版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學上冊《全等三角形》專題練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖:,,則此題可利用下列哪種方法來判定(
)A.ASA B.AAS C.HL D.缺少條件,不可判定2、如圖,已知,下面甲、乙、丙、丁四個三角形中,與全等的是(
)A.甲 B.乙 C.丙 D.丁3、如圖,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=7cm,則△DBE的周長是(
)A.6cm B.7cm C.8cm D.9cm4、如圖,在△ABC和△DEF中,AB=DE,ABDE,運用“SAS”判定△ABC≌△DEF,需補充的條件是()A.AC=DF B.∠A=∠D C.BE=CF D.∠ACB=∠DFE5、下列命題的逆命題一定成立的是(
)①對頂角相等;②同位角相等,兩直線平行;③全等三角形的周長相等;④能夠完全重合的兩個三角形全等.A.①②③ B.①④ C.②④ D.②第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在中,,以點為圓心,任意長為半徑作弧,分別交于和,再分別以點為圓心,大于二分之一為半徑作弧,兩弧交于點,連接并延長交于點,過點作于.若,則的面積為________.2、如圖,已知△ABC≌△DBE,∠A=36°,∠B=40°,則∠AED的度數(shù)為_____.3、如圖,已知AC與BF相交于點E,ABCF,點E為BF中點,若CF=8,AD=5,則BD=_____.4、如圖,是一個中心對稱圖形,A為對稱中心,若,則________,________.5、如圖,AB=DC,BF=CE,需要補充一個條件,就能使△ABE≌△DCF,下面幾個答案:①AE=DF,②AE∥DF;③AB∥DC,④∠A=∠D.其中正確的是_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,在等腰三角形ABC中,∠A=90°,AB=AC=6,D是BC邊的中點,點E在線段AB上從B向A運動,同時點F在線段AC上從點A向C運動,速度都是1個單位/秒,時間是t秒(0<t<6),連接DE、DF、EF.(1)請判斷△EDF形狀,并證明你的結論.(2)以A、E、D、F四點組成的四邊形面積是否發(fā)生變化?若不變,求出這個值;若變化,用含t的式子表示.2、正方形ABCD中,E為BC上的一點,F(xiàn)為CD上的一點,,求的度數(shù).3、如圖,已知AB=AD,AC=AE,∠BAE=∠DAC.求證:∠C=∠E.4、如圖所示,點M是線段AB上一點,ED是過點M的一條直線,連接AE、BD,過點B作BFAE交ED于F,且EM=FM.(1)若AE=5,求BF的長;(2)若∠AEC=90°,∠DBF=∠CAE,求證:CD=FE.5、如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求證:△BCE≌△DCF;(2)求證:AB+AD=2AE.-參考答案-一、單選題1、C【解析】【分析】根據(jù)全等三角形的判定定理直接求解.【詳解】解:在Rt△ABC和Rt△DCB中,∴(HL),故選C.【考點】本題考查了全等三角形的判定定理,牢記全等三角形的判定定理是解題的關鍵.2、B【解析】【分析】根據(jù)全等三角形的判定定理逐判定即可.【詳解】解:A.△ABC和甲所示三角形只有一邊一角對應相等,無法判定它們全等,故本選項不符合題意;B.△ABC和乙所示三角形有兩邊及其夾角對應相等,根據(jù)SAS可判定它們全等,故本選項符合題意;C.△ABC和丙所示三角形有兩邊一角相等,但不是對應的兩邊一角,無法判定它們全等,故本選項不符合題意;;D.△ABC和丁所示三角形有兩角對應相等,有一邊相等,但相等邊不是兩角的夾邊,所以兩角一邊不是對應相等,無法判定它們全等,故本選項不符合題意;;故選:B.3、B【解析】【分析】由在△ABC中,∠C=90°,AC=BC,∠BAC的平分線AD交BC于D,DE⊥AB于E,根據(jù)角平分線的性質,可得CD=ED,AC=AE=BC,繼而可得△DBE的周長=AB.【詳解】∵在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,DE⊥AB于E,∴CD=ED,∠ADC=∠ADE,∴AE=AC,∵AC=BC,∴BC=AE,∴△DBE的周長是:BD+DE+BE=BD+CD+BE=BC+BE=AE+BE=AB=7cm.故選B.【考點】此題考查了角平分線的性質.此題難度適中,注意掌握數(shù)形結合思想與轉化思想的應用.4、C【解析】【分析】證出∠ABC=∠DEF,由SAS即可得出結論.【詳解】解:補充BE=CF,理由如下:∵AB∥DE,∴∠ABC=∠DEF,若要利用SAS判定,B、D選項不符合要求,若A:AC=DF,構成的是SSA,不能證明三角形全等,A選項不符合要求,C選項:BE=CF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故選:C.【考點】此題主要考查全等三角形的判定,解題的關鍵是熟知“SAS”的判定的特點.5、C【解析】【分析】求出各命題的逆命題,然后判斷真假即可.【詳解】解:①對頂角相等,逆命題為:相等的角為對頂角,是假命題不符合題意;②同位角相等,兩直線平行,逆命題為:兩直線平行,同位角相等,是真命題,符合題意;③全等三角形的周長相等.逆命題為:周長相等的兩個三角形全等,是假命題,不符合題意;④能夠完全重合的兩個三角形全等.逆命題為:兩個全等三角形能夠完全重合,是真命題,符合題意;故逆命題成立的是②④,故選C.【考點】本題主要考查命題與定理,熟悉掌握逆命題的求法是解本題的關鍵.二、填空題1、5【解析】【分析】作GM⊥AB于M,先利用基本作圖得到AG平分∠BAC,再根據(jù)角平分線的性質得到GM=GH=2,然后根據(jù)三角形面積公式計算.【詳解】解:作GM⊥AB于M,由作法得AG平分∠BAC,而GH⊥AC,GM⊥AB,∴GM=GH=2,∴,故答案為:5.【考點】此題考查了角平分線的性質定理:角平分線上的點到這個角的兩邊的距離相等,還考查了角平分線的作圖方法,正確理解題意得到AG平分∠BAC是解題的關鍵.2、76°或76度【解析】【分析】根據(jù)全等三角形的性質得到∠A=∠D=36°,根據(jù)三角形的外角的性質即可得出答案.【詳解】解:∵△ABC≌△DBE,∴∠A=∠D=36°,∵∠AED是△BDE的外角,∴∠AED=∠B+∠D=40°+36°=76°.故答案為:76°.【考點】本題考查了全等三角形的性質及三角形外角的性質,掌握全等三角形的對應角相等是解題的關鍵.3、3【解析】【分析】利用全等三角形的判定定理和性質定理可得結果.【詳解】解:∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵點E為BF中點,∴BE=FE,在△ABE與△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=8,∵AD=5,∴BD=3,故答案為:3.【考點】本題主要考查了全等三角形的判定定理和性質定理,熟練掌握定理是解答此題的關鍵.4、
30°
2【解析】【分析】根據(jù)中心對稱圖形的性質,得到,再由全等三角形的性質解題即可.【詳解】解:∵A為對稱中心,∴繞點A旋轉能與重合,∴,∴,,∴.【考點】本題考查中心對稱圖形的性質、全等三角形的性質等知識,是基礎考點,掌握相關知識是解題關鍵.5、①③.【解析】【分析】先求出BE=CF,根據(jù)平行線的性質得出∠AEB=∠DFC,再根據(jù)全等三角形的判定定理推出即可.【詳解】∵BF=CE,∴BF+EF=CE+EF,即BE=CF,①在△ABE和△DCF中,,∴△ABE≌△DCF(SSS),故①正確;②∵AE∥DF,∴∠AEB=∠DFC,根據(jù)AB=CD,BE=CF和∠AEB=∠DFC不能推出△ABE≌△DCF,故②錯誤;③∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),故③正確;④根據(jù)AB=CD,BE=CF和∠A=∠D不能推出△ABE≌△DCF,故④錯誤.故答案為:①③.【考點】本題考查了全等三角形的判定問題,掌握全等三角形的性質以及判定定理是解題的關鍵.三、解答題1、(1)△EDF為等腰直角三角形,證明見解析;(2)四邊形AEDF面積不變,9.【解析】【分析】(1)連接AD,利用等腰直角三角形的性質根據(jù)SAS證明△BDE≌△ADF,即可得到結論;(2)根據(jù)(1)得到S△BDE=S△ADF,推出S四邊形AEDF=S△ADF+S△ADE=S△ABD=S△ABC,根據(jù)公式計算即可得到答案.【詳解】解:(1)△EDF為等腰直角三角形,理由如下:連接AD,∵AB=AC,∠BAC=90°,點D是BC中點,∴AD=BD=CD=BC,AD平分∠BAC,∴∠B=∠C=∠BAD=∠CAD=45°,∵點E、F速度都是1個單位秒,時間是t秒,∴BE=AF,又∵∠B=∠DAF=45°,AD=BD,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF.∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,∴∠EDF=90°,∴△EDF為等腰直角三角形;(2)四邊形AEDF面積不變,理由:∵由(1)可知,△BDE≌△ADF,∴S△BDE=S△ADF,∴S四邊形AEDF=S△ADF+S△ADE=S△ABD=S△ABC,∴S四邊形AEDF=××AC×AB=9.【考點】此題考查等腰直角三角形的性質,等腰三角形三線合一的性質,全等三角形的判定及性質.2、45°【解析】【分析】延長EB使得BG=DF,易證△ABG≌△ADF(SAS)可得AF=AG,進而求證△AEG≌△AEF可得∠EAG=∠EAF,再求出∠EAG+∠EAF=90°即可解題.【詳解】解:如圖,延長EB到點G,使得,連接AG.在正方形ABCD中,,,.在和中,,,,.又,在和中,,,.,,,.【考點】本題考查了正方形的性質,全等三角形的判定與性質,作出輔助線構造出全等三角形是解決此題的關鍵.3、見解析.【解析】【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根據(jù)“SAS”可判斷△ABC≌△ADE,根據(jù)全等的性質即可得到∠C=∠E.【詳解】∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS),∴∠C=∠E.【考點】本題考查了全等三角形的判定與性質:判斷三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對應角相等,對應邊相等.4、(1)BF=5;(2)見解析.【解析】【分析】(1)證明△AEM≌△BFM即可;(2)證明△AEC≌△BFD,得到EC=FD,利用等式性質,得到CD=FE.【詳解】(1)∵BFAE,∴∠MFB=∠MEA,∠MBF=∠MAE,∵EM=FM,∴△AEM≌△BFM,∴AE=BF,∵AE=5,∴BF=5;(2)∵BFAE,∴∠MFB=∠MEA,∵∠AEC=90°,∴∠MFB=90°,∴∠BFD=90°,∴∠BFD=∠AEC,∵∠DBF=∠CAE,AE=BF,∴△AEC≌△BFD,∴EC=FD,∴EF+FC=FC+CD,∴CD=FE.【考點】本題考查了平行線的性質,三角形全等的判定和性質,等式的性質,熟練掌握平行線性質,靈活進行三角形全等的判定是解題的關鍵.5、詳見解析【解析】【分析】(1)由角平分線定義可證△BCE≌△DCF(HL);(2)先證Rt△FAC≌Rt△EAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【詳解】(1)證明:∵AC是角平分線,CE⊥AB于E,CF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026山東事業(yè)單位統(tǒng)考濱州市惠民縣招聘43人備考考試試題及答案解析
- 2026江蘇大學附屬醫(yī)院招聘編外人員56人(一)筆試模擬試題及答案解析
- 2026渭南合陽縣農(nóng)村合作經(jīng)濟工作站招聘(2人)備考考試試題及答案解析
- 月老牽線活動策劃方案(3篇)
- 挖溝拆除施工方案(3篇)
- 親子義賣活動方案策劃(3篇)
- 肯德基衛(wèi)生管理制度表模板(3篇)
- 2026匯才(福建泉州市)企業(yè)管理有限公司派駐晉江市永和鎮(zhèn)招聘5人備考考試試題及答案解析
- 2026山東事業(yè)單位統(tǒng)考威?;鹁娓呒夹g產(chǎn)業(yè)開發(fā)區(qū)鎮(zhèn)(街道)招聘初級綜合類崗位9人筆試模擬試題及答案解析
- 2026年河北張家口赤城縣農(nóng)業(yè)農(nóng)村局公開招聘特聘農(nóng)技員4名考試備考題庫及答案解析
- 單證專員述職報告
- 眼底病OCT解讀演示教學課件
- 民間個人借款擔保書
- 神經(jīng)病學教學課件:阿爾茨海默病
- LY/T 1598-2011石膏刨花板
- GB/T 31588.1-2015色漆和清漆耐循環(huán)腐蝕環(huán)境的測定第1部分:濕(鹽霧)/干燥/濕氣
- GB/T 21268-2014非公路用旅游觀光車通用技術條件
- GA/T 1495-2018道路交通安全設施基礎信息采集規(guī)范
- 夜間綜合施工專項專題方案公路
- ★神東煤炭集團xx煤礦礦井災害預防與處理計劃
- Q∕GDW 11421-2020 電能表外置斷路器技術規(guī)范
評論
0/150
提交評論