人教版8年級數(shù)學(xué)上冊《軸對稱》同步練習(xí)試卷(含答案詳解)_第1頁
人教版8年級數(shù)學(xué)上冊《軸對稱》同步練習(xí)試卷(含答案詳解)_第2頁
人教版8年級數(shù)學(xué)上冊《軸對稱》同步練習(xí)試卷(含答案詳解)_第3頁
人教版8年級數(shù)學(xué)上冊《軸對稱》同步練習(xí)試卷(含答案詳解)_第4頁
人教版8年級數(shù)學(xué)上冊《軸對稱》同步練習(xí)試卷(含答案詳解)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《軸對稱》同步練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、下列圖形中,是軸對稱圖形的是()A. B.C. D.2、將三角形紙片()按如圖所示的方式折疊,使點C落在邊上的點D,折痕為.已知,若以點B、D、F為頂點的三角形與相似,那么的長度是(

)A.2 B.或2 C. D.或23、如果點與關(guān)于軸對稱,則,的值分別為(

)A., B.,C., D.,4、下列圖形中,是軸對稱圖形的是(

)A. B. C. D.5、如圖,△ABC是邊長為4的等邊三角形,點P在AB上,過點P作PE⊥AC,垂足為E,延長BC至點Q,使CQ=PA,連接PQ交AC于點D,則DE的長為()A.1 B.1.8 C.2 D.2.56、如圖,∠A=30°,∠C′=60°,△ABC與△A′B′C′關(guān)于直線l對稱,則∠B度數(shù)為(

)A. B. C. D.7、如圖,△ABC和△ECD都是等腰直角三角形,△ABC的頂點A在△ECD的斜邊DE上.下列結(jié)論:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD是直角三角形.其中正確的有()A.1個 B.2個 C.3個 D.4個8、下列標(biāo)志中,可以看作是軸對稱圖形的是()A. B. C. D.9、如圖,直線,等邊三角形的頂點、分別在直線和上,邊與直線所夾的銳角為,則的度數(shù)為(

)A. B. C. D.10、小軍同學(xué)在網(wǎng)格紙上將某些圖形進(jìn)行平移操作,他發(fā)現(xiàn)平移前后的兩個圖形所組成的圖形可以是軸對稱圖形.如圖所示,現(xiàn)在他將正方形從當(dāng)前位置開始進(jìn)行一次平移操作,平移后的正方形的頂點也在格點上,則使平移前后的兩個正方形組成軸對稱圖形的平移方向有(

)A.3個 B.4個 C.5個 D.無數(shù)個第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在中,,點在延長線上,于點,交于點,若,,則的長度為______.2、如圖,在△ABC中,AB<AC,BC邊上的垂直平分線DE交BC于點D,交AC于點E,BD=4,△ABE的周長為14,則△ABC的周長為_____.3、如圖,在△ABC中,AB=AC,∠BAC=36°,DE是線段AC的垂直平分線,若BE=,AE=,則用含、的代數(shù)式表示△ABC的周長為__________.4、如圖,在等邊三角形ABC中,點D是邊BC的中點,則∠BAD=_________.5、如圖,在△ABC中,∠B=30°,∠C=50°,通過觀察尺規(guī)作圖的痕跡,∠DAE的度數(shù)是

_____.6、在平面直角坐標(biāo)系中,點P(2,1)關(guān)于x軸的對稱點的坐標(biāo)為_____7、如圖,BH是鈍角三角形ABC的高,AD是角平分線,且2∠C=90°-∠ABH,若CD=4,ΔABC的面積為12,則AD=_____.8、BC是等腰△ABC和等腰△DBC的公共底(A與D不重合),則直線AD必是__________的垂直平分線.9、如圖將長方形折疊,折痕為,的對應(yīng)邊與交于點,若,則的度數(shù)為_______.10、如圖,平面直角坐標(biāo)系中有四個點,它們的橫縱坐標(biāo)均為整數(shù).若在此平面直角坐標(biāo)系內(nèi)移動點A,使得這四個點構(gòu)成的四邊形是軸對稱圖形,并且點A的橫坐標(biāo)仍是整數(shù),則移動后點A的坐標(biāo)為________.三、解答題(5小題,每小題6分,共計30分)1、如圖,△是等邊三角形,在直線上,.求證:.2、如圖,已知∠AOB,作∠AOB的平分線OC,將直角尺DEMN如圖所示擺放,使EM邊與OB邊重合,頂點D落在OA邊上,DN邊與OC交于點P.(1)猜想DOP是三角形;(2)補(bǔ)全下面證明過程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=3、如圖,已知銳角中,.(1)請尺規(guī)作圖:作的BC邊上的高AD;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,若,,則經(jīng)過A,C,D三點的圓的半徑_____________.4、(1)如圖1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,過點D作EF∥BC,分別交AB、AC于E、F兩點,則圖中共有__________個等腰三角形;EF與BE、CF之間的數(shù)量關(guān)系是__________,△AEF的周長是__________;(2)如圖2,若將(1)中“△ABC中,AB=AC=10”該為“若△ABC為不等邊三角形,AB=8,AC=10”其余條件不變,則圖中共有__________個等腰三角形;EF與BE、CF之間的數(shù)量關(guān)系是什么?證明你的結(jié)論,并求出△AEF的周長;(3)已知:如圖3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,過點D作DE∥BC,分別交AB、AC于E、F兩點,則EF與BE、CF之間又有何數(shù)量關(guān)系呢?直接寫出結(jié)論不證明.5、如圖,在中,,邊的垂直平分線分別交,于點.(1)求證:為的中點;(2)若,求的長.-參考答案-一、單選題1、C【解析】【分析】依據(jù)軸對稱圖形的定義逐項分析即可得出C選項正確.【詳解】解:因為選項A、B、D中的圖形都不能通過沿某條直線折疊直線兩旁的部分能達(dá)到完全重合,所以它們不符合軸對稱圖形的定義和要求,因此選項A、B、D中的圖形都不是軸對稱圖形,而C選項中的圖形沿上下邊中點的連線折疊后,折痕的左右兩邊能完全重合,因此符合軸對稱圖形的定義和要求,因此C選項中的圖形是軸對稱圖形,故選:C.【考點】本題主要考查了軸對稱圖形的定義,學(xué)生需要掌握軸對稱圖形的定義內(nèi)容,理解軸對稱圖形的特征,方能解決問題找對圖形,同時也考查了學(xué)生對圖形的感知力和空間想象的能力.2、B【解析】【分析】分兩種情況:若或若,再根據(jù)相似三角形的性質(zhì)解題【詳解】∵沿折疊后點C和點D重合,∴,設(shè),則,以點B、D、F為頂點的三角形與相似,分兩種情況:①若,則,即,解得;②若,則,即,解得.綜上,的長為或2,故選:B.【考點】本題考查相似三角形的性質(zhì),是重要考點,掌握相關(guān)知識是解題關(guān)鍵.3、A【解析】【分析】根據(jù)關(guān)于y軸對稱點的坐標(biāo)特點:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變.即點P(x,y)關(guān)于y軸的對稱點P′的坐標(biāo)是(-x,y),進(jìn)而得出答案.【詳解】解:∵點P(-m,3)與點Q(-5,n)關(guān)于y軸對稱,∴m=-5,n=3,故選:A.【考點】此題主要考查了關(guān)于y軸對稱點的性質(zhì),正確記憶關(guān)于坐標(biāo)軸對稱點的性質(zhì)是解題關(guān)鍵.4、D【解析】【分析】根據(jù)“如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形”判斷即可得.【詳解】解:根據(jù)題意,A、B、C選項中均不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形;D選項能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形;故選:D【考點】本題主要考查軸對稱圖形,解題的關(guān)鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.5、C【解析】【分析】過作的平行線交于,通過證明≌,得,再由是等邊三角形,即可得出.【詳解】解:過作的平行線交于,,是等邊三角形,,,是等邊三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等邊三角形,,,,,,故選:C.【考點】本題主要考查了等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),作輔助線構(gòu)造全等三角形是解題的關(guān)鍵.6、C【解析】【分析】由已知條件,根據(jù)軸對稱的性質(zhì)可得∠C=∠C′=30°,利用三角形的內(nèi)角和等于180°可求答案.【詳解】∵△ABC與△A′B′C′關(guān)于直線l對稱,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°?30°-60°=90°.故選:C.【考點】主要考查了軸對稱的性質(zhì)與三角形的內(nèi)角和是180度;求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°.7、C【解析】【分析】根據(jù)等腰直角三角形的性質(zhì)得到CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,則可根據(jù)“SAS”證明△ACE≌△BCD,于是可對①進(jìn)行判斷;利用三角形外角性質(zhì)得到∠DAB+∠BAC=∠E+∠ACE,加上∠CAB=∠E=45°,則可得對②進(jìn)行判斷;利用CE=CD和三角形三邊之間的關(guān)系可對③進(jìn)行判斷;根據(jù)△ACE≌△BCD得到∠BDC=∠E=45°,則可對④進(jìn)行判斷.【詳解】∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,∵∠ACE+∠ACD=∠ACD+∠BCD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),所以①正確;∵∠DAC=∠E+∠ACE,即∠DAB+∠BAC=∠E+∠ACE,而∠CAB=∠E=45°,∴∠DAB=∠ACE,所以②正確;∵AE+AC>CE,CE=CD,∴AE+AC>CD,所以③錯誤;∵△ACE≌△BCD,∴∠BDC=∠E=45°,∵∠CDE=45°,∴∠ADB=∠ADC+∠BDC=45°+45°=90°,∴△ADB為直角三角形,所以④正確.故選:C.【考點】本題是考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),直角三角形的判定與性質(zhì)等知識,熟練掌握全等三角形的判定與性質(zhì)和等腰直角三角形的性質(zhì)是解題的關(guān)鍵.8、D【解析】【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、不是軸對稱圖形,是中心對稱圖形,不符合題意;C、不是軸對稱圖形,是中心對稱圖形,不符合題意;D、是軸對稱圖形,符合題意.故選D.【考點】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180度后與原圖重合.9、C【解析】【分析】根據(jù),可以得到,,再根據(jù)等邊三角形可以計算出的度數(shù).【詳解】解:如圖所示:根據(jù)∴,又∵是等邊三角形∴∴∴故選:C.【考點】本題主要考查了平行線的性質(zhì),即兩直線平行內(nèi)錯角相等以及兩直線平行同位角相等;明確平行線的性質(zhì)是解題的關(guān)鍵.10、C【解析】【分析】結(jié)合正方形的特征,可知平移的方向只有5個,向上,下,右,右上45°,右下45°方向,否則兩個圖形不軸對稱.【詳解】因為正方形是軸對稱圖形,有四條對稱軸,因此只要沿著正方形的對稱軸進(jìn)行平移,平移前后的兩個圖形組成的圖形一定是軸對稱圖形,觀察圖形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移時,平移前后的兩個圖形組成的圖形都是軸對稱圖形,故選C.【考點】本題考查了圖形的平移、軸對稱圖形等知識,熟練掌握正方形的結(jié)構(gòu)特征是解本題的關(guān)鍵.二、填空題1、4【解析】【分析】根據(jù)等邊對等角得出∠B=∠C,再根據(jù)EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,從而得出∠E=∠BFP,再根據(jù)對頂角相等得出∠E=∠AFE,最后根據(jù)等角對等邊即可得出答案.【詳解】證明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE=3,∴△AEF是等腰三角形.又∵CE=10,∴CA=AB=7,∴BF=AB-AF=7-3=4,故答案為:4.【考點】本題考查了等腰三角形的判定和性質(zhì),解題的關(guān)鍵是證明∠E=∠AFE,注意等邊對等角,以及等角對等邊的使用.2、22【解析】【詳解】【分析】根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得BE=CE,然后求出△ABE的周長=AB+AC,再求出BC的長,然后根據(jù)三角形的周長定義計算即可得解.【詳解】∵BC邊上的垂直平分線DE交BC于點D,交AC于點E,BD=4,∴BE=EC,BC=2BD=8;又∵△ABE的周長為14,∴AB+AE+BE=AB+AE+EC=AB+AC=14,∴△ABC的周長是:AB+AC+BC=14+8=22,故答案是:22.【考點】本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),三角形的周長,熟記性質(zhì)是解題的關(guān)鍵.3、2a+3b【解析】【分析】由題意可知:AC=AB=a+b,由于DE是線段AC的垂直平分線,∠BAC=36°,所以易證AE=CE=BC=b,從可知△ABC的周長為:AB+AC+BC=2a+3b.【詳解】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是線段AC的垂直平分線,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB?∠ECA=36°,∴∠BEC=180°?∠ABC?∠ECB=72°,∴CE=BC=b,∴△ABC的周長為:AB+AC+BC=2a+3b故答案為2a+3b.【考點】本題考查線段垂直平分線的性質(zhì),解題的關(guān)鍵是利用等腰三角形的性質(zhì)以及垂直平分線的性質(zhì)得出AE=CE=BC,本題屬于中等題型.4、30°【解析】【分析】根據(jù)等腰三角形的三線合一的性質(zhì)和等邊三角形三個內(nèi)角相等的性質(zhì)填空.【詳解】∵△ABC是等邊三角形,∴又點D是邊BC的中點,∴故答案是:30°.【考點】考查了等邊三角形的性質(zhì):等邊三角形的三個內(nèi)角都相等,且都等于60°.等邊三角形是軸對稱圖形,它有三條對稱軸;它的任意一角的平分線都垂直平分對邊,三邊的垂直平分線是對稱軸.5、35°【解析】【分析】由線段垂直平分線的性質(zhì)和等腰三角形的性質(zhì)求得∠BAD=30°,結(jié)合三角形內(nèi)角和定理求出∠CAD,根據(jù)角平分線的定義即可求出∠DAE的度數(shù).【詳解】解:∵DF垂直平分線段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=180°-30°-50°=100°,∴∠CAD=∠BAC-∠BAD=100°-30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,故答案為:35°.【考點】本題考查作圖-基本作圖,三角形內(nèi)角和定理等知識,解題的關(guān)鍵是讀懂圖象信息,熟練掌握線段垂直平分線和角平分線的作法.6、(2,1)【解析】【分析】根據(jù)與x軸對稱的點的性質(zhì),求出對稱點的坐標(biāo)即可.【詳解】∵對稱點與點P(2,1)關(guān)于x軸對稱∴保持橫坐標(biāo)不變,縱坐標(biāo)取相反數(shù)∴對稱點的坐標(biāo)為故答案為:.【考點】本題考查了關(guān)于x軸的對稱點的坐標(biāo)問題,掌握與x軸對稱的點的性質(zhì)是解題的關(guān)鍵.7、3【解析】【分析】根據(jù)三角形的外角性質(zhì)和已知條件易證明∠ABC=∠C,則可判斷△ABC為等腰三角形,然后根據(jù)等腰三角形的性質(zhì)可得AD⊥BC,BD=CD=4,再利用三角形面積公式即可求出AD的長.【詳解】解:∵BH為△ABC的高,∴∠AHB=90°,∴∠BAH=90°﹣∠ABH,而2∠C=90°﹣∠ABH,∴∠BAH=2∠C,∵∠BAH=∠C+∠ABC,∴∠ABC=∠C,∴△ABC為等腰三角形,∵AD是角平分線,∴AD⊥BC,BD=CD=4,∵ΔABC的面積為12,∴×AD×BC=12,即×AD×8=12,∴AD=3.故答案為:3.【考點】本題考查了三角形的外角性質(zhì)、等腰三角形的判定和性質(zhì)以及三角形的面積,熟練掌握上述知識是解題的關(guān)鍵.8、BC【解析】【分析】根據(jù)題意作圖,再由“到線段兩個端點距離相等的點在線段的垂直平分線上”及“兩點確定一條直線”即可解答.【詳解】如圖,根據(jù)題意得AB=AC,DB=DC,∴點A、D都在BC的垂直平分線上.∵兩點確定一條直線,∴直線AD是BC的垂直平分線.故答案為:BC.【考點】此題考查了線段垂直平分線性質(zhì)的逆定理及直線的公理,屬基礎(chǔ)題.9、70°【解析】【分析】依據(jù)矩形的性質(zhì)以及折疊的性質(zhì),即可得到∠DFE=∠B'EF,設(shè)∠BEF=α,則∠DFE=∠B'EF=α,根據(jù)B'E∥C'F,即可得出∠B'EF+∠C'FE=180°,進(jìn)而得到∠BEF的度數(shù).【詳解】解:∵四邊形ABCD是矩形,∴AB∥DC,∴∠BEF=∠DFE,由折疊可得,∠BEF=∠B'EF,設(shè)∠BEF=α,則∠DFE=∠B'EF=α,∵B'E∥C'F,∴∠B'EF+∠C'FE=180°,即α+α+40°=180°,解得α=70°,∴∠BEF=70°,故答案為:70°.【考點】本題考查折疊問題以及矩形的性質(zhì)的運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.10、(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3)【解析】【詳解】試題解析:如圖所示:(此時不是四邊形,舍去),故答案為三、解答題1、詳見解析【解析】【分析】由等邊三角形的性質(zhì)以及題設(shè)條件,可證△ADB≌△AEC,由全等三角形的性質(zhì)可得.【詳解】證明:∵△是等邊三角形,∴AB=AC,∠ABC=∠ACB,∴∠ABD=∠ACE,在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴.【考點】本題考查等邊三角形的性質(zhì)、補(bǔ)角的性質(zhì)、全等三角形的判定和性質(zhì),綜合性強(qiáng),但是整體難度不大.2、等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD,見解析【解析】【分析】(1)三角形的種類有多種,從邊和角的關(guān)系上看常見的有:等腰三角形、等邊三角形、直角三角形、觀察此三角形即可大體猜想出三角形的類型;(2)根據(jù)角平分線的性質(zhì)和平行線的性質(zhì),求得∠DOP=∠DPO,即可判斷三角形的形狀.【詳解】解:(1)我們猜想△DOP是等腰三角形;(2)補(bǔ)全下面證明過程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案為:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD.【考點】本題考查了角平分線的性質(zhì)和平行線的性質(zhì)及等腰三角形,解決本題的關(guān)鍵是掌握平行線的性質(zhì)定理,找到相等的角.3、(1)見解析(2)【解析】【分析】(1)分別以B、C為圓心,大于BC為半徑作弧,兩弧交于點E\,連接AE交BC于D,則AD就是△ABC的高;(2)由AD⊥BC可知,AC是經(jīng)過A,C,D三點的圓的直徑,根據(jù)垂徑定理可知CD=BC=4,由勾股定理可求AC的長,進(jìn)而可求半徑.(1)解:作圖如圖:(2)解:∵AB=AC,AD⊥BC∴AD是△ABC的中線∴BD=CD=∴AC=∵∠ADC=90°∵AC是經(jīng)過A,C、D三點的圓的直徑∴半徑r=故答案為:.【考點】本題考查了基本作圖,等腰三角形的性質(zhì)--“三線合一”,解題的關(guān)鍵是熟知等腰三角形的“三線合一”性質(zhì).4、(1)5;BE+CF=EF;20;(2)2;BE+CF=EF,證明見解析;△AEF的周長=18;(3)BE-CF=EF,理由見解析.【解析】【詳解】試題分析:(1)根據(jù)角平分線的定義可得∠EBD=∠CBD,∠FCD=∠BCD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠EDB=∠CBD,∠FDC=∠BCD,然后求出∠EBD=∠EDB,∠FDC=∠BCD,再根據(jù)等角對等邊可得BE=DE,CF=DF,然后解答即可;(2)根據(jù)角平分線的定義可得∠EBD=∠CBD,∠FCD=∠BCD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠EDB=∠CBD,∠FDC=∠BCD,然后求出∠EBD=∠EDB,∠FDC=∠BCD,再根據(jù)等角對等邊可得BE=DE,CF=DF,然后解答即可;(3)由(2)知BE=ED,CF=DF,然后利用等量代換即可證明BE、CF、EF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論