版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
海南省五指山市中考數(shù)學(xué)試題預(yù)測試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、下列四個(gè)圖案中,是中心對(duì)稱圖形但不是軸對(duì)稱圖形的是()A. B. C. D.2、下列圖形中,可以看作是中心對(duì)稱圖形的是()A. B.C. D.3、一元二次方程,用配方法解該方程,配方后的方程為()A. B.C. D.4、如圖,與相切于點(diǎn),連接交于點(diǎn),點(diǎn)為優(yōu)弧上一點(diǎn),連接,,若,的半徑,則的長為()A.4 B. C. D.15、一元二次方程配方后可化為(
)A. B.C. D.二、多選題(5小題,每小題3分,共計(jì)15分)1、如圖,AB為的直徑,,BC交于點(diǎn)D,AC交于點(diǎn)E,.下列結(jié)論正確的是(
)A. B.C. D.劣弧是劣弧的2倍2、以圖①(以點(diǎn)O為圓心,半徑為1的半圓)作為“基本圖形”,分別經(jīng)歷如下變換能得到圖②的有(
)A.只要向右平移1個(gè)單位 B.先以直線為對(duì)稱軸進(jìn)行翻折,再向右平移1個(gè)單位C.先繞著點(diǎn)O旋轉(zhuǎn),再向右平移1個(gè)單位 D.繞著的中點(diǎn)旋轉(zhuǎn)即可3、下列圖形中,是中心對(duì)稱圖形的是(
)A. B.C. D.4、下列命題正確的是(
)A.垂直于弦的直徑平分弦所對(duì)的兩條弧 B.弦的垂直平分線經(jīng)過圓心C.平分弦的直徑垂直于弦 D.平分弦所對(duì)的兩條弧的直線垂直于弦5、古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中記載了用尺規(guī)作某種六邊形的方法,其步驟是:①在⊙O上任取一點(diǎn)A,連接AO并延長交⊙O于點(diǎn)B;②以點(diǎn)B為圓心,BO為半徑作圓弧分別交⊙O于C,D兩點(diǎn);③連接CO,DO并延長分別交⊙O于點(diǎn)E,F(xiàn);④順次連接BC,CF,F(xiàn)A,AE,ED,DB,得到六邊形AFCBDE.連接AD,EF,交于點(diǎn)G,則下列結(jié)論正確的是.A.△AOE的內(nèi)心與外心都是點(diǎn)G B.∠FGA=∠FOAC.點(diǎn)G是線段EF的三等分點(diǎn) D.EF=AF第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、如圖,在Rt△ABC中,∠ACB=90°,,點(diǎn)D為AB的中點(diǎn),點(diǎn)P在AC上,且CP=1,將CP繞點(diǎn)C在平面內(nèi)旋轉(zhuǎn),點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)Q,連接AQ,DQ.當(dāng)∠ADQ=90°時(shí),AQ的長為______.2、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.3、若關(guān)于x的一元二次方程的根的判別式的值為4,則m的值為_____.4、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點(diǎn)與圓心重疊,則弦的長度為________.5、如圖,AB為⊙O的弦,∠AOB=90°,AB=a,則OA=______,O點(diǎn)到AB的距離=______.四、簡答題(2小題,每小題10分,共計(jì)20分)1、如圖,在的正三角形的網(wǎng)格中,的三個(gè)頂點(diǎn)都在格點(diǎn)上.請按要求畫圖和計(jì)算:①僅用無刻度直尺;②保留作圖痕跡.(1)在圖1中,畫出的邊上的中線.(2)在圖2中,求的值.2、如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過點(diǎn)D,交BC于點(diǎn)E(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結(jié)果保留).五、解答題(4小題,每小題10分,共計(jì)40分)1、如圖,正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,求正方形ABCD的邊長和邊心距.2、如圖,在中,,,D是邊BC上一點(diǎn),作射線AD,滿足,在射線AD取一點(diǎn)E,且.將線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到線段AF,連接BE,F(xiàn)E,連接FC并延長交BE于點(diǎn)G.(1)依題意補(bǔ)全圖形;(2)求的度數(shù);(3)連接GA,用等式表示線段GA,GB,GC之間的數(shù)量關(guān)系,并證明.3、已知關(guān)于的方程有實(shí)根.(1)求的取值范圍;(2)設(shè)方程的兩個(gè)根分別是,,且,試求的值.4、判斷2、5、-4是不是一元二次方程的根-參考答案-一、單選題1、D【分析】根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、不是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;C、是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;D、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)符合題意;故選:D.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.2、C【分析】根據(jù)中心對(duì)稱圖形的定義進(jìn)行逐一判斷即可.【詳解】解:A、不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;B、不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;C、是中心對(duì)稱圖形,故此選項(xiàng)符合題意;D、不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;故選C.【點(diǎn)睛】本題主要考查了中心對(duì)稱圖形的識(shí)別,解題的關(guān)鍵在于能夠熟練掌握中心對(duì)稱圖形的定義:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心.3、D【解析】【分析】按照配方法的步驟,移項(xiàng),配方,配一次項(xiàng)系數(shù)一半的平方.【詳解】∵x2?2x?m=0,∴x2?2x=m,∴x2?2x+1=m+1,∴(x?1)2=m+1.故選D.【考點(diǎn)】此題考查了配方法解一元二次方程,解題時(shí)要注意解題步驟的準(zhǔn)確使用.4、B【分析】連接OB,根據(jù)切線性質(zhì)得∠ABO=90°,再根據(jù)圓周角定理求得∠AOB=60°,進(jìn)而求得∠A=30°,然后根據(jù)含30°角的直角三角形的性質(zhì)解答即可.【詳解】解:連接OB,∵AB與相切于點(diǎn)B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故選:B.【點(diǎn)睛】本題考查切線的性質(zhì)、圓周角定理、直角三角形的銳角互余、含30°角的直角三角形性質(zhì)、勾股定理,熟練掌握相關(guān)知識(shí)的聯(lián)系與運(yùn)用是解答的關(guān)鍵.5、B【解析】【分析】根據(jù)題意直接對(duì)一元二次方程配方,然后把常數(shù)項(xiàng)移到等號(hào)右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點(diǎn)】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項(xiàng)移到等號(hào)的右邊;把二次項(xiàng)的系數(shù)化為1;等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.選擇用配方法解一元二次方程時(shí),最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).二、多選題1、ABD【解析】【分析】根據(jù)圓周角定理,等邊對(duì)等角,等腰三角形的性質(zhì),直徑所對(duì)圓周角是直角等知識(shí)即可解答【詳解】如圖,連接,,∵是的直徑,∴,又∵中,,∴點(diǎn)D是的中點(diǎn),即,故選項(xiàng)正確;由選項(xiàng)可知是的平分線,∴,由圓周角定理知,,故選項(xiàng)正確;∵是的直徑,∴,∵,∴,∴,∵,∴,∴,即,∴,故選項(xiàng)錯(cuò)誤;∵,∴,∴,在中,∵,∴,∴,∴,∴劣弧是劣弧的2倍,故選項(xiàng)正確.綜上所述,正確的結(jié)論是:.故選:【考點(diǎn)】本題考查了圓周角定理,等邊對(duì)等角,等腰直角三角形的判定和性質(zhì),直徑所對(duì)圓周角是直角等知識(shí),解題關(guān)鍵是求出相應(yīng)角的度數(shù)2、BCD【解析】【分析】觀察兩個(gè)半圓的位置關(guān)系,再確定能否通過圖象變換得到,以及旋轉(zhuǎn)、平移的方法.【詳解】解:由圖可知,圖(1)先以直線AB為對(duì)稱軸進(jìn)行翻折,再向右平移1個(gè)單位,或先繞著點(diǎn)O旋轉(zhuǎn)180°,再向右平移1個(gè)單位,或繞著OB的中點(diǎn)旋轉(zhuǎn)180°即可得到圖(2)故選BCD【考點(diǎn)】本題考查了旋轉(zhuǎn)、軸對(duì)稱、平移的性質(zhì).關(guān)鍵是根據(jù)變換圖形的位置關(guān)系,確定變換規(guī)律.3、BD【解析】【分析】根據(jù)中心對(duì)稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對(duì)稱圖形,進(jìn)而判斷得出答案.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對(duì)稱圖形,故此選項(xiàng)符合題意;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對(duì)稱圖形,故此選項(xiàng)符合題意.故選:BD.【考點(diǎn)】本題考查的是中心對(duì)稱圖形的概念,把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形.4、ABD【解析】【分析】根據(jù)垂徑定理及其推論進(jìn)行判斷即可.【詳解】A、垂直于弦的直徑平分弦所對(duì)的兩條弧,正確;B、弦的垂直平分線經(jīng)過圓心,正確;C、平分弦(不是直徑)的直徑垂直于弦,故錯(cuò)誤;D、平分弦所對(duì)的兩條弧的直線垂直于弦,正確;故選ABD.【考點(diǎn)】本題考查了垂徑定理:熟練掌握垂徑定理及其推論是解決問題的關(guān)鍵.5、ABC【解析】【分析】證明△AOE是等邊三角形,EF⊥OA,AD⊥OE,可判斷A;.證明∠AGF=∠AOF=60°,可判斷B;證明FG=2GE,可判斷C;證明EF=AF,可判斷D.【詳解】解:如圖,在正六邊形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等邊三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四邊形AEOF,四邊形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的內(nèi)心與外心都是點(diǎn)G,故A正確,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正確,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴點(diǎn)G是線段EF的三等分點(diǎn),故C正確,∵AF=AE,∠FAE=120°,∴EF=AF,故D錯(cuò)誤,故答案為:ABC.【考點(diǎn)】本題考查作圖-復(fù)雜作圖,等邊三角形的判定和性質(zhì),菱形的判定和性質(zhì),三角形的內(nèi)心,外心等知識(shí),解題的關(guān)鍵是證明四邊形AEOF,四邊形AODE都是菱形.三、填空題1、或##或【解析】【分析】連接,根據(jù)題意可得,當(dāng)∠ADQ=90°時(shí),分點(diǎn)在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當(dāng)∠ADQ=90°時(shí),點(diǎn)在上,且,,如圖,在中,,在中,故答案為:或.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點(diǎn)的位置是解題的關(guān)鍵.2、2【分析】連接OC,利用半徑相等以及三角形的外角性質(zhì)求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質(zhì)即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點(diǎn)睛】本題考查了垂徑定理和含30°角的直角三角形的性質(zhì).熟練掌握垂徑定理是解題的關(guān)鍵.3、【解析】【分析】利用根的判別式,建立關(guān)于m的方程求得m的值.【詳解】關(guān)于x的一元二次方程的根的判別式的值為4,∵,,,,解得.故答案為:.【考點(diǎn)】本題考查了一元二次方程(a≠0)的根的判別式.4、【解析】【分析】連接OC交AB于點(diǎn)D,再連接OA.根據(jù)軸對(duì)稱的性質(zhì)確定,OD=CD;再根據(jù)垂徑定理確定AD=BD;再根據(jù)勾股定理求出AD的長度,進(jìn)而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點(diǎn)D,再連接OA.∵折疊后弧的中點(diǎn)與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【考點(diǎn)】本題考查軸對(duì)稱的性質(zhì),垂徑定理,勾股定理,綜合應(yīng)用這些知識(shí)點(diǎn)是解題關(guān)鍵.5、【分析】過O作OC垂直于弦AB,利用垂徑定理得到C為AB的中點(diǎn),然后由OA=OB,且∠AOB為直角,得到三角形OAB為等腰直角三角形,由斜邊AB的長,利用勾股定理求出直角邊OA的長即可;再由C為AB的中點(diǎn),由AB的長求出AC的長,在直角三角形OAC中,由OA及AC的長,利用勾股定理即可求出OC的長,即為O點(diǎn)到AB的距離.【詳解】解:過O作OC⊥AB,則有C為AB的中點(diǎn),∵OA=OB,∠AOB=90°,AB=a,∴根據(jù)勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根據(jù)勾股定理得:OC==.故答案為:;【點(diǎn)睛】此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及勾股定理,在圓中遇到弦,常常過圓心作弦的垂線,根據(jù)近垂徑定理由垂直得中點(diǎn),進(jìn)而由弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.四、簡答題1、(1)答案見解析;(2).【解析】【分析】(1)利用平行四邊形的性質(zhì)分別作出AB、AC的中點(diǎn)E、F,再利用三角形重心的性質(zhì)即可作出△ABC的BC邊上的中線AD;(2)利用平行線的性質(zhì)可得∠AEC=∠FDC,再利用菱形及等邊三角形的性質(zhì)可求得DH、CH的長,繼而求得CD的長,從而求得答案.【詳解】(1)如圖,線段AD就是所求作的中線;(2)如圖:在的正三角形的網(wǎng)格中,∵M(jìn)N∥AB∥FD,∴∠AEC=∠FDC,∵四邊形CMGN為菱形,且邊長為5,∴CG⊥MN,∴CG⊥FD,,∴CG=2OG=5,∵△GFD為等邊三角形,且邊長為2,同理:HG=,∴在Rt△CDH中,∠CHD=90,DH=1,CH=CG-HG=4,∴,即,∴,∴.【考點(diǎn)】本題考查了作圖-應(yīng)用與設(shè)計(jì)作圖,菱形的性質(zhì)、等邊三角形的性質(zhì),平行線的性質(zhì),勾股定理的應(yīng)用.首先要理解題意,弄清問題中對(duì)所作圖形的要求,結(jié)合對(duì)應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.2、(1)見解析;(2)【解析】【分析】(1)欲證明AC是⊙O的切線,只要證明OD⊥AC即可.(2)證明△OBE是等邊三角形即可解決問題.【詳解】(1)證明:連接OD,如圖,∵BD為∠ABC平分線,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切線.(2)過O作OG⊥BC,連接OE,則四邊形ODCG為矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,則△OBE是等邊三角形,∴陰影部分面積為﹣×2×=.【考點(diǎn)】本題考查切線的判定和性質(zhì),等邊三角形的判定和性質(zhì),思想的面積公式等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.五、解答題1、邊長為,邊心距為【分析】過點(diǎn)O作OE⊥BC,垂足為E,利用圓內(nèi)接四邊形的性質(zhì)求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根據(jù)勾股定理求出OE、BE即可.【詳解】解:過點(diǎn)O作OE⊥BC,垂足為E,∵正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6,∴BE=OE.在Rt△OBE中,∠BEO=90°,由勾股定理可得∵OE2+BE2=OB2,∴OE2+BE2=36,∴OE=BE=,∴BC=2BE=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鉗工考試題庫寶典及答案
- 人教版地理八年級(jí)上學(xué)期期末綜合測試(含答案)
- 輔警法治培訓(xùn)
- 蛋種鴨養(yǎng)殖技術(shù)培訓(xùn)課件
- 2026年深圳中考語文考前3天預(yù)測試卷(附答案可下載)
- 2026年深圳中考物理高頻考點(diǎn)精練試卷(附答案可下載)
- 光伏光熱一體化項(xiàng)目合作協(xié)議
- 2026年廣州中考政治讓友誼之樹常青試卷(附答案可下載)
- 校長赴深圳考察學(xué)習(xí)有感
- 人工智能在工業(yè)制造中的技術(shù)要領(lǐng)
- 萬科施工管理辦法
- 2025至2030中國養(yǎng)老健康行業(yè)深度發(fā)展研究與企業(yè)投資戰(zhàn)略規(guī)劃報(bào)告
- Roland羅蘭樂器AerophoneAE-20電吹管ChineseAerophoneAE-20OwnersManual用戶手冊
- 2025年保安員資格考試題目及答案(共100題)
- 黨群工作部室部管理制度
- 2025至2030年中國兔子養(yǎng)殖行業(yè)市場現(xiàn)狀調(diào)查及投資方向研究報(bào)告
- 委外施工安全試題及答案
- DBT29-320-2025 天津市建筑工程消能減震隔震技術(shù)規(guī)程
- 產(chǎn)品技術(shù)維護(hù)與保養(yǎng)手冊
- 2024年國家電網(wǎng)招聘之電工類考試題庫(突破訓(xùn)練)
- 中建公司建筑機(jī)電設(shè)備安裝工程標(biāo)準(zhǔn)化施工手冊
評(píng)論
0/150
提交評(píng)論