版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
人教版8年級數(shù)學上冊《全等三角形》專項測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在和中,,,,則(
)A.30° B.40° C.50° D.60°2、在正方形網(wǎng)格中,∠AOB的位置如圖所示,到∠AOB兩邊距離相等的點應是(
)A.點M B.點N C.點P D.點Q3、如圖①,已知,用尺規(guī)作它的角平分線.如圖②,步驟如下:第一步:以B為圓心,以a為半徑畫弧,分別交射線,于點D,E;第二步:分別以D,E為圓心,以b為半徑畫弧,兩弧在內(nèi)部交于點P;第三步;畫射線,射線即為所求.下列敘述不正確的是(
)A. B.作圖的原理是構(gòu)造三角形全等C.由第二步可知, D.的長4、如圖,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,點B,F(xiàn),C,D在同一條直線上,再增加一個條件,不能判定△ABC≌△EDF的是(
)A.AB=ED B.AC=EFC.AC∥EF D.BF=DC5、如圖,已知在四邊形中,,平分,,,,則四邊形的面積是(
)A.24 B.30 C.36 D.42第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在與中,,,,若,則的度數(shù)為________.2、如圖,已知AC與BF相交于點E,ABCF,點E為BF中點,若CF=8,AD=5,則BD=_____.3、如圖,在△ABC中,AD⊥BC于點D,過A作AEBC,且AE=AB,AB上有一點F,連接EF.若EF=AC,CD=4BD,則=_____.4、如圖,在△ABC中,點D是AC的中點,分別以AB,BC為直角邊向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=NBC=∠90°,連接MN,已知MN=4,則BD=_________.5、要測量河兩岸相對的兩點A,B間的距離(AB垂直于河岸BF),先在BF上取兩點C,D,使CD=CB,再作出BF的垂線DE,且使A,C,E三點在同一條直線上,如圖,可以得△EDC≌△ABC,所以ED=AB.因此測得ED的長就是AB的長.判定△EDC≌△ABC的理由是____________.三、解答題(5小題,每小題10分,共計50分)1、如圖,和都是等邊三角形,連接與,延長交于點H.(1)證明:;(2)求的度數(shù);(3)連接,求證:平分.2、如圖,已知射線AB與直線CD交于點O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度數(shù);(2)試說明OD平分∠AOG.3、如圖,在四邊形中,,,分別是,上的點,連接,,.(1)如圖①,,,.求證:;
(2)如圖②,,當周長最小時,求的度數(shù);(3)如圖③,若四邊形為正方形,點、分別在邊、上,且,若,,請求出線段的長度.4、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.5、中,,,過點作,連接,,為平面內(nèi)一動點.(1)如圖1,點在上,連接,,過點作于點,為中點,連接并延長,交于點.①若,,則;②求證:.(2)如圖2,連接,,過點作于點,且滿足,連接,,過點作于點,若,,,請求出線段的取值范圍.-參考答案-一、單選題1、D【解析】【分析】由題意可證,有,由三角形內(nèi)角和定理得,計算求解即可.【詳解】解:∵∴△ABC和△ADC均為直角三角形在和中∵∴∴∵∴故選D.【考點】本題考查了三角形全等,三角形的內(nèi)角和定理.解題的關鍵在于找出角度的數(shù)量關系.2、A【解析】【分析】利用到角的兩邊的距離相等的點在角的平分線上進行判斷.【詳解】點P、Q、M、N中在∠AOB的平分線上的是M點.故選:A.【考點】本題主要考查了角平分線的性質(zhì),根據(jù)正方形網(wǎng)格看出∠AOB平分線上的點是解答問題的關鍵.3、D【解析】【分析】根據(jù)用尺規(guī)作圖法畫已知角的角平分線的基本步驟判斷即可【詳解】解:A、∵以a為半徑畫弧,∴,故正確B、根據(jù)作圖步驟可知BD=BE,PD=PE,BP=BP,∴△BDP≌△BEP(SSS),故正確C、∵分別以D,E為圓心,以b為半徑畫弧,兩弧在內(nèi)部交于點P,∴,故正確D、分別以D,E為圓心,以b為半徑畫弧,其中,否則兩個圓弧沒有交點,故錯誤故選:D【考點】本題考查用尺規(guī)作圖法畫已知角的角平分線及理論依據(jù),熟練尺規(guī)作圖的基本步驟是關鍵4、C【解析】【分析】根據(jù)全等三角形的判定方法即可判斷.【詳解】A.AB=ED,可用ASA判定△ABC≌△EDF;
B.AC=EF,可用AAS判定△ABC≌△EDF;
C.AC∥EF,不能用AAA判定△ABC≌△EDF,故錯誤;
D.BF=DC,可用AAS判定△ABC≌△EDF;
故選C.【考點】此題主要考查全等三角形的判定,解題的關鍵是熟知全等三角形的判定方法.5、B【解析】【分析】過D作DE⊥AB交BA的延長線于E,根據(jù)角平分線的性質(zhì)得到DE=CD=4,根據(jù)三角形的面積公式即可得到結(jié)論.【詳解】如圖,過D作DE⊥AB交BA的延長線于E,∵BD平分∠ABC,∠BCD=90°,∴DE=CD=4,∴四邊形的面積故選B.【考點】本題考查了角平分線的性質(zhì),三角形的面積的計算,正確的作出輔助線是解題的關鍵.二、填空題1、40°【解析】【分析】先利用HL定理證明Rt△ABC≌Rt△DEF,得出∠D的度數(shù),再根據(jù)直角三角形兩銳角互余即可得出的度數(shù).【詳解】解:在Rt△ABC與Rt△DEF中,∵∠B=∠E=90°,AC=DF,AB=DE,∴Rt△ABC≌Rt△DEF(HL)∴∠D=∠A=50°,∴∠DFE=90°-∠D=90°-50°=40°.故答案為:40°.【考點】此題主要考查直角三角形全等的HL定理.理解斜邊和一組直角邊對應相等的兩個直角三角形全等是解題關鍵.2、3【解析】【分析】利用全等三角形的判定定理和性質(zhì)定理可得結(jié)果.【詳解】解:∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵點E為BF中點,∴BE=FE,在△ABE與△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=8,∵AD=5,∴BD=3,故答案為:3.【考點】本題主要考查了全等三角形的判定定理和性質(zhì)定理,熟練掌握定理是解答此題的關鍵.3、【解析】【分析】在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問題的答案.【詳解】解:如圖,在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,∵AD⊥BC于點D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點】此題考查平行線的性質(zhì)、全等三角形的判定與性質(zhì)、有關面積比問題的求解等知識與方法,正確地作出所需要的輔助線是解題的關鍵.4、2【解析】【分析】延長BD到E,使DE=BD,連接AE,證明△ADE≌△CDB(SAS),可得AE=CB,∠EAD=∠BCD,再根據(jù)△ABM和△BCN是等腰直角三角形,證明△MBN≌△BAE,可得MN=BE,進而可得BD與MN的數(shù)量關系即可求解.【詳解】解:如圖,延長BD到E,使DE=BD,連接AE,∵點D是AC的中點,∴AD=CD,在△ADE和△CDB中,,∴△ADE≌△CDB(SAS),∴AE=CB,∠EAD=∠BCD,∵△ABM和△BCN是等腰直角三角形,∴AB=BM,CB=NB,∠ABM=∠CBN=90°,∴BN=AE,又∠MBN+∠ABC=360°-90°-90°=180°,∵∠BCA+∠BAC+∠ABC=180°,∴∠MBN=∠BCA+∠BAC=∠EAD+∠BAC=∠BAE,在△MBN和△BAE中,,∴△MBN≌△BAE(SAS),∴MN=BE,∵BE=2BD,∴MN=2BD.又MN=4,∴BD=2,故答案為:2.【考點】本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形,解決本題的關鍵是掌握全等三角形的判定與性質(zhì).5、ASA【解析】【分析】由已知可以得到∠ABC=∠BDE=90°,又CD=BC,∠ACB=∠DCE,由此根據(jù)角邊角即可判定△EDC≌△ABC.【詳解】∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故答案為ASA【考點】本題考查了全等三角形的判定方法;需注意根據(jù)垂直定義得到的條件,以及隱含的對頂角相等,觀察圖形,找到隱含條件并熟練掌握全等三角形的判定定理是解題關鍵.三、解答題1、(1)見解析(2)60°(3)見解析【解析】【分析】(1)由△ABD和△BCE都是等邊三角形得BA=BD,BE=BC,∠ABD=∠EBC=60°,所以∠ABE=∠DBC=60°?∠DBE,即可根據(jù)全等三角形的判定定理“SAS”證明△ABE≌△DBC,得AE=DC;(2)由△ABE≌△DBC得∠BAE=∠BDC,因為∠BAD=∠BDA=60°,所以∠HAD+∠HDA==120°,所以∠AHD=60°;(3)作BF⊥HA于點F,BG⊥HC交HC的延長線于點G,則∠AFB=∠BFH=∠G=90°,即可證明△BAF≌△BDG,則BF=BG,根據(jù)“到角的兩邊距離相等的點在角的平分線上”即可證明HB平分∠AHC.(1)證明:如圖1,∵△ABD和△BCE都是等邊三角形,∴BA=BD,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=60°?∠DBE,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC.(2)解:如圖1,由(1)得△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BAD=∠BDA=60°,∴∠HAD+∠HAD=∠HAD+∠BDC+∠BDA=∠HAD+∠BAE+∠BDA=∠BAD+∠BDA=120°,∴∠AHD=180°?(∠HAD+∠HDA)=60°.(3)證明:如圖2,作BF⊥HA于點F,BG⊥HC交HC的延長線于點G,則∠AFB=∠BFH=∠G=90°,由△ABE≌△DBC得∠BAF=∠BDG,在△BAF和△BDG中,,∴△BAF≌△BDG(AAS),∴BF=BG,∴點B在∠AHC的平分線上,∴HB平分∠AHC.【考點】此題考查等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、到角的兩邊距離相等的點在角的平分線上等知識,證明三角形全等是解題的關鍵.2、(1)150°;(2)證明見解析.【解析】【分析】(1)根據(jù)兩直線平行,同位角相等可得,再根據(jù)角平分線的定義求出,然后根據(jù)平角等于列式進行計算即可得解;(2)先求出,再根據(jù)對頂角相等求出,然后根據(jù)角平分線的定義即可得解.【詳解】解:(1),,平分,,;(2),,,,,平分.【考點】本題考查了平行線的性質(zhì),對頂角相等的性質(zhì),垂線的定義,(2)根據(jù)度數(shù)相等得到相等的角是關鍵.3、(1)見解析;(2);(3).【解析】【分析】(1)延長到點G,使,連接,首先證明,則有,,然后利用角度之間的關系得出,進而可證明,則,則結(jié)論可證;(2)分別作點A關于和的對稱點,,連接,交于點,交于點,根據(jù)軸對稱的性質(zhì)有,,當點、、、在同一條直線上時,即為周長的最小值,然后利用求解即可;(3)旋轉(zhuǎn)至的位置,首先證明,則有,最后利用求解即可.【詳解】(1)證明:如解圖①,延長到點,使,連接,在和中,.,,,,.,在和中,.,;(2)解:如解圖,分別作點A關于和的對稱點,,連接,交于點,交于點.由對稱的性質(zhì)可得,,此時的周長為.當點、、、在同一條直線上時,即為周長的最小值.,.,,;(3)解:如解圖,旋轉(zhuǎn)至的位置,,,.在和中,...【考點】本題主要考查全等三角形的判定及性質(zhì),軸對稱的性質(zhì),掌握全等三角形的判定及性質(zhì)是解題的關鍵.4、見解析【解析】【分析】先在線段BC上截取BE=BA,連接DE,根據(jù)BD平分∠ABC,可得∠ABD=∠EBD,根據(jù),可判定△ABD≌△EBD,根據(jù)全等三角形的性質(zhì)可得:AD=ED,∠A=∠BED.再根據(jù)AD=CD,等量代換可得ED=CD,根據(jù)等邊對等角可得:∠DEC=∠C.由∠BED+∠DEC=180°,可得∠A+∠C=180°.【詳解】證明:在線段BC上截取BE=BA,連接DE,如圖所示,∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.【考點】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 長春醫(yī)學高等??茖W校單招職業(yè)技能測試題庫及答案解析
- 陜西2025年二級造價工程師《土建實務》真題答案及解析
- 流水施工的組織方法
- 非營利組織稅收政策與稅收籌劃試題及答案
- 消防驗收培訓課件
- 風險分級管控培訓考試試卷(附答案)
- 食品協(xié)管考試試題及答案解析
- 食品營養(yǎng)學試題及答案
- 餐飲前廳服務流程2025年培訓試卷及答案解析
- 香氣評定考試題和答案解析
- 雨課堂學堂在線學堂云海權(quán)與制海權(quán)海軍指揮學院單元測試考核答案
- 高速公路廣告運營方案
- 基礎電工培訓課件
- 具身智能+老年人日常行為識別與輔助系統(tǒng)方案可行性報告
- 冬蟲夏草發(fā)酵生產(chǎn)工藝流程設計
- 股權(quán)轉(zhuǎn)讓法律意見書撰寫范本模板
- 修建羊舍合同(標準版)
- 精神科常見藥物不良反應及處理
- 執(zhí)行信息屏蔽申請書
- SA8000-2026社會責任管理體系新版的主要變化及標準內(nèi)容培訓教材
- 2025年版評審準則考核試題(附答案)
評論
0/150
提交評論