考點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》達標測試練習(xí)題(含答案詳解)_第1頁
考點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》達標測試練習(xí)題(含答案詳解)_第2頁
考點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》達標測試練習(xí)題(含答案詳解)_第3頁
考點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》達標測試練習(xí)題(含答案詳解)_第4頁
考點解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》達標測試練習(xí)題(含答案詳解)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》達標測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對角線AC上,得到折痕AE,則點E到點B的距離為()A. B. C. D.2、如圖,在四邊形中,,,面積為21,的垂直平分線分別交于點,若點和點分別是線段和邊上的動點,則的最小值為()A.5 B.6 C.7 D.83、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:14、如圖,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,則∠BDE的度數(shù)為()A.36° B.30° C.27° D.18°5、直角三角形中,兩直角邊長分別是12和5,則斜邊上的中線長是()A.2.5 B.6 C.6.5 D.136、如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數(shù)軸上,以原點O為圓心,對角線OB的長為半徑畫弧,交正半軸于一點,則這個點表示的實數(shù)是()A.2.5 B.2 C. D.7、如圖,點E是△ABC內(nèi)一點,∠AEB=90°,D是邊AB的中點,延長線段DE交邊BC于點F,點F是邊BC的中點.若AB=6,EF=1,則線段AC的長為()A.7 B. C.8 D.98、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:29、如圖,已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點H,點G為DE的中點,連接GH,則GH的長為()A. B. C.4.5 D.4.310、已知,四邊形ABCD的對角線AC和BD相交于點O.設(shè)有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、在平行四邊形ABCD中,若∠A=130°,則∠B=______,∠C=______,∠D=______.2、如圖,在△ABC中,∠ACB=90°,以AC,BC和AB為邊向上作正方形ACED和正方形BCMI和正方形ABGF,點G落在MI上,若AC+BC=7,空白部分面積為16,則圖中陰影部分的面積是_____.3、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點A,O,B,C循環(huán),點A的坐標為(2,0),按此規(guī)律進行下去,則點P2021的坐標為_____.4、如圖,菱形ABCD的對角線AC,BD相交于點O,E為DC的中點,若,則菱形的周長為__________.5、七巧板被西方人稱為“東方魔術(shù)”.下面的兩幅圖是由同一副七巧板拼成的.已知七巧板拼成的正方形(如圖1)邊長為.若圖2的“小狐貍”圖案中的陰影部分面積為,那么________.6、如圖,將長方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.7、如圖,在矩形ABCD中,BC=2,AB=x,點E在邊CD上,且CEx,將BCE沿BE折疊,若點C的對應(yīng)點落在矩形ABCD的邊上,則x的值為_______.8、若一個菱形的兩條對角線的長為3和4,則菱形的面積為___________.9、如圖,菱形ABCD的兩條對角線長分別為AC=6,BD=8,點P是BC邊上的一動點,則AP的最小值為__.10、如圖,在平行四邊形ABCD中,,E、F分別在CD和BC的延長線上,,,則______.三、解答題(5小題,每小題6分,共計30分)1、如圖,已知△ACB中,∠ACB=90°,E是AB的中點,連接EC,過點A作AD∥EC,過點C作CD∥EA,AD與CD交于點D.(1)求證:四邊形ADCE是菱形;(2)若AB=8,∠DAE=60°,則△ACB的面積為(直接填空).2、如圖,在等腰三角形ABC中,AB=BC,將等腰三角形ABC繞頂點B按逆時針方向旋轉(zhuǎn)角a到的位置,AB與相交于點D,AC與分別交于點E,F(xiàn).(1)求證:BCF;(2)當(dāng)C=a時,判定四邊形的形狀并說明理由.3、已知:如圖,在四邊形中,,.求證:(1)BECD;(2)四邊形是矩形.4、(1)先化簡,再求值:(a+b)(a﹣b)﹣a(a﹣2b),其中a=1,b=2;(2)如圖,菱形ABCD中,AB=AC,E、F分別是BC、AD的中點,連接AE、CF.證明:四邊形AECF是矩形.5、△ABC為等邊三角形,AB=4,AD⊥BC于點D,E為線段AD上一點,AE=.以AE為邊在直線AD右側(cè)構(gòu)造等邊△AEF.連結(jié)CE,N為CE的中點.

(1)如圖1,EF與AC交于點G,①連結(jié)NG,求線段NG的長;②連結(jié)ND,求∠DNG的大?。?)如圖2,將△AEF繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為α.M為線段EF的中點.連結(jié)DN、MN.當(dāng)30°<α<120°時,猜想∠DNM的大小是否為定值,并證明你的結(jié)論.-參考答案-一、單選題1、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解設(shè)BE=x,在Rt△EFC中利用勾股定理列出方程,通過解方程可得答案.【詳解】解:矩形ABCD,設(shè)BE=x,∵AE為折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,則點E到點B的距離為:.故選:C.【點睛】本題考查了勾股定理和矩形與折疊問題;二次根式的乘法運算,利用對折得到,再利用勾股定理列方程是解本題的關(guān)鍵.2、C【解析】【分析】連接AQ,過點D作,根據(jù)垂直平分線的性質(zhì)得到,再根據(jù)計算即可;【詳解】連接AQ,過點D作,∵,面積為21,∴,∴,∵MN垂直平分AB,∴,∴,∴當(dāng)AQ的值最小時,的值最小,根據(jù)垂線段最短可知,當(dāng)時,AQ的值最小,∵,∴,∴的值最小值為7;故選C.【點睛】本題主要考查了四邊形綜合,垂直平分線的性質(zhì),準確分析計算是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補.4、B【解析】【分析】根據(jù)已知條件可得以及的度數(shù),然后求出各角的度數(shù)便可求出.【詳解】解:在矩形ABCD中,,∵,∴,,∵,∴,∵,∴,∴,∴.故選:B.【點睛】題目主要考查矩形的性質(zhì),三角形內(nèi)角和及等腰三角形的性質(zhì),理解題意,綜合運用各個性質(zhì)是解題關(guān)鍵.5、C【解析】【分析】利用勾股定理列式求出斜邊,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】解:由勾股定理得,斜邊,所以,斜邊上的中線長.故選:C.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,解題的關(guān)鍵是熟記性質(zhì).6、D【解析】【分析】利用矩形的性質(zhì),求證明,進而在中利用勾股定理求出的長度,弧長就是的長度,利用數(shù)軸上的點表示,求出弧與數(shù)軸交點表示的實數(shù)即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長為,故在數(shù)軸上表示的數(shù)為,故選:.【點睛】本題主要是考查了矩形的性質(zhì)、勾股定理解三角形以及數(shù)軸上的點的表示,熟練利用矩形性質(zhì),得到直角三角形,然后通過勾股定理求邊長,是解決該類問題的關(guān)鍵.7、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長.【詳解】解:∵∠AEB=90,D是邊AB的中點,AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點,點F是邊BC的中點,∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長是解題的關(guān)鍵.8、D【解析】【分析】兩組對角分別相等的四邊形是平行四邊形,所以∠A和∠C是對角,∠B和∠D是對角,對角的份數(shù)應(yīng)相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點睛】本題考查了平行四邊形的判定,在應(yīng)用判定定理判定平行四邊形時,應(yīng)仔細觀察題目所給的條件,仔細選擇適合于題目的判定方法進行解答,避免混用判定方法.9、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點G為DE的中點,∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.10、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對選項進行分析判斷即可.【詳解】解:A、①④可以說明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯誤.D、③可以說明四邊形是平行四邊形,再由②可得:對角線相等的平行四邊形為矩形,故D正確.故選:C.【點睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關(guān)鍵.二、填空題1、【解析】【分析】利用平行四邊形的性質(zhì):鄰角互補,對角相等,即可求得答案.【詳解】解:在平行四邊形ABCD中,、是的鄰角,是的對角,,,故答案為:,,.【點睛】本題主要是考查了平行四邊形的性質(zhì):對角相等,鄰角互補,熟練掌握平行四邊形的性質(zhì),求解決本題的關(guān)鍵.2、【解析】【分析】根據(jù)余角的性質(zhì)得到,根據(jù)全等三角形的性質(zhì)得到,推出,根據(jù)勾股定理得到,解方程組得到,接著由圖可知空白部分為重疊部分,陰影部分為非重疊部分,所以2倍的空白部分與陰影部分面積和等于三個正方形與三角形面積和.結(jié)合即可得出結(jié)論.依此即可求解.【詳解】解:如圖,四邊形是正方形,,,,,,,∵,即,,在中,,,,,,,陰影部分的面積和=三個正方形面積+三角形面積-2倍空白部分面積=.故答案為:.【點睛】本題考查勾股定理的知識,有一定難度,解題關(guān)鍵是將勾股定理和正方形的面積公式進行靈活的結(jié)合和應(yīng)用.3、(4044,0)【解析】【分析】由題意可知:正方形的邊長為2,分別求得,可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉(zhuǎn)一次半徑增加2,找到規(guī)律,即求得點P2021在x軸正半軸,進而求得OP的長度,即可求得點的坐標.【詳解】由題意可知:正方形的邊長為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉(zhuǎn)一次半徑增加2,2021÷4=505…1,故點P2021在x軸正半軸,OP的長度為2021×2+2=4044,即:P2021的坐標是(4044,0),故答案為:(4044,0).【點睛】本題考查了平面直角坐標系點的坐標規(guī)律,正方形的性質(zhì),找到點的位置是四個一循環(huán),每旋轉(zhuǎn)一次半徑增加2的規(guī)律是解題的關(guān)鍵.4、16【解析】【分析】由菱形的性質(zhì)和三角形中位線定理即可得菱形的邊長,從而可求得菱形的周長.【詳解】∵四邊形ABCD是菱形,且對角線相交于點O∴點O是AC的中點∵E為DC的中點∴OE為△CAD的中位線∴AD=2OE=2×2=4∴菱形的周長為:4×4=16故答案為:16【點睛】本題考查了菱形的性質(zhì)及三角形中位線定理、菱形周長等知識,掌握這些知識是解答本題的關(guān)鍵.5、4【解析】【分析】設(shè)陰影小正方形的邊長為xcm,根據(jù)陰影部分的面積剛好是大正方形里梯形的面積,求出x的值,進而得出大正方形的對角線的長度是4xcm,最后求出邊長a即可.【詳解】解:設(shè)陰影小正方形的邊長為xcm,由題意得:(2x+4x)x=6,解得:x=或a=-(舍去),∴小正方形的邊長為cm,則大正方形的對角線長為4×=4(cm),∴a=4÷=4(cm),故答案為:4.【點睛】本題主要考查七巧板的知識,熟練掌握七巧板各邊的關(guān)系是解題的關(guān)鍵.6、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.7、或【解析】【分析】分兩種情況進行解答,即當(dāng)點落在邊上和點落在邊上,分別畫出相應(yīng)的圖形,利用翻折變換的性質(zhì),勾股定理進行計算即可.【詳解】解:如圖1,當(dāng)點落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當(dāng)點落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點睛】本題考查翻折變換,解題的關(guān)鍵是掌握翻折變換的性質(zhì)以及勾股定理是解決問題的前提.8、6【解析】【分析】由題意直接由菱形的面積等于對角線乘積的一半進行計算即可.【詳解】解:菱形的面積.故答案為:6.【點睛】本題考查菱形的性質(zhì),熟練掌握菱形的面積等于對角線乘積的一半是解題的關(guān)鍵.9、4.8【解析】【分析】由垂線段最短,可得AP⊥BC時,AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】設(shè)AC與BD的交點為O,∵點P是BC邊上的一動點,∴AP⊥BC時,AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案為:4.8.【點睛】本題考查了菱形的性質(zhì),勾股定理,確定當(dāng)AP⊥BC時,AP有最小值是本題關(guān)鍵.10、8【解析】【分析】證明四邊形ABDE是平行四邊形,得到DE=CD=,,過點E作EH⊥BF于H,證得CH=EH,利用勾股定理求出EH,再根據(jù)30度角的性質(zhì)求出EF.【詳解】解:∵四邊形ABCD是平行四邊形,∴,AB=CD,∵,∴四邊形ABDE是平行四邊形,∴DE=CD=,,過點E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,,∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案為:8.【點睛】此題考查了平行四邊形的判定及性質(zhì),勾股定理,直角三角形30度角的性質(zhì),熟記各知識點并應(yīng)用解決問題是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)【分析】(1)由AD//CE,CD//AE,得四邊形AECD為平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì),得CE=AE,可知四邊形ADCE是菱形;(2)由菱形的性質(zhì)可得當(dāng)∠DAE=60°時,∠CAE=30°,可求BC,再根據(jù)勾股定理求出AC,最后求面積即可.【詳解】解:(1)∵∥,∥,∴四邊形是平行四邊形.∵,是的中點,∴,∴四邊形是菱形;(2)∵四邊形是菱形,,∴.∵在Rt△中,,,,∴,∴.∴.【點睛】此題主要考查了菱形的性質(zhì)和判定,含30度角的直角三角形的性質(zhì),直角三角形斜邊上的中線,勾股定理,三角形面積,能夠靈活運用菱形知識解決有關(guān)問題是解題的關(guān)鍵.2、(1)見解析;(2)菱形,見解析【分析】(1)根據(jù)等腰三角形的性質(zhì)得到AB=BC,∠A=∠C,由旋轉(zhuǎn)的性質(zhì)得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根據(jù)全等三角形的判定定理得到△BCF≌△BA1D;

(2)由(1)可知∠=∠=∠A=∠C=a,B=B=AB=BC通過證明∠FBC=∠可得BC,利用∠EC=∠C=180°推出∠EC+∠=180°得到BCE從而證明四邊形為平行四邊形再利用B=BC可證明四邊形為菱形.【詳解】(1)證明:∵等腰三角形ABC旋轉(zhuǎn)角a得到∴∠BD=∠FBC=a∠=∠=∠A=∠CB=B=AB=BC∴BCF(ASA)(2)解:四邊形為菱形理由:∵C=a由(1)可知∠=∠=∠A=∠C=aB=B=AB=BC又∵∠BD=∠FBC=a∴∠FBC=∠∴BC∴∠EC=∠C=180°∴∠EC+∠=180°∴BCE∴四邊形為平行四邊形又∵B=BC∴四邊形為菱形【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),正確的理解題意是解題的關(guān)鍵.3、(1)見詳解;(2)見詳解【分析】(1)根據(jù)平行四邊形的判定定理得四邊形是平行四邊形,進而即可得到結(jié)論;(2)先推出∠EBC=∠DCB,進而可得∠EBC=∠DCB=90°,然后得到結(jié)論.【詳解】(1)證明:∵,∴BE=CD,∵,∴四邊形是平行四邊形,∴BECD;(2)∵,∴AB=AC,∠ABE=∠ACD,∴∠ABC=∠ACB,∴∠ABE+∠ABC=∠ACD+∠ACB,即:∠EBC=∠DCB,∵BE∥CD,∴∠EBC+∠DCB=180°,∴∠EBC=∠DCB=90°,∴四邊形是矩形.【點睛】本題主要考查平行四邊形的判定和性質(zhì),矩形的判定定理,全等三角形的性質(zhì),熟練掌握矩形的判定定理是關(guān)鍵.4、(1),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論