版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》定向測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、在平面直角坐標(biāo)系中,平行四邊形ABCD的頂點(diǎn)A、B、D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點(diǎn)C的坐標(biāo)是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)2、如圖,已知正方形ABCD的邊長(zhǎng)為6,點(diǎn)E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點(diǎn)H,點(diǎn)G為DE的中點(diǎn),連接GH,則GH的長(zhǎng)為()A. B. C.4.5 D.4.33、如圖,在中,,,AD平分,E是AD中點(diǎn),若,則CE的長(zhǎng)為()A. B. C. D.4、如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)C是y軸正半軸上的點(diǎn),于點(diǎn)C.已知,.點(diǎn)B到原點(diǎn)的最大距離為()A.22 B.18 C.14 D.105、如圖,矩形ABCD的面積為1cm2,對(duì)角線交于點(diǎn)O;以AB、AO為鄰邊作平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1;以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類推,則平行四邊形AO2014C2015B的面積為()cmA.
B.
C.
D.6、直角三角形中,兩直角邊長(zhǎng)分別是12和5,則斜邊上的中線長(zhǎng)是()A.2.5 B.6 C.6.5 D.137、如圖,在菱形中,P是對(duì)角線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作于點(diǎn)E.于點(diǎn)F.若菱形的周長(zhǎng)為24,面積為24,則的值為()A.4 B. C.6 D.8、如圖,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,則∠BDE的度數(shù)為()A.36° B.30° C.27° D.18°9、如圖,下列條件中,能使平行四邊形ABCD成為菱形的是()A. B. C. D.10、在Rt△ABC中,∠C=90°,若D為斜邊AB上的中點(diǎn),AB的長(zhǎng)為10,則DC的長(zhǎng)為()A.5 B.4 C.3 D.2第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,△ABC中,D、E分別是AB、AC的中點(diǎn),若DE=4cm,則BC=_____cm.2、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點(diǎn)P、E、F分別為線段AB、AD、DB上的動(dòng)點(diǎn),則PE+PF的最小值是_____.3、如圖,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,點(diǎn)D在CB所在直線上運(yùn)動(dòng),以AD為邊作等邊三角形ADE,則CB=___.在點(diǎn)D運(yùn)動(dòng)過(guò)程中,CE的最小值為_(kāi)__.4、如圖,點(diǎn)P是矩形ABCD的對(duì)角線AC上一點(diǎn),過(guò)點(diǎn)P作EF∥BC,分別交AB,CD于點(diǎn)E、F,連接PB、PD,若AE=2,PF=9,則圖中陰影面積為_(kāi)_____;5、如圖,在中,,,,為上的兩個(gè)動(dòng)點(diǎn),且,則的最小值是________.6、點(diǎn)D、E、F分別是△ABC三邊的中點(diǎn),△ABC的周長(zhǎng)為24,則△DEF的周長(zhǎng)為_(kāi)_____.7、已知Rt△ABC的周長(zhǎng)是24,斜邊上的中線長(zhǎng)是5,則S△ABC=_____.8、如圖,將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.若AF=5,BF=3,則AC的長(zhǎng)為_(kāi)____.9、如圖,M,N分別是矩形ABCD的邊AD,AB上的點(diǎn),將矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,連接MC,若AB=8,AD=16,BE=4,則MC的長(zhǎng)為_(kāi)_______.10、如圖,在矩形ABCD中,AB=3,BC=4,點(diǎn)P是對(duì)角線AC上一點(diǎn),若點(diǎn)P、A、B組成一個(gè)等腰三角形時(shí),△PAB的面積為_(kāi)__________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,△AOB是等腰直角三角形.(1)若A(﹣4,1),求點(diǎn)B的坐標(biāo);(2)AN⊥y軸,垂足為N,BM⊥y軸,垂足為點(diǎn)M,點(diǎn)P是AB的中點(diǎn),連PM,求∠PMO度數(shù);(3)在(2)的條件下,點(diǎn)Q是ON的中點(diǎn),連PQ,求證:PQ⊥AM.
2、(閱讀材料)材料一:我們?cè)谛W(xué)學(xué)習(xí)過(guò)正方形,知道:正方形的四條邊都相等,四個(gè)角都是直角;材料二:如圖1,由一個(gè)等腰直角三角形和一個(gè)正方形組成的圖形,我們要判斷等腰直角三角形的面積與正方形的面積的大小關(guān)系,可以這樣做:如圖2,連接AC,BD,把正方形分成四個(gè)與等腰三角形ADE全等的三角形,所以.(解決問(wèn)題)如圖3,圖中由三個(gè)正方形組成的圖形(1)請(qǐng)你直接寫(xiě)出圖中所有的全等三角形;(2)任意選擇一組全等三角形進(jìn)行證明;(3)設(shè)圖中兩個(gè)小正方形的面積分別為S1和S2,若,求S1和S2的值.3、如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫(huà)出以AB為對(duì)角線的正方形AEBF,點(diǎn)E、F在小正方形的頂點(diǎn)上;(2)在方格紙中畫(huà)出以CD為斜邊的等腰直角三角形CDM,連接BM,并直接寫(xiě)出BM的長(zhǎng).4、如圖,在平行四邊形ABCD中,E為BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F,連接BF,AC,且AD=AF.(1)判斷四邊形ABFC的形狀并證明;(2)若AB=3,∠ABC=60°,求EF的長(zhǎng).5、如圖,在平行四邊形中,連接.(1)請(qǐng)用尺規(guī)完成基本作圖:在上方作,使,射線交于點(diǎn)F,在線段上截取,使.(2)連接,求證:四邊形是菱形.-參考答案-一、單選題1、A【解析】【分析】利用平行四邊形的對(duì)邊平行且相等的性質(zhì),先利用對(duì)邊平行,得到D點(diǎn)和C點(diǎn)的縱坐標(biāo)相等,再求出CD=AB=5,得到C點(diǎn)橫坐標(biāo),最后得到C點(diǎn)的坐標(biāo).【詳解】解:四邊形ABCD為平行四邊形。且。C點(diǎn)和D的縱坐標(biāo)相等,都為3.A點(diǎn)坐標(biāo)為(0,0),B點(diǎn)坐標(biāo)為(5,0),.D點(diǎn)坐標(biāo)為(2,3),C點(diǎn)橫坐標(biāo)為,點(diǎn)坐標(biāo)為(7,3).故選:A.【點(diǎn)睛】本題主要是考察了平行四邊形的性質(zhì)、利用線段長(zhǎng)求點(diǎn)坐標(biāo),其中,熟練應(yīng)用平行四邊形對(duì)邊平行且相等的性質(zhì),是解決與平行四邊形有關(guān)的坐標(biāo)題的關(guān)鍵.2、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個(gè)角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進(jìn)一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長(zhǎng)即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點(diǎn)G為DE的中點(diǎn),∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.3、B【解析】【分析】根據(jù)三角形內(nèi)角和定理求出∠BAC,根據(jù)角平分線的定義∠DAB=∠B,求出AD,根據(jù)直角三角形的性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∠B=30°,∴∠BAC=90°-30°=60°,∵AD平分∠BAC,∴∠DAB=∠BAC=30°,∴∠DAB=∠B,∴AD=BD=a,在Rt△ACB中,E是AD中點(diǎn),∴CE=AD=,故選:B.【點(diǎn)睛】本題考查的是直角三角形的性質(zhì)、角平分線的定義,掌握直角三角形斜邊上的中線是斜邊的一半是解題的關(guān)鍵.4、B【解析】【分析】首先取AC的中點(diǎn)E,連接BE,OE,OB,可求得OE與BE的長(zhǎng),然后由三角形三邊關(guān)系,求得點(diǎn)B到原點(diǎn)的最大距離.【詳解】解:取AC的中點(diǎn)E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點(diǎn)O,E,B不在一條直線上,則OB<OE+BE=18.若點(diǎn)O,E,B在一條直線上,則OB=OE+BE=18,∴當(dāng)O,E,B三點(diǎn)在一條直線上時(shí),OB取得最大值,最大值為18.故選:B【點(diǎn)睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5、C【解析】【分析】根據(jù)“同底等高”的原則可知平行四邊形AOC1B底邊AB上的高等于BC的,則有平行四邊形AOC1B的面積,平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,則有平行四邊形ABC3O2的面積,…;由此規(guī)律可進(jìn)行求解.【詳解】解:∵O1為矩形ABCD的對(duì)角線的交點(diǎn),∴平行四邊形AOC1B底邊AB上的高等于BC的,∴平行四邊形AOC1B的面積=×1=,∵平行四邊形AO1C2B的對(duì)角線交于點(diǎn)O2,∴平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,∴平行四邊形ABC3O2的面積=××1=,…,依此類推,平行四邊形ABC2014O2015的面積=cm2.故答案為:C.【點(diǎn)睛】本題主要考查矩形的性質(zhì)與平行四邊形的性質(zhì),熟練掌握矩形的性質(zhì)與平行四邊形的性質(zhì)是解題的關(guān)鍵.6、C【解析】【分析】利用勾股定理列式求出斜邊,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】解:由勾股定理得,斜邊,所以,斜邊上的中線長(zhǎng).故選:C.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,解題的關(guān)鍵是熟記性質(zhì).7、A【解析】【分析】連接BP,通過(guò)菱形的周長(zhǎng)為24,求出邊長(zhǎng),菱形面積為24,求出的面積,然后利用面積法,,即可求出的值.【詳解】解:如圖所示,連接BP,∵菱形ABCD的周長(zhǎng)為24,∴,又∵菱形ABCD的面積為24,∴,∴,∴,∵,∴,∵,∴,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì),解題關(guān)鍵在于添加輔助線,通過(guò)面積法得出等量關(guān)系.8、B【解析】【分析】根據(jù)已知條件可得以及的度數(shù),然后求出各角的度數(shù)便可求出.【詳解】解:在矩形ABCD中,,∵,∴,,∵,∴,∵,∴,∴,∴.故選:B.【點(diǎn)睛】題目主要考查矩形的性質(zhì),三角形內(nèi)角和及等腰三角形的性質(zhì),理解題意,綜合運(yùn)用各個(gè)性質(zhì)是解題關(guān)鍵.9、C【解析】【分析】根據(jù)菱形的性質(zhì)逐個(gè)進(jìn)行證明,再進(jìn)行判斷即可.【詳解】解:A、?ABCD中,本來(lái)就有AB=CD,故本選項(xiàng)錯(cuò)誤;B、?ABCD中本來(lái)就有AD=BC,故本選項(xiàng)錯(cuò)誤;C、?ABCD中,AB=BC,可利用鄰邊相等的平行四邊形是菱形判定?ABCD是菱形,故本選項(xiàng)正確;D、?ABCD中,AC=BD,根據(jù)對(duì)角線相等的平行四邊形是矩形,即可判定?ABCD是矩形,而不能判定?ABCD是菱形,故本選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),菱形的判定的應(yīng)用,注意:菱形的判定定理有:①有一組鄰邊相等的平行四邊形是菱形,②四條邊都相等的四邊形是菱形,③對(duì)角線互相垂直的平行四邊形是菱形.10、A【解析】【分析】利用直角三角形斜邊的中線的性質(zhì)可得答案.【詳解】解:∵∠C=90°,若D為斜邊AB上的中點(diǎn),∴CD=AB,∵AB的長(zhǎng)為10,∴DC=5,故選:A.【點(diǎn)睛】此題主要考查了直角三角形斜邊的中線,關(guān)鍵是掌握在直角三角形中,斜邊上的中線等于斜邊的一半.二、填空題1、8【解析】【分析】運(yùn)用三角形的中位線的知識(shí)解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點(diǎn)∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點(diǎn)睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關(guān)鍵.2、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關(guān)于AB的對(duì)稱點(diǎn)M,再過(guò)M作ME′⊥AD,交AB于點(diǎn)P′,此時(shí)P′E′+P′F最小,求出ME即可.【詳解】解:作出F關(guān)于AB的對(duì)稱點(diǎn)M,再過(guò)M作ME′⊥AD,交AB于點(diǎn)P′,此時(shí)P′E′+P′F最小,此時(shí)P′E′+P′F=ME′,過(guò)點(diǎn)A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點(diǎn)睛】本題考查翻折變換,等腰三角形的性質(zhì),軸對(duì)稱?最短問(wèn)題等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.3、4【解析】【分析】以AC為邊作正△AFC,并作FH⊥AC,垂足為點(diǎn)H,連接FD、CE,由直角三角形可求BC=4,,由“SAS”可證△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此時(shí),故CE的最小值是.【詳解】解:以AC為邊作正△AFC,并作FH⊥AC,垂足為點(diǎn)H,連接FD、CE,如圖:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等邊三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴當(dāng)FD⊥BD時(shí),F(xiàn)D最小,此時(shí)∠FDC=∠DCH=∠CHF=90°,∴四邊形FDCH是矩形,∴,∴CE的最小值是.故答案為:4,.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)與判定,矩形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理等等,解題的關(guān)鍵在于能夠熟練掌握等邊三角形的性質(zhì).4、【解析】【分析】作PM⊥AD于M,交BC于N,根據(jù)矩形的性質(zhì)可得S△PEB=S△PFD即可求解.【詳解】解:作PM⊥AD于M,交BC于N.則有四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,,∴,,∴S陰=9+9=18,故答案為:18.【點(diǎn)睛】本題考查矩形的性質(zhì)、三角形的面積等知識(shí),解題的關(guān)鍵是證明.5、【解析】【分析】過(guò)點(diǎn)A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)A′,連接AA′交BC于點(diǎn)O,連接A′M,三點(diǎn)D、M、A′共線時(shí),最小為A′D的長(zhǎng),利用勾股定理求A′D的長(zhǎng)度即可解決問(wèn)題.【詳解】解:過(guò)點(diǎn)A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)A′,連接AA′交BC于點(diǎn)O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點(diǎn)D、M、A′共線時(shí),A′M+DM最小為A′D的長(zhǎng),∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì),平行四邊形的判定與性質(zhì),勾股定理等知識(shí),構(gòu)造平行四邊形將AN轉(zhuǎn)化為DM是解題的關(guān)鍵.6、12【解析】【分析】據(jù)D、E、F分別是AB、AC、BC的中點(diǎn),可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長(zhǎng)度關(guān)系即可解答.【詳解】解:∵如圖所示,D、E、F分別是AB、BC、AC的中點(diǎn),∴ED、FE、DF為△ABC中位線,∴DFBC,F(xiàn)EAB,DEAC,∴△DEF的周長(zhǎng)=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案為:12.【點(diǎn)睛】本題考查了三角形的中位線定理,根據(jù)中點(diǎn)判斷出中位線,再利用中位線定理是解題的基本思路.7、24【解析】【分析】先根據(jù)直角三角形的性質(zhì)求解,再利用周長(zhǎng)求解,兩邊平方結(jié)合勾股定理可得,利用三角形面積公式求解即可.【詳解】解:如圖Rt△ABC,∠C=90°,點(diǎn)D為AB中點(diǎn),為RtABC斜邊上的中線,,,,,,,由,,∴S△ABC=.故答案為:24.【點(diǎn)睛】本題考查的是直角三角形斜邊上的中線的性質(zhì),勾股定理的應(yīng)用,完全平方公式,三角形面積公式,掌握以上知識(shí)是解題的關(guān)鍵.8、【解析】【分析】根據(jù)矩形的性質(zhì)得到∠B=90°,根據(jù)勾股定理得到,根據(jù)折疊的性質(zhì)得到CF=AF=5,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴∠B=90°,∵AF=5,BF=3,∴,∵將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.∴CF=AF=5,∴BC=BF+CF=8,∴,故答案為:.【點(diǎn)睛】本題主要考查了矩形與折疊問(wèn)題,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).9、10【解析】【分析】過(guò)E作EF⊥AD于F,根據(jù)矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,得出△ANM≌△ENM,可得AM=EM,根據(jù)矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4,根據(jù)勾股定理,即,解方程m=10即可.【詳解】解:過(guò)E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據(jù)勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點(diǎn)睛】本題考查折疊軸對(duì)稱性質(zhì),矩形判定與性質(zhì),勾股定理,掌握折疊軸對(duì)稱性質(zhì),矩形判定與性質(zhì),勾股定理是解題關(guān)鍵.10、或或3【解析】【分析】過(guò)B作BM⊥AC于M,根據(jù)矩形的性質(zhì)得出∠ABC=90°,根據(jù)勾股定理求出AC,根據(jù)三角形的面積公式求出高BM,分為三種情況:①AB=BP=3,②AB=AP=3,③AP=BP,分別畫(huà)出圖形,再求出面積即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,由勾股定理得:,有三種情況:①當(dāng)AB=BP=3時(shí),如圖1,過(guò)B作BM⊥AC于M,S△ABC=,,解得:,∵AB=BP=3,BM⊥AC,∴,∴AP=AM+PM=,∴△PAB的面積=;②當(dāng)AB=AP=3時(shí),如圖2,∵BM=,∴△PAB的面積S=;③作AB的垂直平分線NQ,交AB于N,交AC于P,如圖3,則AP=BP,BN=AN=,∵四邊形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴,∴△PAB的面積;即△PAB的面積為或或3.故答案為:或或3.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)、等腰三角形的判定以及勾股定理求邊長(zhǎng),熟練掌握矩形的性質(zhì),利用等腰三角形的判定,分成三種情況討論,是解決本題的關(guān)鍵.三、解答題1、(1)(1,4);(2)45°;(3)見(jiàn)解析
【分析】(1)過(guò)點(diǎn)A作AE⊥x軸于E,過(guò)點(diǎn)B作BF⊥x軸于F,證明△OAE≌△BOF得到OF=AE,BF=OE,再由點(diǎn)A的坐標(biāo)為(-4,1),得到OF=AE=1,BF=OE=4,則點(diǎn)B的坐標(biāo)為(1,4);(2)延長(zhǎng)MP與AN交于H,證明△APH≌△BPM得到AH=BM,再由A點(diǎn)坐標(biāo)為(-4,1),B點(diǎn)坐標(biāo)為(1,4),得到AN=4,OM=4,BM=1,ON=1,則HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)連接OP,AM,取BM中點(diǎn)G,連接GP,則GP是△ABM的中位線,AM∥GP,證明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,則PQ⊥PG,即PG⊥AM;【詳解】解:(1)如圖所示,過(guò)點(diǎn)A作AE⊥x軸于E,過(guò)點(diǎn)B作BF⊥x軸于F,∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOF,∵AO=OB,∴△OAE≌△BOF(AAS),∴OF=AE,BF=OE,∵點(diǎn)A的坐標(biāo)為(-4,1),∴OF=AE=1,BF=OE=4,∴點(diǎn)B的坐標(biāo)為(1,4);(2)如圖所示,延長(zhǎng)MP與AN交于H,∵AH⊥y軸,BM⊥y軸,∴BM∥AN,∴∠MBP=∠HAP,∠AHP=∠BMP,∵點(diǎn)P是AB的中點(diǎn),∴AP=BP,∴△APH≌△BPM(AAS),∴AH=BM,∵A點(diǎn)坐標(biāo)為(-4,1),B點(diǎn)坐標(biāo)為(1,4),∴AN=4,OM=4,BM=1,ON=1,∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,∴HN=MN,∴∠NHM=∠NMH=45°,即∠PMO=45°;(3)如圖所示,連接OP,AM,取BM中點(diǎn)G,連接GP,∴GP是△ABM的中位線,∴AM∥GP,∵Q是ON的中點(diǎn),G是BM的中點(diǎn),ON=BM=1,∴,∵P是AB中點(diǎn),△AOB是等腰直角三角形,∠AOB=90°,∴,∠OAB=∠OBA=45°,∠OPB=90°∴∠PAO=∠POA=45°,∴∠POB=45°,∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,∴∠NAO=∠BON,∵∠OAB=∠POB=45°,∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,由(2)得∠GBP=∠BAN,∴∠GBP=∠QOP,∴△PQO≌△PGB(SAS),∴∠OPQ=∠BPG,∵∠OPQ+∠BPQ=90°,∴∠BPG+∠BPQ=90°,即∠GPQ=90°,∴PQ⊥PG,∴PG⊥AM;【點(diǎn)睛】本題主要考查了坐標(biāo)與圖形,全等三角形的性質(zhì)與判定,三角形中位線定理,等腰直角三角形的性質(zhì)與判定等等,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.2、(1);;;(2)證明;證明見(jiàn)解析;(3),【分析】(1)根據(jù)圖形可得出三對(duì)全等三角形;(2)根據(jù)正方形的性質(zhì)及全等三角形的判定定理對(duì)(1)中全等三角形依次證明即可;(3)連接BG,由材料二可得,被分成4個(gè)面積相等的等腰直角三角形,即可得出;連接HJ,KI,過(guò)點(diǎn)H作HM⊥AD于點(diǎn)M,過(guò)點(diǎn)I作IN⊥CD于點(diǎn)N,則被分為9個(gè)面積相等的等腰直角三角形,即可得出.【詳解】解:(1);;(2)證明;由題意得,在正方形ABCD中,∵,,在和中;證明:;由題意得,在正方形HIJK中,,,∵AC為正方形ABCD的對(duì)角線,∴,在和中,∴;證明:由題意得,在正方形EBFG中,,,∵AC為正方形ABCD的對(duì)角線,∴,在和中,∴;(3)如圖,連接BG,由材料二可得,被分成4個(gè)面積相等的等腰直角三角形,.∴連接HJ,KI,過(guò)點(diǎn)H作HM⊥AD于點(diǎn)M,過(guò)點(diǎn)I作IN⊥CD于點(diǎn)N,則被分為9個(gè)面積相等的等腰直角三角形,∴.∴,.【點(diǎn)睛】題目主要考查正方形的性質(zhì)、全等三角形的判定定理及對(duì)題意的理解能力,熟練掌握全等三角形的判定定理及理解題意是解題關(guān)鍵.3、(1)見(jiàn)詳解;(2)見(jiàn)詳解.【分析】(1)根據(jù)勾股定理求出AB的長(zhǎng),以AB為對(duì)角線的正方形AEBF,根據(jù)正方形的性質(zhì)求出正方形邊長(zhǎng)AE=,根據(jù)勾股定理構(gòu)造直角三角形橫1豎3,或橫3豎1,利用點(diǎn)A平移找到點(diǎn)E,點(diǎn)F即可完成求解;(2)根據(jù)勾股定理求出CD的長(zhǎng),△CDM為等腰直角三角形,設(shè)CM=DM=x,再利用勾股定理,根據(jù)勾股定理構(gòu)造橫1豎2,或橫2豎1直角三角形,利用點(diǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- (2025)行政執(zhí)法考試題題庫(kù)及參考參考答案
- 中共金華市委組織部海內(nèi)外人才服務(wù)中心公開(kāi)選調(diào)工作人員1人考試備考題庫(kù)附答案
- 北京市通州區(qū)中西醫(yī)結(jié)合醫(yī)院2026年畢業(yè)生招聘?jìng)淇碱}庫(kù)必考題
- 南方醫(yī)科大學(xué)南方醫(yī)院贛州醫(yī)院(贛州市人民醫(yī)院)招聘勞務(wù)派遣制工作人員 考試備考題庫(kù)附答案
- 國(guó)家電投集團(tuán)蘇州審計(jì)中心選聘?jìng)淇碱}庫(kù)附答案
- 招1人!西寧康泰物業(yè)經(jīng)營(yíng)有限公司 2025年(總)經(jīng)理助理崗位社會(huì)化招聘?jìng)淇碱}庫(kù)附答案
- 浙江國(guó)企招聘-2025浙江中通文博服務(wù)有限公司關(guān)于公開(kāi)招錄12345話務(wù)工作人員的備考題庫(kù)附答案
- 瑞眾保險(xiǎn)深圳分公司2026校園招聘考試備考題庫(kù)附答案
- 滎經(jīng)縣財(cái)政局關(guān)于滎經(jīng)縣縣屬國(guó)有企業(yè)2025年公開(kāi)招聘工作人員的(14人)考試備考題庫(kù)附答案
- 雅安中學(xué)2025年公開(kāi)選調(diào)事業(yè)人員的參考題庫(kù)必考題
- 《建設(shè)工程總承包計(jì)價(jià)規(guī)范》
- 行業(yè)規(guī)范標(biāo)準(zhǔn)匯報(bào)
- 印刷行業(yè)安全培訓(xùn)班課件
- 《慢性胃炎診療》課件
- 北京市延慶區(qū)2026屆八年級(jí)物理第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析
- 繼電器性能測(cè)試及故障診斷方案
- 酒店清欠協(xié)議書(shū)模板模板
- 長(zhǎng)者探訪義工培訓(xùn)
- 地下室結(jié)構(gòu)加固技術(shù)方案
- 人教版高一必修二英語(yǔ)單詞表
- 2026年高考數(shù)學(xué)一輪復(fù)習(xí)周測(cè)卷及答案解析:第9周 數(shù)列的概念、等差與等比數(shù)列
評(píng)論
0/150
提交評(píng)論