強化訓(xùn)練人教版9年級數(shù)學(xué)上冊《圓》章節(jié)測試試卷(含答案解析)_第1頁
強化訓(xùn)練人教版9年級數(shù)學(xué)上冊《圓》章節(jié)測試試卷(含答案解析)_第2頁
強化訓(xùn)練人教版9年級數(shù)學(xué)上冊《圓》章節(jié)測試試卷(含答案解析)_第3頁
強化訓(xùn)練人教版9年級數(shù)學(xué)上冊《圓》章節(jié)測試試卷(含答案解析)_第4頁
強化訓(xùn)練人教版9年級數(shù)學(xué)上冊《圓》章節(jié)測試試卷(含答案解析)_第5頁
已閱讀5頁,還剩32頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

試卷第=page22頁,共=sectionpages22頁試卷第=page11頁,共=sectionpages11頁人教版9年級數(shù)學(xué)上冊《圓》章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,⊙O的半徑為5,弦AB=8,P是弦AB上的一個動點(不與A,B重合),下列符合條件的OP的值是()A.6.5 B.5.5 C.3.5 D.2.52、如圖,正方形的邊長為4,以點為圓心,為半徑畫圓弧得到扇形(陰影部分,點在對角線上).若扇形正好是一個圓錐的側(cè)面展開圖,則該圓錐的底面圓的半徑是(

)A. B.1 C. D.3、下列說法:(1)長度相等的弧是等??;(2)弦不包括直徑;(3)劣弧一定比優(yōu)弧短;(4)直徑是圓中最長的弦.其中正確的有(

)A.1個 B.2個 C.3個 D.4個4、如圖,已知是的兩條切線,A,B為切點,線段交于點M.給出下列四種說法:①;②;③四邊形有外接圓;④M是外接圓的圓心,其中正確說法的個數(shù)是(

)A.1 B.2 C.3 D.45、如圖,在等腰Rt△ABC中,AC=BC=,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當點P沿半圓從點A運動至點B時,點M運動的路徑長是(

)A.π B.π C.π D.26、下列圖形為正多邊形的是()A. B. C. D.7、如圖,正三角形PMN的頂點分別是正六邊形ABCDEF三邊的中點,則三角形PMN與六邊形ABCDEF的面積之比()A.1:2 B.1:3 C.2:3 D.3:88、如圖,AC是⊙O的直徑,弦AB//CD,若∠BAC=32°,則∠AOD等于(

)A.64° B.48° C.32° D.76°9、如圖,一段公路的轉(zhuǎn)彎處是一段圓弧,則的展直長度為()A.3π B.6π C.9π D.12π10、如圖,點在上,,則(

)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖1,將一個正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個正方形繞其中心最少旋轉(zhuǎn)45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長為,則所得正八邊形的面積為_______.2、如圖,AB是⊙O的直徑,點C,D,E都在⊙O上,∠1=55°,則∠2=_____°.3、如圖,圓錐的母線長為10cm,高為8cm,則該圓錐的側(cè)面展開圖(扇形)的弧長為_____cm.(結(jié)果用π表示)4、如圖,AB是⊙O的直徑,弦CD⊥AB于點E.若AB=10,AE=1,則弦CD的長是_____.5、如圖,四邊形是的外切四邊形,且,,則四邊形的周長為__________.6、如圖,在中,,,,將繞順時針旋轉(zhuǎn)后得,將線段繞點逆時針旋轉(zhuǎn)后得線段,分別以,為圓心,、長為半徑畫弧和弧,連接,則圖中陰影部分面積是________.7、如圖,在中,∠ABC=90°,∠A=58°,AC=18,點D為邊AC的中點.以點B為圓心,BD為半徑畫圓弧,交邊BC于點E,則圖中陰影部分圖形的面積為______.a(chǎn)8、圓錐的底面半徑為3,側(cè)面積為,則這個圓錐的母線長為________.9、如圖,矩形ABCD的對角線AC,BD交于點O,分別以點A,C為圓心,AO長為半徑畫弧,分別交AB,CD于點E,F(xiàn).若BD=4,∠CAB=36°,則圖中陰影部分的面積為___________.(結(jié)果保留π).10、如圖1是臺灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓?。ɑN).D,E為手提帶的固定點,DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時,最低點為C,且呈拋物線形,拋物線與弧MN交于點F,G.若△CDE是等腰直角三角形,且點C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.三、解答題(5小題,每小題6分,共計30分)1、問題探究(1)在中,,分別是與的平分線.①若,,如圖,試證明;②將①中的條件“”去掉,其他條件不變,如圖,問①中的結(jié)論是否成立?并說明理由.遷移運用(2)若四邊形是圓的內(nèi)接四邊形,且,,如圖,試探究線段,,之間的等量關(guān)系,并證明.2、已知圓弧的半徑為15厘米,圓弧的長度為,求圓心角的度數(shù).3、已知拋物線經(jīng)過點(m,﹣4),交x軸于A,B兩點(A在B左邊),交y軸于C點對于任意實數(shù)n,不等式恒成立.(1)拋物線解析式;(2)在BC上方的拋物線對稱軸上是否存在點D,使得∠BDC=2∠BAC,若有求出點D的坐標,若沒有,請說明理由;(3)將拋物線沿x軸正方向平移一個單位,把得到的圖象在x軸下方的部分沿x軸向上翻折,圖的其余部分保持不變,得到一個新的圖象G,若直線y=x+b與新圖象G有四個交點,求b的取值范圍(直接寫出結(jié)果即可).4、在中,,,D為的中點,E,F(xiàn)分別為,上任意一點,連接,將線段繞點E順時針旋轉(zhuǎn)90°得到線段,連接,.(1)如圖1,點E與點C重合,且的延長線過點B,若點P為的中點,連接,求的長;(2)如圖2,的延長線交于點M,點N在上,且,求證:;(3)如圖3,F(xiàn)為線段上一動點,E為的中點,連接,H為直線上一動點,連接,將沿翻折至所在平面內(nèi),得到,連接,直接寫出線段的長度的最小值.5、(1)求圖(1)中陰影部分的面積(單位:厘米);(2)如圖(2)所示,已知大正方形的邊長為10厘米,小正方形的邊長為7厘米,求陰影部分面積.(結(jié)果保留)-參考答案-一、單選題1、C【解析】【分析】連接OB,作OM⊥AB與M.根據(jù)垂徑定理和勾股定理,求出OP的取值范圍即可判斷.【詳解】解:連接OB,作OM⊥AB與M.∵OM⊥AB,∴AM=BM=AB=4,在直角△OBM中,∵OB=5,BM=4,∴.∴,故選:C.【考點】本題考查了垂徑定理、勾股定理,常把半弦長,半圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過直角三角形予以求解.2、D【解析】【分析】根據(jù)題意,扇形ADE中弧DE的長即為圓錐底面圓的周長,即通過計算弧DE的長,再結(jié)合圓的周長公式進行計算即可得解.【詳解】∵正方形的邊長為4∴∵是正方形的對角線∴∴∴圓錐底面周長為,解得∴該圓錐的底面圓的半徑是,故選:D.【考點】本題主要考查了扇形的弧長公式,圓的周長公式,正方形的性質(zhì)以及圓錐的相關(guān)知識點,熟練掌握弧長公式及圓的周長公式是解決本題的關(guān)鍵.3、A【解析】【分析】根據(jù)等弧的定義、弦的定義、弧的定義、分別判斷后即可確定正確的選項.【詳解】解:(1)長度相等的弧不一定是等弧,弧的度數(shù)必須相同,故錯誤;(2)直徑是圓中最長的弦,故(2)錯誤,(4)正確;(3)同圓或等圓中劣弧一定比優(yōu)弧短,故錯誤;正確的只有一個,故選:A.【考點】本題考查了圓的有關(guān)定義,能夠了解圓的有關(guān)知識是解答本題的關(guān)鍵,難度不大.4、C【解析】【分析】由切線長定理判斷①,結(jié)合等腰三角形的性質(zhì)判斷②,利用切線的性質(zhì)與直角三角形的斜邊上的中線等于斜邊的一半,判斷③,利用反證法判斷④.【詳解】如圖,是的兩條切線,故①正確,故②正確,是的兩條切線,取的中點,連接,則所以:以為圓心,為半徑作圓,則共圓,故③正確,M是外接圓的圓心,與題干提供的條件不符,故④錯誤,綜上:正確的說法是個,故選C.【考點】本題考查的是切線長定理,三角形的外接圓,四邊形的外接圓,掌握以上知識是解題的關(guān)鍵.5、B【解析】【分析】取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,利用勾股定理得到AB的長,進而可求出OC,OP的長,求得∠CMO=90°,于是得到點M在以O(shè)C為直徑的圓上,然后根據(jù)圓的周長公式計算點M運動的路徑長.【詳解】解:取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M為PC的中點,∴OM⊥PC,∴∠CMO=90°,∴點M在以O(shè)C為直徑的圓上,P點在A點時,M點在E點;P點在B點時,M點在F點.∵O是AB中點,E是AC中點,∴OE是△ABC的中位線,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四邊形CEOF是矩形,∵OE=OF,∴四邊形CEOF為正方形,EF=OC=2,∴M點的路徑為以EF為直徑的半圓,∴點M運動的路徑長=×π×2=π.故選:B.【考點】本題考查了等腰三角形的性質(zhì),勾股定理,正方形的判定與性質(zhì),圓周角定理,以及動點的軌跡:點按一定規(guī)律運動所形成的圖形為點運動的軌跡.解決此題的關(guān)鍵是利用圓周角定理確定M點的軌跡為以EF為直徑的半圓.6、D【解析】【分析】根據(jù)正多邊形的定義:各個角都相等,各條邊都相等的多邊形叫做正多邊形可得答案.【詳解】根據(jù)正多邊形的定義,得到D中圖形是正五邊形.故選D.【考點】本題考查了正多邊形,關(guān)鍵是掌握正多邊形的定義.7、D【解析】【分析】連接BE,設(shè)正六邊形的邊長為a,首先證明△PMN是等邊三角形,分別求出△PMN,正六邊形ABCDEF的面積即可.【詳解】解:連接BE,設(shè)正六邊形的邊長為a.則AF=a,BE=2a,AF∥BE,∵AP=PB,F(xiàn)N=NE,∴PN=(AF+BE)=1.5a,同理可得PM=MN=1.5a,∴PN=PM=MN,∴△PMN是等邊三角形,∴,故選:D.【考點】本題考查正多邊形與圓,等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)解決問題,屬于中考??碱}型.8、A【解析】【分析】由AB//CD,∠BAC=32°,根據(jù)平行線的性質(zhì),即可求得∠ACD的度數(shù),又由在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得∠AOD的度數(shù).【詳解】解:∵弦AB//CD,∠BAC=32°,∴∠ACD=∠BAD=32°,∴∠AOD=2∠ACD=2×32°=64°.故選:A【考點】此題考查了圓周角定理與平行線的性質(zhì).解題的關(guān)鍵是注意掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.9、B【解析】【詳解】分析:直接利用弧長公式計算得出答案.詳解:的展直長度為:=6π(m).故選B.點睛:此題主要考查了弧長計算,正確掌握弧長公式是解題關(guān)鍵.10、D【解析】【分析】先證明再利用等弧的性質(zhì)及圓周角定理可得答案.【詳解】解:點在上,,故選:【考點】本題考查的兩條弧,兩個圓心角,兩條弦之間的關(guān)系,圓周角定理,等弧的概念與性質(zhì),掌握同弧或等弧的概念與性質(zhì)是解題的關(guān)鍵.二、填空題1、

【解析】【分析】根據(jù)題意,可以發(fā)現(xiàn)正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;旋轉(zhuǎn)后的正八變形相當于將正方形剪掉了的4個全等的等腰直角三角形,設(shè)等腰直角三角形的邊長為x,則正八邊形的邊長為x;然后根據(jù)x+x+x=4求得x;最后用正方形的面積減去這八個等腰直角三角形的面積即可.【詳解】解:由題意得:正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;則將一個正七邊形繞其中心最少旋轉(zhuǎn)所得圖形與原圖的重疊部分是正多邊形;由題意得:旋轉(zhuǎn)后的正八變形相當于將正方形剪掉了的4個全等的等腰直角三角形,設(shè)等腰直角三角形的邊長為x,則正八邊形的邊長為x∴x+x+x=4,解得x=4-2∴減去的每個等腰直角三角形的面積為:∴正八邊形的面積為:正方形的面積-4×等腰直角三角形的面積=4×4-4()=.故答案為,.【考點】本題考查了旋轉(zhuǎn)變換、圖形規(guī)律以及勾股定理等知識,根據(jù)題意找到旋轉(zhuǎn)規(guī)律是解答本題的關(guān)鍵.2、35【解析】【分析】如圖(見解析),連接AD,先根據(jù)圓周角定理可得,從而可得,再根據(jù)圓周角定理可得,由此即可得.【詳解】如圖,連接AD∵AB是⊙O的直徑∴,即又由圓周角定理得:∵∴故答案為:35.【考點】本題考查了圓周角定理,熟記圓周角定理是解題關(guān)鍵.3、【解析】【分析】先求出圓錐的底面半徑,然后根據(jù)圓錐的展開圖為扇形,結(jié)合圓周長公式進行求解即可.【詳解】設(shè)底面圓的半徑為rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案為12π.【考點】本題考查了圓錐的計算,解答本題的關(guān)鍵是掌握圓錐側(cè)面展開圖是個扇形,要熟練掌握扇形與圓錐之間的聯(lián)系.4、6【解析】【分析】連接OC,根據(jù)勾股定理求出CE,根據(jù)垂徑定理計算即可.【詳解】連接OC,∵AB是⊙O的直徑,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案為6.【考點】本題考查了垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧是解題的關(guān)鍵.5、48【解析】【分析】根據(jù)切線長定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根據(jù)四邊形的周長公式計算,得到答案.【詳解】解:∵四邊形ABCD是⊙O的外切四邊形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=24,∴四邊形ABCD的周長=AD+BC+AB+CD=24+24=48,故答案為:48.【考點】本題考查了切線長定理,掌握從圓外一點引圓的兩條切線,它們的切線長相等是解題的關(guān)鍵.6、【解析】【分析】作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積計算即可得到答案.【詳解】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴,由旋轉(zhuǎn)得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,,∴△DHE≌△BOA(AAS),∴DH=OB=1,,∴陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,故答案為:.【考點】本題考查的是扇形面積的計算、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì),掌握扇形的面積公式和旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.7、【解析】【分析】先根據(jù)直角三角形斜邊上的中線性質(zhì)得到BD=CD=9,則∠DBC=∠C=22°,然后根據(jù)扇形的面積公式計算.【詳解】解:∵∠ABC=90°,點D為邊AC的中點,∴BD=CD=AC=9,∴∠DBC=∠C,∵∠C=90°-∠A=90°-58°=32°,∴∠DBE=32°,∴圖中陰影部分圖形的面積=.故答案為:π.【考點】本題考查了扇形面積的計算:設(shè)圓心角是n°,圓的半徑為R的扇形面積為S,則S扇形=或S扇形=lR(其中l(wèi)為扇形的弧長).也考查了直角三角形斜邊上的中線性質(zhì).8、4【解析】【分析】根據(jù)圓錐的底面半徑可以求出底面周長即為展開后的弧長,側(cè)面積即為展開后扇形的面積,再根據(jù)扇形的面積公式求出扇形的半徑即為圓錐的母線.【詳解】∵底面半徑為3,∴底面周長=2×3π=6π.∴圓錐的母線=.故答案為:4.【考點】本題考查圓錐與扇形的結(jié)合,關(guān)鍵在于理解圓錐周長是扇形弧長,圓錐母線是扇形半徑.9、【解析】【分析】利用矩形的性質(zhì)求得OA=OC=OB=OD=2,再利用扇形的面積公式求解即可.【詳解】解:∵矩形ABCD的對角線AC,BD交于點O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴,故答案為:.【考點】本題考查了矩形的性質(zhì),扇形的面積等知識,正確的識別圖形是解題的關(guān)鍵.10、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標系,設(shè)拋物線的表達式為y=ax2+1,因為△CDE是等腰直角三角形,DE=2,得點E的坐標為(1,2),可得拋物線的表達式為y=x2+1,把當y代入拋物線表達式,求得MH的長,再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標系,設(shè)所在的圓的圓心為P,半徑為r,過F作y軸的垂線交y軸于H,設(shè)拋物線的表達式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點E的坐標為(1,2),代入拋物線的表達式,得:2=a+1,a=1,∴拋物線的表達式為y=x2+1,當y時,即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標系得出拋物線的表達式.三、解答題1、(1)①見解析;②結(jié)論成立,見解析;(2),見解析【解析】【分析】(1)①證明是等邊三角形,得出E、D為中點,從而證明;②在上截取,根據(jù)角平分線的性質(zhì),證明,,從而得到答案;(2)作點B關(guān)于的對稱點E,證明,從而得到,再根據(jù)AE、DC分別是、的角平分線,得到.【詳解】(1)①,,.又、分別是、的平分線.點D、E分別是、的中點.,..②結(jié)論成立,理由如下:設(shè)與交于點F,由條件,得,.又...∴.在上截?。伞連F=BF,∴...又∵CF=CF,∴.∴.(2),理由如下:∵四邊形是圓內(nèi)接四邊形,∴.∵,∴,,∴.∴.作點B關(guān)于的對稱點E,連結(jié),,的延長線與的延長線交于點M,與交于點F,∴,.∴.∴∴∴∵AE、DC分別是、的角平分線由②得.【考點】本題考查三角形、等邊三角形、全等三角形、圓的內(nèi)接四邊形的性質(zhì),解題的關(guān)鍵是熟練掌握三角形、等邊三角形、全等三角形、圓的內(nèi)接四邊形的相關(guān)知識.2、【解析】【分析】根據(jù)弧長的計算公式計算即可.【詳解】解:圓心角的度數(shù).【考點】本題考查弧長的計算,掌握弧長公式是解題的關(guān)鍵.3、10參考答案:1.(1);(2)點D的坐標為(1,-1);(3).【解析】【分析】(1)由不等式恒成立可得點(m,﹣4)是拋物線的頂點坐標,求出,將點(﹣t,﹣4)代入求出t的值即可;(2)作線段BC的垂直平分線交對稱軸于點D,交BC于E,則點D是△ABC的外心,可得∠BDC=2∠BAC,然后求出直線BC,直線DE的解析式即可解決問題;(3)作出圖象G,求出直線y=x+b與圖象G有三個交點時b的值,則根據(jù)圖象可得直線y=x+b與圖象G有四個交點時b的取值范圍.(1)解:拋物線的對稱軸為,∵不等式恒成立,∴拋物線的頂點坐標為(m,﹣4),∴,將點(﹣t,﹣4)代入得:,解得:(舍去),,∴拋物線解析式為:;(2)解:令,解得:,,∴A(-1,0),B(3,0),由可得C(0,-3),對稱軸為,作線段BC的垂直平分線交對稱軸于點D,交BC于E,∴E(,),∵拋物線對稱軸是線段AB的垂直平分線,∴點D是△ABC的外心,∴∠BDC=2∠BAC,設(shè)直線BC的解析式為,代入B(3,0),C(0,-3)得,解得:,∴直線BC的解析式為,設(shè)直線DE的解析式為,代入E(,)得,∴m=0,∴直線DE的解析式為,當時,,∴點D的坐標為(1,-1);(3)解:圖象G如圖所示,由平移可知圖象G過點(0,0),當直線y=x+b過點(0,0)時,b=0,將拋物線沿x軸正方向平移一個單位后解析式為,沿x軸向上翻折后解析式為,由,得,整理得:,令,解得:,故若直線y=x+b與新圖象G有四個交點,b的取值范圍為:.【考點】本題考查了待定系數(shù)法的應(yīng)用,二次函數(shù)的圖象和性質(zhì),一次函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論