版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》定向測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,C為線段AE上一動點(不與點,重合),在AE同側(cè)分別作等邊三角形ABC和等邊三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連結(jié)PQ.以下結(jié)論錯誤的是(
)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP2、如圖,在和中,,連接交于點,連接.下列結(jié)論:①;②;③平分;④平分.其中正確的個數(shù)為().A.4 B.3 C.2 D.13、如圖,∠B=∠E=90°,AB=DE,AC=DF,則△ABC≌△DEF的理由是()A.SAS B.ASA C.AAS D.HL4、已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA5、如圖,已知∠ABC=∠DCB.添加一個條件后,可得△ABC≌△DCB,則在下列條件中,不能添加的是()A.AC=DB B.AB=DC C.∠A=∠D D.∠ABD=∠DCA6、作的平分線時,以O(shè)為圓心,某一長度為半徑作弧,與OA,OB分別相交于C,D,然后分別以C,D為圓心,適當(dāng)?shù)拈L度為半徑作弧使兩弧在的內(nèi)部相交于一點,則這個適當(dāng)?shù)拈L度(
)A.大于 B.等于 C.小于 D.以上都不對7、下列說法正確的是(
)A.兩個長方形是全等圖形 B.形狀相同的兩個三角形全等C.兩個全等圖形面積一定相等 D.所有的等邊三角形都是全等三角形8、如圖,在中,,,點E在BC的延長線上,的平分線BD與的平分線CD相交于點D,連接AD,則下列結(jié)論中,正確的是A. B. C. D.9、作平分線的作圖過程如下:作法:(1)在和上分別截取、,使.(2)分別以,為圓心,大于的長為半徑作弧,兩弧交于點.(3)作射線,則就是的平分線.用下面的三角形全等的判定解釋作圖原理,最為恰當(dāng)?shù)氖牵?/p>
)A. B. C. D.10、下列各組的兩個圖形屬于全等圖形的是(
)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,給出下列結(jié)論:①;②;③;④.其中正確的有_______(填寫答案序號).2、如圖,的度數(shù)為___________.3、如圖,已知AD是△ABC的中線,E是AC上的一點,BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,則∠ACB=_____.4、如圖,在Rt△ABC中,∠B=90°,以頂點C為圓心、適當(dāng)長為半徑畫弧,分別交AC、BC于點E、F,再分別以點E、F為圓心,以大于EF的長為半徑畫弧,兩弧交于點P,作射線CP交AB于點D.若BD=4,AC=16,則△ACD的面積是______.5、如圖,在△ABC中,點D是AC的中點,分別以AB,BC為直角邊向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=NBC=∠90°,連接MN,已知MN=4,則BD=_________.6、如圖,△ABC≌△DBE,△ABC的周長為30,AB=9,BE=8,則AC的長是__.7、如圖,在△ABC中,點D、E分別為邊AC、BC上的點,且AD=DE,AB=BE,∠A=70°,則∠CED=______度.8、如圖,若△ABC≌△ADE,且∠1=35°,則∠2=_____.9、如圖,在△ABC中,已知AD是△ABC的角平分線,作DE⊥AB,已知AB=4,AC=2,△ABD的面積是2,則△ADC的面積為___.10、如圖,在中,D是上的一點,,平分,交于點E,連接,若,,則_______.三、解答題(5小題,每小題6分,共計30分)1、在湖的兩岸A、B間建一座觀賞橋,由于條件限制,無法直接度量A、B兩點間的距離.請你用學(xué)過的數(shù)學(xué)知識按以下要求設(shè)計一測量方案.(1)畫出測量圖案;(2)寫出測量步驟(測量數(shù)據(jù)用字母表示);(3)計算AB的距離(寫出求解或推理過程,結(jié)果用字母表示).2、如圖,在中,,點在的延長線上,于點,若,求證:.3、在中,,點D是直線BC上一點(點D不與點B,C重合),以AD為一邊在AD的右側(cè)作,使,,連接CE.(1)如圖(1),若點D在線段BC上,和之間有怎樣的數(shù)量關(guān)系?(不必說明理由)(2)若,當(dāng)點D在射線BC上移動時,如圖(2),和之間有怎樣的數(shù)量關(guān)系?說明理由.4、如圖,在中,.(1)如圖①所示,直線過點,于點,于點,且.求證:.(2)如圖②所示,直線過點,交于點,交于點,且,則是否成立?請說明理由.5、已知如圖,E.F在BD上,且AB=CD,BF=DE,AE=CF,求證:AC與BD互相平分.-參考答案-一、單選題1、D【解析】【分析】利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正確;根據(jù)△CQB≌△CPA(ASA),得出B正確;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯角相等,兩直線平行,得出C正確;根據(jù)∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D錯誤.【詳解】解:∵等邊△ABC和等邊△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD與△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB與△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ為等邊三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正確,∵△CQB≌△CPA,∴AP=BQ,故B正確,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D錯誤;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正確.故選:D.【考點】本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),利用旋轉(zhuǎn)不變性,解題的關(guān)鍵是找到不變量.2、B【解析】【分析】根據(jù)題意逐個證明即可,①只要證明,即可證明;②利用三角形的外角性質(zhì)即可證明;④作于,于,再證明即可證明平分.【詳解】解:∵,∴,即,在和中,,∴,∴,①正確;∴,由三角形的外角性質(zhì)得:∴°,②正確;作于,于,如圖所示:則°,在和中,,∴,∴,∴平分,④正確;正確的個數(shù)有3個;故選B.【考點】本題是一道幾何的綜合型題目,難度系數(shù)偏上,關(guān)鍵在于利用三角形的全等證明來證明線段相等,角相等.3、D【解析】【詳解】∵在Rt△ABC與Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故選D.4、B【解析】【分析】利用全等三角形判定定理ASA,SAS,AAS對各個選項逐一分析即可得出答案.【詳解】解:A、∵∠1=∠2,AD為公共邊,若AB=AC,則△ABD≌△ACD(SAS);故A不符合題意;B、∵∠1=∠2,AD為公共邊,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合題意;C、∵∠1=∠2,AD為公共邊,若∠B=∠C,則△ABD≌△ACD(AAS);故C不符合題意;D、∵∠1=∠2,AD為公共邊,若∠BDA=∠CDA,則△ABD≌△ACD(ASA);故D不符合題意.故選B.5、A【解析】【分析】先要確定現(xiàn)有已知在圖形上的位置,結(jié)合全等三角形的判定方法對選項逐一驗證,排除錯誤的選項.【詳解】解:∵∠ABC=∠DCB,∵BC=BC,A、添加AC=DB,不能得△ABC≌△DCB,符合題意;B、添加AB=DC,利用SAS可得△ABC≌△DCB,不符合題意;C、添加∠A=∠D,利用AAS可得△ABC≌△DCB,不符合題意;D、添加∠ABD=∠DCA,∴∠ACB=∠DBC,利用ASA可得△ABC≌△DCB,不符合題意;故選:A.【考點】本題主要考查三角形全等的判定,熟練掌握判定方法是解題的關(guān)鍵.6、A【解析】【分析】根據(jù)作已知角的角平分線的方法即可判斷.【詳解】因為分別以C,D為圓心畫弧時,要保證兩弧在的內(nèi)部交于一點,所以半徑應(yīng)大于,故選:A.【考點】本題考查了作圖-基本作圖:熟練掌握5種基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).7、C【解析】【分析】性質(zhì)、大小完全相同的兩個圖形是全等形,根據(jù)定義解答.【詳解】A、兩個長方形的長或?qū)挷灰欢ㄏ嗟?,故不是全等圖形;B、由于大小不一定相同,故形狀相同的兩個三角形不一定全等;C、兩個全等圖形面積一定相等,故正確;D、所有的等邊三角形大小不一定相同,故不一定是全等三角形;故選:C.【考點】此題考查全等圖形的概念及性質(zhì),熟記概念是解題的關(guān)鍵.8、B【解析】【分析】由∠ABC=50°,∠ACB=60°,可判斷出AC≠AB,根據(jù)三角形內(nèi)角和定理可求出∠BAC的度數(shù),根據(jù)鄰補角定義可求出∠ACE度數(shù),由BD平分∠ABC,CD平分∠ACE,根據(jù)角平分線的定義以及三角形外角的性質(zhì)可求得∠BDC的度數(shù),繼而根據(jù)三角形內(nèi)角和定理可求得∠DOC的度數(shù),據(jù)此對各選項進行判斷即可得.【詳解】∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=70°,∠ACE=180°-∠ACB=120°,AC≠AB,∵BD平分∠ABC,CD平分∠ACE,∴∠DBC=∠ABC=25°,∠DCE=∠ACD=∠ACE=60°,∴∠BDC=∠DCE-∠DBC=35°,∴∠DOC=180°-∠OCD-∠ODC=180°-60°-35°=85°,∵∠DBC=25°,∠BDC=35°,∴BC≠CD,故選B.【考點】本題考查了三角形內(nèi)角和定理,等腰三角形判定,角平分線的定義等,熟練掌握角平分線的定義以及三角形內(nèi)角和定理是解本題的關(guān)鍵.9、A【解析】【分析】根據(jù)作圖過程可得OD=OE,CE=CD,根據(jù)OC為公共邊,利用SSS即可證明△OCE≌△OCD,即可得答案.【詳解】∵分別以,為圓心,大于的長為半徑作弧,兩弧交于點;∴CE=CD,在△OCE和△OCD中,,∴△OCE≌△OCD(SSS),故選:A.【考點】本題考查全等三角形的判定,正確找出相等的線段并熟練掌握全等三角形的判定定理是解題關(guān)鍵.10、D【解析】【分析】根據(jù)全等圖形的定義,逐一判斷選項,即可.【詳解】解:A、兩個圖形不能完全重合,不是全等圖形,不符合題意,B.兩個圖形不能完全重合,不是全等圖形,符合題意,C.兩個圖形不能完全重合,不是全等圖形,不符合題意,D.兩個圖形能完全重合,是全等圖形,不符合題意,故選D.【考點】本題主要考查全等圖形的定義,熟練掌握“能完全重合的兩個圖形,是全等圖形”是解題的關(guān)鍵.二、填空題1、①③④【解析】【分析】利用AAS可證明△ABE≌△ACF,可得AC=AB,∠BAE=∠CAF,利用角的和差關(guān)系可得∠EAM=∠FAN,可得③正確,利用ASA可證明△AEM≌△AFN,可得EM=FN,AM=AN,可得①③正確;根據(jù)線段的和差關(guān)系可得CM=BN,利用AAS可證明△CDM≌△BDN,可得CD=DB,可得②錯誤;利用ASA可證明△ACN≌△ABM,可得④正確;綜上即可得答案.【詳解】在△ABE和△ACF中,,∴△ABE≌△ACF,∴AB=AC,∠BAE=∠CAF,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠FAN=∠EAM,故③正確,在△AEM和△AFN中,,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正確,∴AC-AM=AB-AN,即CM=BN,在△CDM和△BDN中,,∴CD=DB,故②錯誤,在△CAN和△ABM中,,∴△ACN≌△ABM,故④正確,綜上所述:正確的結(jié)論有①③④,故答案為:①③④【考點】本題考查全等三角形的判定與性質(zhì),判定兩個三角形全等的方法有:SSS、SAS、AAS、ASA、HL,注意:SSA、AAA不能判定三角形確定,當(dāng)利用SAS證明時,角必須是兩邊的夾角;熟練掌握全等三角形的判定定理是解題關(guān)鍵.2、【解析】【分析】根據(jù)全等三角形的性質(zhì)求出∠EAD=∠CAB,求出∠DAB=∠EAC
=50°,即可得到∠BAC的度數(shù).【詳解】解:∵ABC≌ADE,∴∠EAD=∠CAB,∴∠EAD﹣∠CAD=∠CAB﹣∠CAD,∴∠EAC=∠DAB,∵∠EAB=125°,∠CAD=25°,∴∠DAB=∠EAC=(125°﹣25°)=50°,∴∠BAC=50°+25°=75°.故答案為:75°.【考點】本題考查的是全等三角形的性質(zhì),掌握全等三角形的對應(yīng)角相等是解題的關(guān)鍵.3、100°或100度【解析】【分析】延長AD到M,使得DM=AD,連接BM,證△BDM≌△CDA(SAS),得得到BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再證△BFM是等腰三角形,求出∠MBF的度數(shù),即可解決問題.【詳解】解:如圖,延長AD到M,使得DM=AD,連接BM,在△BDM和△CDA中,,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°﹣∠M﹣∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF﹣∠EBC=100°,∴∠C=∠DBM=100°,故答案為:100°.【考點】本題考查全等三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.4、32【解析】【分析】過點D作DQ⊥AC,由作法可知CP是角平分線,根據(jù)角平分線的性質(zhì)知DB=DQ=3,再由三角形的面積公式計算即可.【詳解】解:如圖,過點D作DQ⊥AC于點Q,由作圖知CP是∠ACB的平分線,∵∠B=90°,BD=4,∴DB=DQ=4,∵AC=16,∴S△ACD=?AC?DQ=,故答案為32.【考點】本題主要考查作圖-基本作圖,三角形面積,解題的關(guān)鍵是掌握角平分線的尺規(guī)作圖及角平分線的性質(zhì).5、2【解析】【分析】延長BD到E,使DE=BD,連接AE,證明△ADE≌△CDB(SAS),可得AE=CB,∠EAD=∠BCD,再根據(jù)△ABM和△BCN是等腰直角三角形,證明△MBN≌△BAE,可得MN=BE,進而可得BD與MN的數(shù)量關(guān)系即可求解.【詳解】解:如圖,延長BD到E,使DE=BD,連接AE,∵點D是AC的中點,∴AD=CD,在△ADE和△CDB中,,∴△ADE≌△CDB(SAS),∴AE=CB,∠EAD=∠BCD,∵△ABM和△BCN是等腰直角三角形,∴AB=BM,CB=NB,∠ABM=∠CBN=90°,∴BN=AE,又∠MBN+∠ABC=360°-90°-90°=180°,∵∠BCA+∠BAC+∠ABC=180°,∴∠MBN=∠BCA+∠BAC=∠EAD+∠BAC=∠BAE,在△MBN和△BAE中,,∴△MBN≌△BAE(SAS),∴MN=BE,∵BE=2BD,∴MN=2BD.又MN=4,∴BD=2,故答案為:2.【考點】本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形,解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).6、13【解析】【分析】根據(jù)全等三角形的性質(zhì)求出BC,根據(jù)三角形的周長公式計算,得到答案.【詳解】解:∵△ABC≌△DBE,BE=8,∴BC=BE=8,∵△ABC的周長為30,∴AB+AC+BC=30,∴AC=30﹣AB﹣BC=13,故答案為:13.【考點】此題主要考查全等三角形的性質(zhì),解題的關(guān)鍵是熟知全等三角形的性質(zhì).7、110【解析】【分析】根據(jù)SSS證△ABD≌△EBD,得∠BED=∠A=70°,進而得出∠CED.【詳解】解:∵AD=DE,AB=BE又BD=BD∴△ABD≌△EBD(SSS)∴∠BED=∠A=70°∴∠CED=180°-∠BED=180°-70°=110°故本題答案為110.【考點】本題通過考查全等三角形的判定和性質(zhì),進而得出結(jié)論.8、35°.【解析】【分析】根據(jù)全等的性質(zhì)可得:∠EAD=∠CAB,再根據(jù)等式的基本性質(zhì)可得∠1=∠2=35°.【詳解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案為35°.【考點】此題考查的是全等三角形的性質(zhì),掌握全等三角形的對應(yīng)角相等是解決此題的關(guān)鍵.9、1【解析】【分析】先根據(jù)三角形面積公式計算出DE=
1,再根據(jù)角平分線的性質(zhì)得到點D到AB和AC的距離相等,然后利用三角形的面積公式計算△ADC的面積.【詳解】DE⊥AB,S△ABD
=×
DE
×
AB
=
2,
DE==1,AD是△ABC的角平分線,點D到AB和AC的距離相等,點D到AC的距離為1,S△ADC
=×2×1=
1.故答案為:1.【考點】本題考查了角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等,屬于基礎(chǔ)題,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.10、55°【解析】【分析】根據(jù)SAS證明△ACE≌△DCE,根據(jù)全等三角形的性質(zhì)可得∠CDE=∠A=100°,再根據(jù)三角形外角的性質(zhì)可求∠BED.【詳解】解:∵CE平分∠ACB,∴∠ACE=∠DCE,在△ACE與△DCE中,,∴△ACE≌△DCE(SAS),∴∠CDE=∠A=100°,∵∠B=45°,∴∠BED=∠CDE-∠B=100°-45°=55°,故答案為:55°.【考點】本題考查了全等三角形的判定與性質(zhì),三角形外角的性質(zhì),關(guān)鍵是得到∠CDE=∠A=100°.三、解答題1、(1)見解析;(2)見解析;(3)設(shè)DC=m,則AB=m.【解析】【分析】本題讓我們了解測量兩點之間的距離的一種方法,設(shè)計時,只要符合全等三角形全等的條件,方案具有可操作性,需要測量的線段在陸地一側(cè)可實施,就可以達到目的.【詳解】解:(1)見圖:(2)在湖岸上選一點O,連接BO并延長到C使BO=OC,連接AO并延長到點D使OD=AO,連接CD,則AB=CD.測量DC的長度即為AB的長度;(3)設(shè)DC=m∵BO=CO,∠AOB=∠COD,AO=DO∴△AOB≌△COD(SAS)∴AB=CD=m.【考點】本題考查了全等三角形的應(yīng)用;解答本題的關(guān)鍵是設(shè)計三角形全等,巧妙地借助兩個三角形全等,尋找所求線段與已知線段
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 管理人員下基層培訓(xùn)制度
- 汽車維修部人員培訓(xùn)制度
- 培訓(xùn)經(jīng)費保障制度
- 報廢機動車培訓(xùn)上崗制度
- 廚房生產(chǎn)安全培訓(xùn)制度
- 掛職干部培訓(xùn)制度
- 培訓(xùn)事業(yè)合伙制度
- 文明勸導(dǎo)培訓(xùn)制度
- 輔導(dǎo)機構(gòu)帶薪培訓(xùn)制度
- 積極分子培訓(xùn)班制度
- 智能家居銷售培訓(xùn)課件
- 2025-2026學(xué)年小學(xué)蘇少版(2024)新教材一年級上冊美術(shù)期末測試卷及答案
- 2025-2026學(xué)年北師大版六年級數(shù)學(xué)上冊期末測試卷及答案
- 不同類型休克的床旁超聲鑒別診斷策略
- 企業(yè)ESG審計體系構(gòu)建-洞察及研究
- 政治理論考試試題庫100題
- 2025醫(yī)療器械經(jīng)營質(zhì)量管理體系文件(全套)(可編輯?。?/a>
- 物業(yè)與商戶裝修協(xié)議書
- 2025年信用報告征信報告詳版?zhèn)€人版模板樣板(可編輯)
- 急診科心肌梗死搶救流程
- 小學(xué)三年級數(shù)學(xué)選擇題專項測試100題帶答案
評論
0/150
提交評論