2025年江西省廬山市中考數(shù)學達標測試附完整答案詳解【必刷】_第1頁
2025年江西省廬山市中考數(shù)學達標測試附完整答案詳解【必刷】_第2頁
2025年江西省廬山市中考數(shù)學達標測試附完整答案詳解【必刷】_第3頁
2025年江西省廬山市中考數(shù)學達標測試附完整答案詳解【必刷】_第4頁
2025年江西省廬山市中考數(shù)學達標測試附完整答案詳解【必刷】_第5頁
已閱讀5頁,還剩28頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省廬山市中考數(shù)學達標測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,五邊形是⊙O的內接正五邊形,則的度數(shù)為(

)A. B. C. D.2、如圖,在△ABC中,∠CAB=64°,將△ABC在平面內繞點A旋轉到△AB′C′的位置,使CC′AB,則旋轉角的度數(shù)為()A.64° B.52° C.42° D.36°3、如圖,是的直徑,弦,垂足為,若,則()A.5 B.8 C.9 D.104、二次函數(shù)的頂點坐標為,圖象如圖所示,有下列四個結論:①;②;③④,其中結論正確的個數(shù)為(

)A.個 B.個 C.個 D.個5、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點.則以下結論正確的有(

)A.B.當時,y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點D.若線段AB上有且只有5個橫坐標為整數(shù)的點,則a的取值范圍是2、古希臘數(shù)學家歐幾里得在《幾何原本》中記載了用尺規(guī)作某種六邊形的方法,其步驟是:①在⊙O上任取一點A,連接AO并延長交⊙O于點B;②以點B為圓心,BO為半徑作圓弧分別交⊙O于C,D兩點;③連接CO,DO并延長分別交⊙O于點E,F(xiàn);④順次連接BC,CF,F(xiàn)A,AE,ED,DB,得到六邊形AFCBDE.連接AD,EF,交于點G,則下列結論正確的是.A.△AOE的內心與外心都是點G B.∠FGA=∠FOAC.點G是線段EF的三等分點 D.EF=AF3、下列說法中,不正確的是()A.三點確定一個圓B.三角形有且只有一個外接圓C.圓有且只有一個內接三角形D.相等的圓心角所對的弧相等4、已知直角三角形的兩條邊長恰好是方程的兩個根,則此直角三角形斜邊長是(

)A. B. C.3 D.55、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在中,,,.繞點B順時針方向旋轉45°得到,點A經(jīng)過的路徑為弧,點C經(jīng)過的路徑為弧,則圖中陰影部分的面積為______.(結果保留)2、如圖,,,以為直徑作半圓,圓心為點;以點為圓心,為半徑作,過點作的平行線交兩弧于點、,則陰影部分的面積是________.3、《九章算術》是我國古代的數(shù)學名著,其中“勾股”章有一題,大意是說:已知矩形門的高比寬多尺,門的對角線長尺,那么門的高和寬各是多少?如果設門的寬為尺,根據(jù)題意,那么可列方程___________.4、有四張完全相同的卡片,正面分別標有數(shù)字,,,,將四張卡片背面朝上,任抽一張卡片,卡片上的數(shù)字記為,再從剩下卡片中抽一張,卡片上的數(shù)字記為,則二次函數(shù)的對稱軸在軸左側的概率是__________.5、拋物線的開口方向向______.四、簡答題(2小題,每小題10分,共計20分)1、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點A,過A點作x軸的垂線,垂足為B,當△OAB的面積為4時,求m的值.2、已知:如圖,二次函數(shù)y=ax2+bx+的圖象經(jīng)過點A(2,6)和B(4,4),直線l經(jīng)過點B并與x軸垂直,垂足為Q.(1)求二次函數(shù)的表達式;(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點R是直線1上的點,如果△AOK與以O,Q,R為頂點的三角形相似,請直接寫出點R的縱坐標;(3)如圖2,正方形CDEF的頂點C是第二象限拋物線上的點,點D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,F(xiàn)M的交點分別是G,H,并且CG=GM,F(xiàn)H=HM,連接CE,與FM的交點為N,且點N的縱坐標是﹣1.求:①tan∠DCG的值;②點C的坐標.五、解答題(4小題,每小題10分,共計40分)1、如圖,是由若干個完全相同的小正方體組成的一個幾何體.(1)請畫出這個幾何體的從左面看和從上面看的形狀圖;(用陰影表示)(2)已知每個小正方體的邊長是2cm,求出這個幾何體的表面積是多少?2、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當直線l與這個新圖象有且只有一個公共點時,d=;(2)當直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.3、如圖,已知弓形的長,弓高,(,并經(jīng)過圓心O).(1)請利用尺規(guī)作圖的方法找到圓心O;(2)求弓形所在的半徑的長.4、在中,,,過點A作BC的垂線AD,垂足為D,E為線段DC上一動點(不與點C重合),連接AE,以點A為中心,將線段AE逆時針旋轉90°得到線段AF,連接BF,與直線AD交于點G.(1)如圖,當點E在線段CD上時,①依題意補全圖形,并直接寫出BC與CF的位置關系;②求證:點G為BF的中點.(2)直接寫出AE,BE,AG之間的數(shù)量關系.-參考答案-一、單選題1、D【解析】【分析】先根據(jù)正五邊形的內角和求出每個內角,再根據(jù)等邊對等角得出∠ABE=∠AEB,然后利用三角形內角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點】本題考查圓內接正五邊形的性質,等腰三角形性質,三角形內角和公式,角的和差計算,掌握圓內接正五邊形的性質,等腰三角形性質,三角形內角和公式,角的和差計算是解題關鍵.2、B【分析】先根據(jù)平行線的性質得∠ACC′=∠CAB=64°,再根據(jù)旋轉的性質得∠CAC′等于旋轉角,AC=AC′,則利用等腰三角形的性質得∠ACC′=∠AC′C=64°,然后根據(jù)三角形內角和定理可計算出∠CAC′的度數(shù),從而得到旋轉角的度數(shù).【詳解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面內繞點A旋轉到△AB′C′的位置,∴∠CAC′等于旋轉角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋轉角為52°.故選:B.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.3、C【分析】連接,根據(jù)垂徑定理可得,設的半徑為,則,進而勾股定理列出方程求得半徑,進而求得【詳解】解:如圖,連接,∵是的直徑,弦,∴設的半徑為,則在中,,即解得即故選C【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.4、A【解析】【分析】根據(jù)二次函數(shù)的性質和已知條件,對每一項逐一進行判斷即可.【詳解】解:由圖像可知a<0,c>0,∵對稱軸在正半軸,∴>0,∴b>0,∴,故①正確;當x=2時,y>0,故,故③正確;函數(shù)解析式為:y=a(x-1)2+2=ax2-2ax+a+2假設成立,結合解析式則有a+2<,解得a<,故②,④正確;故選:A.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系,結合圖象,運用所學知識是解題關鍵.5、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關鍵.二、多選題1、ACD【解析】【分析】求得頂點坐標,根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質即可判斷②錯誤;二次函數(shù)是不為0的常數(shù))的頂點,即可判斷③錯誤;根據(jù)題意時,時,即可判斷④正確.【詳解】解:二次函數(shù),頂點為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點,拋物線開口向上,,故①正確;時,隨的增大而增大,故②錯誤;由題意可知當,二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點,故③正確;線段上有且只有5個橫坐標為整數(shù)的點,且對稱軸為直線,∴當時,,當時,,,解得,故④正確;故選:ACD.【考點】本題考查了二次函數(shù)的性質,二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)圖象上點的坐標特征,能夠理解題意,利用二次函數(shù)的性質解答是解題的關鍵.2、ABC【解析】【分析】證明△AOE是等邊三角形,EF⊥OA,AD⊥OE,可判斷A;.證明∠AGF=∠AOF=60°,可判斷B;證明FG=2GE,可判斷C;證明EF=AF,可判斷D.【詳解】解:如圖,在正六邊形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等邊三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四邊形AEOF,四邊形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的內心與外心都是點G,故A正確,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正確,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴點G是線段EF的三等分點,故C正確,∵AF=AE,∠FAE=120°,∴EF=AF,故D錯誤,故答案為:ABC.【考點】本題考查作圖-復雜作圖,等邊三角形的判定和性質,菱形的判定和性質,三角形的內心,外心等知識,解題的關鍵是證明四邊形AEOF,四邊形AODE都是菱形.3、ACD【解析】【分析】根據(jù)不共線三點確定一個圓即可判斷A,B,C選項,根據(jù)同圓或等圓中,相等的圓心角所對的弧相等即可判斷D選項【詳解】不共線三點確定一個圓,故A選項不正確,B選項正確;一個圓上可以找出無數(shù)個不共線的三個點,即可構成無數(shù)個三角形,這些三角形都是這個圓的內接三角形圓有無數(shù)個內接三角形;故C選項不正確;同圓或等圓中,相等的圓心角所對的弧相等,故D選項不正確.故選ACD.【考點】本題考查了圓的內接三角形的定義,不共線三點確定一個圓,同圓或等圓中,相等的圓心角所對的弧相等,理解圓的相關性質是解題的關鍵.4、AC【解析】【分析】先解出一元二次方程,再根據(jù)勾股定理計算即可;【詳解】,,∴或,當2、3是直角邊時,斜邊;∵,∴3可以是三角形斜邊;故選AC.【考點】本題主要考查了一元二次方程的求解、勾股定理,準確計算是解題的關鍵.5、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標函數(shù)圖象到原函數(shù)圖象方向正好相反.三、填空題1、##【分析】設與AC相交于點D,過點D作,垂足為點E,根據(jù)勾股定理逆定理可得為直角三角形,根據(jù)三邊關系可得,根據(jù)題意及等角對等邊得出,在中,利用正弦函數(shù)可得,結合圖形,利用扇形面積公式及三角形面積公式求解即可得.【詳解】解:設與AC相交于點D,過點D作,垂足為點E,∵,,,∴,∴為直角三角形,∴,∵繞點B順時針方向旋轉45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案為:.【點睛】題目主要考查勾股定理逆定理,旋轉的性質,等角對等邊的性質,正切函數(shù),扇形面積等,理解題意,結合圖形,綜合運用這些知識點是解題關鍵.2、【解析】【分析】連接CE,如圖,利用平行線的性質得∠COE=∠EOB=90°,再利用勾股定理計算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進行計算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點】本題考查了扇形面積的計算:求陰影面積的主要思路是將不規(guī)則圖形面積轉化為規(guī)則圖形的面積.3、或【解析】【分析】設門的寬為x尺,則門的高為(x+6)尺,利用勾股定理,即可得出關于x的一元二次方程,此題得解.【詳解】解:設門的寬為x尺,則門的高為(x+6)尺,依題意得:即或.故答案為:或.【考點】本題考查了由實際問題抽象出一元二次方程以及勾股定理的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.4、【分析】根據(jù)二次函數(shù)的性質,對稱軸為,進而可得同號,根據(jù)列表法即可求得二次函數(shù)的對稱軸在軸左側的概率【詳解】解:二次函數(shù)的對稱軸在軸左側對稱軸為,即同號,列表如下共有12種等可能結果,其中同號的結果有4種則二次函數(shù)的對稱軸在軸左側的概率為故答案為:【點睛】本題考查了二次函數(shù)圖象的性質,列表法求概率,掌握二次函數(shù)的圖象與系數(shù)的關系以及列表法求概率是解題的關鍵.5、下【解析】【分析】根據(jù)二次函數(shù)二次項系數(shù)的大小判斷即可;【詳解】∵,∴拋物線開口向下;故答案是下.【考點】本題主要考查了判斷拋物線的開口方向,準確分析判斷是解題的關鍵.四、簡答題1、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數(shù)圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個反比例函數(shù)的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點】此題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)的圖象與性質,根據(jù)系數(shù)k的幾何意義得出(m?5)=4是解題的關鍵.2、(1)y=﹣;(2)點R的縱坐標為12,﹣12,或﹣;(3)①tan∠DCG的值是,②點C坐標為(﹣1,3).【解析】【分析】(1)將點A(2,6)和B(4,4)代入拋物線解析式,得方程組,解得a和b,再代回原解析式即可;(2)設點R的縱坐標為n,則QN=|n|,分兩種情況,根據(jù)相似關系列比例式即可解得;(3)①由三角形的中位線,及證Rt△CDG≌Rt△FEH(HL)可解;②先根據(jù)點C在拋物線上,設其橫坐標為m,然后用其分別表示出相關點的坐標,并表示出直線CE,再根據(jù)△CFN∽△EHN,及相似三角形對應邊上的高之比也等于相似比,從而建立關于m的方程,解之,然后代回點C即可.【詳解】(1)將點A(2,6)和B(4,4)代入y=ax2+bx+得:,解得∴二次函數(shù)的表達式為y=.(2)∵A(2,6),AK⊥x軸,∴K(2,0),△AOK中,OK=2,AK=6,OA=,△OQR中,OQ=4,設點R的縱坐標為n,則QN=|n|,如果△AOK與以O,Q,R為頂點的三角形相似,有兩種情況:①,則n=±12;②,則,從而n=±.答:點R的縱坐標為,12,﹣12,或﹣.(3)①∵CG=GM,F(xiàn)H=HM,∴GH∥CF,GH=CF,∵等腰△CFM,∴CG=FH,∵CDEF為正方形,∴CD=EF,∠CDG=∠FEH=90°,∴Rt△CDG≌Rt△FEH(HL),∴DG=EH,∵GH=CF,∴DG=EH=CF=CD,∴tan∠DCG==,答:tan∠DCG的值是.②∵C是第二象限拋物線y=上的點,∴設點C坐標為(m,),則DC=4﹣m,∴F(m,﹣4+m),即F(m,),∴E(4,),∵CDEF為正方形,∴∠DEC=45°,故可設CE解析式為:y=﹣x+b,將點E坐標代入得b=.∴CE解析式為:y=﹣x﹣,∵點N的縱坐標是﹣1,∴﹣1=﹣x﹣,x=﹣,∴點N坐標為(﹣,﹣1),∵CDEF為正方形,∴CF∥EH,∴△CFN∽△EHN,∵tan∠DCG==,DG=EH,CD=CF,∴,則EH邊上的高與CF邊上的高的比值也為,∴,化簡得:﹣2m2+11m+13=0,解得m=(舍)或m=﹣1,∴點C坐標為(﹣1,3).答:點C坐標為(﹣1,3).【考點】本題是二次函數(shù)的綜合題,涉及到待定系數(shù)法求解析式,相似三角形,一次函數(shù),三角函數(shù),解方程等多項知識點與能力,難度較大.五、解答題1、(1)見解析(2)152cm2.【分析】(1)左視圖3列,每列小正方形數(shù)目分別為3,2,1;俯視圖有3列,每行小正方形數(shù)目分別為3,2,1,;(2)先數(shù)出各個面小正方形的個數(shù),再乘每個小正方形的面積可計算出表面積.(1)如圖所示:(2)(2×2)×(6×6+2)=4×38=152(cm2).故這個幾何體的表面積是152cm2.【點睛】本題考查作圖-三視圖.在畫圖時一定要將物體的邊緣、棱、頂點都體現(xiàn)出來,看得見的輪廓線都畫成實線,看不見的畫成虛線,不能漏掉.本題畫幾何體的三視圖時應注意小正方形的數(shù)目及位置.2、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<?!窘馕觥俊痉治觥浚?)令-x2-2x+3=x+d求解即可;(2)設拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),則根據(jù)方程有兩個相等的實根求出P的坐標,然后求解即可;(3)(4)根據(jù)(2)求出的P點坐標進行數(shù)形結合畫圖找出d的取值范圍即可.【詳解】解:(1)當直線l經(jīng)過點A(-3,0)時,d=;(2)設拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),直線l:y=x+d與拋物線c:y=x2+2x-3(-3<x<1)相切于點P,則點P的橫坐標恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的兩個相等實數(shù)根,解△=9+8(2d+6)=0得d=,∴點P的坐標為().①當直線l經(jīng)過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;②當直線l經(jīng)過點P()時,直線l與這個新圖象有且只有三個公共點,解得d=;

∴綜合①、②得:d=或d=(3)①由平移直線l可得:直線l從經(jīng)過點A(-3,0)開始向下平移到直線l經(jīng)過點P()的過程中,直線l與這個新圖象有且只有兩個公共點,可得<d<②直線l從經(jīng)過點P()繼續(xù)向下平移的過程中,直線l與這個新圖象有且只有兩個公共點,可得d<;∴綜合①、②得:<d<或d<;(4)如圖:當直線l經(jīng)過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;當直線l繼續(xù)向下平移的過程中經(jīng)過點P(),直線l與這個新圖象有且只有三個公共點,可得d=;∴要使直線l與這個新圖象有四個公共點則d的取值范圍是<d<.【考點】本題考查的是二次函數(shù)綜合運用,關鍵是通過數(shù)形變換,確定變換后圖形與直線的位置關系.3、(1)見解析(2)10【分析】(1)作BC的垂直平分線,與直線CD的交點即為圓心;(2)連接OA,根據(jù)勾股定理列出方程即可求解.(1)解:如圖所示,點O即是圓心;(2)解:連接OA,∵,并經(jīng)過圓心O,,∴,∵,∴解得,,答:半徑為10.【點睛】本題考查了垂徑定理和確定圓心,解題關鍵是熟練作圖確定圓心,利用垂徑定理和勾股定理求半徑.4、(1)①BC⊥CF;證明見詳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論