點(diǎn)D,E分別為BC,AC的中點(diǎn),線段BE的垂直平分線交邊BC于點(diǎn)F,(1)當(dāng)x=10時(shí),求線段AD的長.(2)x取何值時(shí),點(diǎn)F與點(diǎn)D重合.(3)當(dāng)DF=1時(shí),求x2的值.-參考答案-一、單選題1、D【解析】【分析】利用矩形的性質(zhì),求證明,進(jìn)而在中利用勾股定理求出的長度,弧長就是的長度,利用數(shù)軸上的點(diǎn)表示,求出弧與數(shù)軸交點(diǎn)表示的實(shí)數(shù)即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長為,故在數(shù)軸上表示的數(shù)為,故選:.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)、勾股定理解三角形以及數(shù)軸上的點(diǎn)的表示,熟練利用矩形性質(zhì),得到直角三角形,然后通過勾股定理求邊長,是解決該類問題的關(guān)鍵.2、A【解析】【分析】由題意可得∠AGF=∠DAB=90°,由平行線的性質(zhì)可得,即可得∠DGF=70°.【詳解】解:∵四邊形ABCD和四邊形AEFG都是矩形∴∠AGF=∠DAB=90°,DC//AB∴∴故選:A.【點(diǎn)睛】本題考查了矩形的性質(zhì),熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.3、D【解析】【分析】根據(jù)矩形的判定,正方形的性質(zhì),菱形和平行四邊形的判定對各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:A、四個(gè)角都相等的四邊形是矩形,說法正確;B、正方形的對角線所在的直線是它的對稱軸,說法正確;C、對角線互相平分且平分每一組對角的四邊形是菱形,說法正確;D、一組對邊相等且平行的四邊形是平行四邊形,原說法錯(cuò)誤;故選:D.【點(diǎn)睛】本題主要考查特殊平行四邊形的判定與性質(zhì),熟練掌握特殊平行四邊形相關(guān)的判定與性質(zhì)是解答本題的關(guān)鍵.4、C【解析】【分析】根據(jù)題意由角平分線先得到是含有角的直角三角形,結(jié)合直角三角形斜邊上中線的性質(zhì)進(jìn)而得到OP,DP的值,再根據(jù)角平分線的性質(zhì)以及垂線段最短等相關(guān)內(nèi)容即可得到PC的最小值.【詳解】解:∵點(diǎn)P是∠AOB平分線上的一點(diǎn),,∴,∵PD⊥OA,M是OP的中點(diǎn),∴,∴∵點(diǎn)C是OB上一個(gè)動點(diǎn)∴當(dāng)時(shí),PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點(diǎn)睛】本題主要考查了角平分線的性質(zhì)、含有角的直角三角形的選擇,直角三角形斜邊上中線的性質(zhì)、垂線段最短等相關(guān)內(nèi)容,熟練掌握相關(guān)性質(zhì)定理是解決本題的關(guān)鍵.5、B【解析】【分析】根據(jù)完全平方公式分解因式得到a=b,c=d,利用邊的位置關(guān)系得到該四邊形的形狀.【詳解】解:,,,,∴a=b,c=d,∵四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,∴c、d是對邊,∴該四邊形是平行四邊形,故選:B.【點(diǎn)睛】此題考查了完全平方公式分解因式,平行四邊形的判定方法,熟練掌握完全平方公式分解因式是解題的關(guān)鍵.6、A【解析】【分析】由菱形的性質(zhì)可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【詳解】解:∵四邊形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:,故選:A.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理等知識;熟練掌握菱形對角線互相垂直且平分的性質(zhì)是解題的關(guān)鍵.7、A【解析】【分析】利用直角三角形斜邊的中線的性質(zhì)可得答案.【詳解】解:∵∠C=90°,若D為斜邊AB上的中點(diǎn),∴CD=AB,∵AB的長為10,∴DC=5,故選:A.【點(diǎn)睛】此題主要考查了直角三角形斜邊的中線,關(guān)鍵是掌握在直角三角形中,斜邊上的中線等于斜邊的一半.8、B【解析】【分析】由菱形的性質(zhì)得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再證△ABC是等邊三角形,得AC=AB=2(cm),則OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【詳解】解:∵菱形ABCD的周長為8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等邊三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故選:B.【點(diǎn)睛】此題考查了菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定,解題的關(guān)鍵是熟練掌握菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定方法.9、C【解析】【分析】利用直角三角形斜邊上的中線的性質(zhì)即可判定①正確;利用含30度角的直角三角形的性質(zhì)即可判定②正確,由勾股定理即可判定③錯(cuò)誤;由等邊三角形的判定及性質(zhì)、三角形中位線定理即可判定④正確.【詳解】∵CM、BN分別是高∴△CMB、△BNC均是直角三角形∵點(diǎn)P是BC的中點(diǎn)∴PM、PN分別是兩個(gè)直角三角形斜邊BC上的中線∴故①正確∵∠BAC=60゜∴∠ABN=∠ACM=90゜?∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正確在Rt△ABN中,由勾股定理得:故③錯(cuò)誤當(dāng)∠ABC=60゜時(shí),△ABC是等邊三角形∵CM⊥AB,BN⊥AC∴M、N分別是AB、AC的中點(diǎn)∴MN是△ABC的中位線∴MN∥BC故④正確即正確的結(jié)論有①②④故選:C【點(diǎn)睛】本題考查了直角三角形斜邊上中線的性質(zhì),含30度角的直角三角形的性質(zhì),等邊三角形的判定及性質(zhì),勾股定理,三角形中位線定理等知識,掌握這些知識并正確運(yùn)用是解題的關(guān)鍵.10、C【解析】【分析】先根據(jù)矩形的性質(zhì)、三角形中位線定理可得,再根據(jù)平行四邊形的判定可得四邊形為平行四邊形,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,最后根據(jù)正方形的判定可得四邊形為正方形,由此即可得.【詳解】解:四邊形為矩形,,,分別為的中點(diǎn),,,四邊形為平行四邊形,又繞點(diǎn)順時(shí)針旋轉(zhuǎn),,,平行四邊形為正方形,四邊形的面積是,故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì)、正方形的判定與性質(zhì)、三角形中位線定理等知識點(diǎn),熟練掌握正方形的判定與性質(zhì)是解題關(guān)鍵.二、填空題1、或##或【解析】【分析】分當(dāng)D落在x軸正半軸時(shí)和當(dāng)D落在x軸負(fù)半軸時(shí),兩種情況討論求解即可.【詳解】解:如圖1所示,當(dāng)D落在x軸正半軸時(shí),∵O是菱形ABCD對角線BD的中點(diǎn),∴AO⊥DO,∴當(dāng)D落在x軸正半軸時(shí),A點(diǎn)在y軸正半軸,∴同理可得A、B、C三點(diǎn)均在坐標(biāo)軸上,且點(diǎn)C在y軸負(fù)半軸,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴點(diǎn)C的坐標(biāo)為(0,);如圖2所示,當(dāng)D落在x軸負(fù)半軸時(shí),同理可得,∴點(diǎn)C的坐標(biāo)為(0,);∴綜上所述,點(diǎn)C的坐標(biāo)為(0,)或(0,),故答案為:(0,)或(0,).【點(diǎn)睛】本題主要考查了菱形的性質(zhì),坐標(biāo)與圖形,含30度角的直角三角形的性質(zhì),勾股定理,熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.2、【解析】【分析】設(shè)BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關(guān)于x的方程,求解x即可.【詳解】解:設(shè)BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質(zhì)可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)及翻轉(zhuǎn)折疊的性質(zhì),勾股定理,拓展一元一次方程,準(zhǔn)確運(yùn)用題目中的條件表示出EF列出方程式解題的關(guān)鍵.3、24【解析】【分析】由三邊長之比得到三角形的三條中位線之比,再由這三條中位線組成的三角形周長求出三中位線長,推出邊長,再比大小判斷即可.【詳解】∵如圖,H、I、J分別為BC,AC,AB的中點(diǎn)∴,,又∵∴∵AB:AC:BC=4:5:6,即BC邊最長∴故填24.【點(diǎn)睛】本題考查了三角形中位線的性質(zhì),即三角形的中位線平行于第三邊且等于第三邊的一半.4、【解析】【分析】根據(jù)余角的性質(zhì)得到,根據(jù)全等三角形的性質(zhì)得到,推出,根據(jù)勾股定理得到,解方程組得到,接著由圖可知空白部分為重疊部分,陰影部分為非重疊部分,所以2倍的空白部分與陰影部分面積和等于三個(gè)正方形與三角形面積和.結(jié)合即可得出結(jié)論.依此即可求解.【詳解】解:如圖,四邊形是正方形,,,,,,,∵,即,,在中,,,,,,,陰影部分的面積和=三個(gè)正方形面積+三角形面積-2倍空白部分面積=.故答案為:.【點(diǎn)睛】本題考查勾股定理的知識,有一定難度,解題關(guān)鍵是將勾股定理和正方形的面積公式進(jìn)行靈活的結(jié)合和應(yīng)用.5、16【解析】【分析】由菱形的性質(zhì)和三角形中位線定理即可得菱形的邊長,從而可求得菱形的周長.【詳解】∵四邊形ABCD是菱形,且對角線相交于點(diǎn)O∴點(diǎn)O是AC的中點(diǎn)∵E為DC的中點(diǎn)∴OE為△CAD的中位線∴AD=2OE=2×2=4∴菱形的周長為:4×4=16故答案為:16【點(diǎn)睛】本題考查了菱形的性質(zhì)及三角形中位線定理、菱形周長等知識,掌握這些知識是解答本題的關(guān)鍵.6、5或或【解析】【分析】分三種情況:①當(dāng)BP=PM時(shí),點(diǎn)P在BM的垂直平分線上,取BM的中點(diǎn)N,過點(diǎn)N作NP⊥BM交AD于P,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理即可求解;②當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為銳角如圖2時(shí),則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理可得MN=3,從而BN=2,再由勾股定理可得BP的長;③當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為鈍角如圖3時(shí),則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理MN=3,從而BN=8,再由勾股定理可得BP的長;即可求解.【詳解】解:BC=10,M為BC中點(diǎn),∴BM=5,當(dāng)△BMP為等腰三角形時(shí),分三種情況:①當(dāng)BP=PM時(shí),點(diǎn)P在AM的垂直平分線上,取BM的中點(diǎn)N,過點(diǎn)N作NP⊥AD交AD于P,如圖1所示:則△PBM是等腰三角形∴底邊BM的長為5②當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為銳角如圖2時(shí),則四邊形ABNP是矩形,∴PN=AB=4,∴MN=∴在Rt△PBN中,③當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為鈍角如圖3時(shí),則四邊形ABNP是矩形,得AB=PN=4,同理可得∴在Rt△PBN中,綜上,以B、M、P為頂點(diǎn)組成的等腰三角形的底邊長是:5或或故答案為:5或或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、勾股定理以及分類討論等知識,熟練掌握矩形的性質(zhì),進(jìn)行分類討論是解題的關(guān)鍵.7、【解析】【分析】過點(diǎn)A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點(diǎn)A關(guān)于BC的對稱點(diǎn)A′,連接AA′交BC于點(diǎn)O,連接A′M,三點(diǎn)D、M、A′共線時(shí),最小為A′D的長,利用勾股定理求A′D的長度即可解決問題.【詳解】解:過點(diǎn)A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點(diǎn)A關(guān)于BC的對稱點(diǎn)A′,連接AA′交BC于點(diǎn)O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點(diǎn)D、M、A′共線時(shí),A′M+DM最小為A′D的長,∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì),平行四邊形的判定與性質(zhì),勾股定理等知識,構(gòu)造平行四邊形將AN轉(zhuǎn)化為DM是解題的關(guān)鍵.8、【解析】【分析】根據(jù)正方形的性質(zhì)可知C、A關(guān)于BD對稱,推出CK=AK,推出EK+AK≥CE,根據(jù)等邊三角形性質(zhì)推出CE=CD,根據(jù)正方形面積公式求出CD即可.【詳解】解:∵四邊形ABCD是正方形,∴C、A關(guān)于BD對稱,即C關(guān)于BD的對稱點(diǎn)是A,如圖,連接CK,則CK=AK,∴EK+CK≥CE,∵△CDE是等邊三角形,∴CE=CD,∵正方形ABCD的面積為6,∴CD=,∴KA+KE的最小值為,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對稱-最短路徑問題,等邊三角形的性質(zhì)等知識點(diǎn)的應(yīng)用,解此題的關(guān)鍵是確定K的位置和求出KA+KE的最小值是CE.9、【解析】【分析】利用平行四邊形的知識,將的最小值轉(zhuǎn)化為的最小值,再利用勾股定理求出MC的長度,即可求解;【詳解】過點(diǎn)A作且,連接MP,∴四邊形是平行四邊形,∴,將的最小值轉(zhuǎn)化為的最小值,當(dāng)M、P、C三點(diǎn)共線時(shí),的最小,∵,,∴,在中,;故答案是:.【點(diǎn)睛】本題主要考查了平行線的判定與性質(zhì),勾股定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.10、6【解析】【分析】由題意直接由菱形的面積等于對角線乘積的一半進(jìn)行計(jì)算即可.【詳解】解:菱形的面積.故答案為:6.【點(diǎn)睛】本題考查菱形的性質(zhì),熟練掌握菱形的面積等于對角線乘積的一半是解題的關(guān)鍵.三、解答題1、見解析【分析】根據(jù)正方形的面積為10,可得其邊長為,據(jù)此可得正方形DEFG.【詳解】解:由勾股定理可得:如圖所示,四邊形DEFG即為所求.

【點(diǎn)睛】本題主要考查了應(yīng)用與設(shè)計(jì)作圖以及勾股定理的運(yùn)用,首先要理解題意,弄清問題中對所作圖形的要求,結(jié)合對應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.2、(1)見解析;(2)圖②中,圖③中【分析】(1)在上截取,連接,可先證得,則,,進(jìn)而可證得△AED為等腰直角三角形,即可得證;(2)仿照(1)的證明思路,作出相應(yīng)的輔助線,即可證得對應(yīng)的,與之間的數(shù)量關(guān)系.【詳解】解:(1)證明:如圖,在上截取,連接.∵四邊形是正方形,,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,;

(2)圖②:,理由如下:如下圖,在延長線上截取,連接.

∵四邊形是正方形,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,;圖③:如圖,在DE上截取DF=BE,連接.

∵四邊形是正方形,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,.【點(diǎn)睛】本題是四邊形綜合題,考查了正方形的性質(zhì)、全等三角形的判定及性質(zhì)、等腰直角三角形、勾股定理等相關(guān)知識,正確作出輔助線構(gòu)造全等三角形是解決本題的關(guān)鍵.3、(1)圖形見解析;(2)【分析】(1)利用尺規(guī)根據(jù)題意即可完成作圖;

(2)結(jié)合(1)根據(jù)等腰三角形的性質(zhì)和三角形外角定理可得的度數(shù).【詳解】(1)如圖,點(diǎn)E和點(diǎn)F即為所求;

(2)∵,∠ABD=68°,

∴∠AEB=∠AEB=68°∴∠EAB=180°-68°-68°=44°,

∴∠EAD=90°-44°=46°,

∵AF平分∠DAE,

∴∠FAE=∠DAE=23°,

∴【點(diǎn)睛】題考查了尺規(guī)作圖-作角平分線,矩形的性質(zhì),熟練掌握5種基本作圖是解決此類問題的關(guān)鍵.4、(1)見解析;(2)t=1或或;(3)存在,△PAE是直角三角形時(shí)t=或【分析】(1)根據(jù)平行線的性質(zhì)可得∠PDC=∠∠BCD,根據(jù)角平分線的定義可得∠PCD=∠BCD,則∠PCD=∠PDC,即可得到PC=PD;(2)分當(dāng)BP=BC=4cm時(shí),當(dāng)PC=BC=4cm時(shí),當(dāng)PC=PB時(shí)三種情況討論求解即可;(3)分當(dāng)∠PAE=90°時(shí),當(dāng)∠APE=90°時(shí),當(dāng)∠AEP=90°時(shí),三種情況討論求解即可.【詳解】解:(1)∵l∥BC,∴∠PDC=∠∠BCD,∵CD平分∠BCP,∴∠PCD=∠BCD,∴∠PCD=∠PDC,∴PC=PD;(2)在△ABC中,∠ACB=90°,,,∴,

若△PBC是等腰三角形,存在以下三種情況:①當(dāng)BP=BC=4cm時(shí),作PH⊥BC于H,∵∠ACB=90°,l∥BC,∴∠ACH=∠CAP=90°,∴四邊形ACHP是矩形,∴PH=AC=3cm,由勾股定理∴,∴,即,解得,②當(dāng)PC=BC=4cm時(shí),由勾股定理,即,解得;③當(dāng)PC=PB時(shí),P在BC的垂直平分線上,∴CH=BC=2cm,∴同理可得AP=CH=2cm,即2t=2,解得t=1,綜上所述,當(dāng)t=1或或時(shí),△PBC是等腰三角形;(3)∵D關(guān)于射線CP的對稱點(diǎn)是點(diǎn)E,∴PD=PE,∠ECP=∠DCP,由(1)知,PD=PC,∴PC=PE,要使△PAE是直角三角形,則存在以下三種情況:①當(dāng)∠PAE=90°時(shí),此時(shí)點(diǎn)C、A、E在一條直線上,且AE=AC=3cm

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論