版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》必考點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點(diǎn),則△AEF的面積為()A.2 B.3 C.4 D.52、如圖,四邊形ABCD是平行四邊形,下列結(jié)論中錯(cuò)誤的是()A.當(dāng)?ABCD是矩形時(shí),∠ABC=90° B.當(dāng)?ABCD是菱形時(shí),AC⊥BDC.當(dāng)?ABCD是正方形時(shí),AC=BD D.當(dāng)?ABCD是菱形時(shí),AB=AC3、直角三角形中,兩直角邊長(zhǎng)分別是12和5,則斜邊上的中線長(zhǎng)是()A.2.5 B.6 C.6.5 D.134、如圖,已知在正方形ABCD中,厘米,,點(diǎn)E在邊AB上,且厘米,如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上以a厘米/秒的速度由C點(diǎn)向D點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.若存在a與t的值,使與全等時(shí),則t的值為()A.2 B.2或1.5 C.2.5 D.2.5或25、如圖,在矩形ABCD中,點(diǎn)O為對(duì)角線BD的中點(diǎn),過(guò)點(diǎn)O作線段EF交AD于F,交BC于E,OB=EB,點(diǎn)G為BD上一點(diǎn),滿足EG⊥FG,若∠DBC=30°,則∠OGE的度數(shù)為()A.30° B.36° C.37.5° D.45°6、如圖,在△ABC中,點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn).已知∠B=55°,則∠AEF的度數(shù)是()A.75° B.60° C.55° D.40°7、平行四邊形中,,則的度數(shù)是()A. B. C. D.8、如圖,在中,,,AD平分,E是AD中點(diǎn),若,則CE的長(zhǎng)為()A. B. C. D.9、如圖,陰影部分是將一個(gè)菱形剪去一個(gè)平行四邊形后剩下的,要想知道陰影部分的周長(zhǎng),需要測(cè)量一些線段的長(zhǎng),這些線段可以是()A.AF B.AB C.AB與BC D.BC與CD10、如圖,矩形OABC的邊OA長(zhǎng)為2,邊AB長(zhǎng)為1,OA在數(shù)軸上,以原點(diǎn)O為圓心,對(duì)角線OB的長(zhǎng)為半徑畫(huà)弧,交正半軸于一點(diǎn),則這個(gè)點(diǎn)表示的實(shí)數(shù)是()A.2.5 B.2 C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在矩形ABCD中,AB=2,AD=2,E為BC邊上一動(dòng)點(diǎn),F(xiàn)、G為AD邊上兩個(gè)動(dòng)點(diǎn),且∠FEG=30°,則線段FG的長(zhǎng)度最大值為_(kāi)____.2、如圖,直線l經(jīng)過(guò)正方形ABCD的頂點(diǎn)B,點(diǎn)A,C到直線l的距離分別是1,3,則正方形ABCD的面積是_____.3、在平行四邊形ABCD中,若∠A=130°,則∠B=______,∠C=______,∠D=______.4、在五邊形紙片ABCDE中,AB=2,∠A=120°,將五邊形紙片ABCDE沿BD折疊,點(diǎn)C落在點(diǎn)P處;在AE上取一點(diǎn)Q,將ABQ,EDQ分別沿BQ,DQ折疊,點(diǎn)A,E恰好落在點(diǎn)P處,如圖1.(1)∠BPQ=______°;(2)∠BCD+∠QED=_______°;(3)如圖2,當(dāng)四邊形BCDP是菱形,且Q,P,C三點(diǎn)共線時(shí),BQ=_______.5、如圖,M,N分別是矩形ABCD的邊AD,AB上的點(diǎn),將矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,連接MC,若AB=8,AD=16,BE=4,則MC的長(zhǎng)為_(kāi)_______.6、如圖,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延長(zhǎng)線上取一點(diǎn)C,使得DC=BD,在直線AD左側(cè)有一動(dòng)點(diǎn)P滿足∠PAD=∠PDB,連接PC,則線段CP長(zhǎng)的最大值為_(kāi)_______.7、如圖,平行四邊形ABCD中,AB=2,AD=1,∠ADC=60°,將平行四邊形ABCD沿過(guò)點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)處,折痕交CD邊于點(diǎn)E.若點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),則+PB的最小值_______.8、如圖,已知在矩形中,,,將沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)E處,連接,則的長(zhǎng)為_(kāi)________.9、正方形的一條對(duì)角線長(zhǎng)為4,則這個(gè)正方形面積是_________.10、如圖,△ABC中,D、E分別是AB、AC的中點(diǎn),若DE=4cm,則BC=_____cm.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,平行四邊形ABCD中,點(diǎn)E、F分別在CD、BC的延長(zhǎng)線上,.
(1)求證:D是EC中點(diǎn);(2)若,于點(diǎn)F,直接寫出圖中與CF相等的線段.2、如圖,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處;再將矩形沿折疊,使點(diǎn)落在點(diǎn)處且過(guò)點(diǎn).
(1)求證:四邊形是平行四邊形;(2)當(dāng)是多少度時(shí),四邊形為菱形?試說(shuō)明理由.3、如圖,的對(duì)角線與相交于點(diǎn)O,過(guò)點(diǎn)B作BPAC,過(guò)點(diǎn)C作CPBD,與相交于點(diǎn)P.
(1)試判斷四邊形的形狀,并說(shuō)明理由;(2)若將改為矩形,且,其他條件不變,求四邊形的面積;(3)要得到矩形,應(yīng)滿足的條件是_________(填上一個(gè)即可).4、如圖,△ABC中,點(diǎn)D是邊AC的中點(diǎn),過(guò)D作直線PQ∥BC,∠BCA的平分線交直線PQ于點(diǎn)E,點(diǎn)G是△ABC的邊BC延長(zhǎng)線上的點(diǎn),∠ACG的平分線交直線PQ于點(diǎn)F.求證:四邊形AECF是矩形.5、在Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥AB,交BC于點(diǎn)E,連接AE,取AE的中點(diǎn)P,連接DP,CP.(1)觀察猜想:如圖(1),DP與CP之間的數(shù)量關(guān)系是,DP與CP之間的位置關(guān)系是.(2)類比探究:將圖(1)中的△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)45°,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)就圖(2)的情形給出證明;若不成立,請(qǐng)說(shuō)明理由.(3)問(wèn)題解決:若BC=3BD=3,將圖(1)中的△BDE繞點(diǎn)B在平面內(nèi)自由旋轉(zhuǎn),當(dāng)BE⊥AB時(shí),請(qǐng)直接寫出線段CP的長(zhǎng).-參考答案-一、單選題1、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點(diǎn),即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點(diǎn),∴,,,∴,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問(wèn)題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).2、D【解析】【分析】由矩形的四個(gè)角是直角可判斷A,由菱形的對(duì)角線互相垂直可判斷B,由正方形的對(duì)角線相等可判斷C,由菱形的四條邊相等可判斷D,從而可得答案.【詳解】解:當(dāng)?ABCD是矩形時(shí),∠ABC=90°,正確,故A不符合題意;當(dāng)?ABCD是菱形時(shí),AC⊥BD,正確,故B不符合題意;當(dāng)?ABCD是正方形時(shí),AC=BD,正確,故C不符合題意;當(dāng)?ABCD是菱形時(shí),AB=BC,故D符合題意;故選D【點(diǎn)睛】本題考查的是矩形,菱形,正方形的性質(zhì),熟練的記憶矩形,菱形,正方形的性質(zhì)是解本題的關(guān)鍵.3、C【解析】【分析】利用勾股定理列式求出斜邊,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】解:由勾股定理得,斜邊,所以,斜邊上的中線長(zhǎng).故選:C.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,解題的關(guān)鍵是熟記性質(zhì).4、D【解析】【分析】根據(jù)題意分兩種情況討論若△BPE≌△CQP,則BP=CQ,BE=CP;若△BPE≌△CPQ,則BP=CP=5厘米,BE=CQ=6厘米進(jìn)行求解即可.【詳解】解:當(dāng),即點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度都是2厘米/秒,若△BPE≌△CQP,則BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴運(yùn)動(dòng)時(shí)間t=4÷2=2(秒);當(dāng),即點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE與△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間t=(秒).綜上t的值為2.5或2.故選:D.【點(diǎn)睛】本題主要考查正方形的性質(zhì)以及全等三角形的判定,解決問(wèn)題的關(guān)鍵是掌握正方形的四條邊都相等,四個(gè)角都是直角;兩邊及其夾角分別對(duì)應(yīng)相等的兩個(gè)三角形全等.同時(shí)要注意分類思想的運(yùn)用.5、C【解析】【分析】根據(jù)矩形和平行線的性質(zhì),得;根據(jù)等腰三角形和三角形內(nèi)角和性質(zhì),得;根據(jù)全等三角形性質(zhì),通過(guò)證明,得;根據(jù)直角三角形斜邊中線、等腰三角形、三角形內(nèi)角和性質(zhì),推導(dǎo)得,再根據(jù)余角的性質(zhì)計(jì)算,即可得到答案.【詳解】∵矩形ABCD∴∴∵OB=EB,∴∴∵點(diǎn)O為對(duì)角線BD的中點(diǎn),∴和中∴∴∵EG⊥FG,即∴∴∴故選:C.【點(diǎn)睛】本題考查了矩形、平行線、全等三角形、等腰三角形、三角形內(nèi)角和、直角三角形的知識(shí);解題的關(guān)鍵是熟練掌握矩形、全等三角形、等腰三角形、直角三角形斜邊中線的性質(zhì),從而完成求解.6、C【解析】【分析】證EF是△ABC的中位線,得EF∥BC,再由平行線的性質(zhì)即可求解.【詳解】解:∵點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn),∴EF是△ABC的中位線,∴EF∥BC,∴∠AEF=∠B=55°,故選:C.【點(diǎn)睛】本題考查了三角形中位線定理以及平行線的性質(zhì);熟練掌握三角形中位線定理,證出EF∥BC是解題的關(guān)鍵.7、B【解析】【分析】根據(jù)平行四邊形對(duì)角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是掌握平行四邊形的性質(zhì).8、B【解析】【分析】根據(jù)三角形內(nèi)角和定理求出∠BAC,根據(jù)角平分線的定義∠DAB=∠B,求出AD,根據(jù)直角三角形的性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∠B=30°,∴∠BAC=90°-30°=60°,∵AD平分∠BAC,∴∠DAB=∠BAC=30°,∴∠DAB=∠B,∴AD=BD=a,在Rt△ACB中,E是AD中點(diǎn),∴CE=AD=,故選:B.【點(diǎn)睛】本題考查的是直角三角形的性質(zhì)、角平分線的定義,掌握直角三角形斜邊上的中線是斜邊的一半是解題的關(guān)鍵.9、A【解析】【分析】如圖,延長(zhǎng),交于點(diǎn),證明,,再利用菱形的性質(zhì)證明:陰影部分的周長(zhǎng),從而可得答案.【詳解】解:如圖,延長(zhǎng),交于點(diǎn),四邊形是平行四邊形,,,四邊形是菱形,,陰影部分的周長(zhǎng),故需要測(cè)量的長(zhǎng)度,故選A.【點(diǎn)睛】本題考查的是平行四邊形的性質(zhì),菱形的性質(zhì),證明陰影部分的周長(zhǎng)是解本題的關(guān)鍵.10、D【解析】【分析】利用矩形的性質(zhì),求證明,進(jìn)而在中利用勾股定理求出的長(zhǎng)度,弧長(zhǎng)就是的長(zhǎng)度,利用數(shù)軸上的點(diǎn)表示,求出弧與數(shù)軸交點(diǎn)表示的實(shí)數(shù)即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長(zhǎng)為,故在數(shù)軸上表示的數(shù)為,故選:.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)、勾股定理解三角形以及數(shù)軸上的點(diǎn)的表示,熟練利用矩形性質(zhì),得到直角三角形,然后通過(guò)勾股定理求邊長(zhǎng),是解決該類問(wèn)題的關(guān)鍵.二、填空題1、【解析】【分析】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形,故當(dāng)E與B點(diǎn)或C點(diǎn)重合,G與D點(diǎn)重合或F與A點(diǎn)重合時(shí),F(xiàn)G的長(zhǎng)度最大,則由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,則AF=,則FG=AD-AF=.【詳解】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形故當(dāng)E與B點(diǎn)或C點(diǎn)重合,G與D點(diǎn)重合或F與A點(diǎn)重合時(shí),F(xiàn)G的長(zhǎng)度最大∵矩形ABCD中,AB=2,AD=2∴∠ABD=60°∴∠ABF=60°-30°=30°∴AF=∴FG=AD-AF=.故答案為:.【點(diǎn)睛】本題考查了四邊形中動(dòng)點(diǎn)問(wèn)題,圖解法數(shù)學(xué)思想依據(jù)是數(shù)形結(jié)合思想.它的應(yīng)用能使復(fù)雜問(wèn)題簡(jiǎn)單化、抽象問(wèn)題具體化.特殊四邊形的幾何問(wèn)題,很多困難源于問(wèn)題中的可動(dòng)點(diǎn).如何合理運(yùn)用各動(dòng)點(diǎn)之間的關(guān)系,同學(xué)們往往缺乏思路,常常導(dǎo)致思維混亂.實(shí)際上求解特殊四邊形的動(dòng)點(diǎn)問(wèn)題,關(guān)鍵是是利用圖解法抓住它運(yùn)動(dòng)中的某一瞬間,尋找合理的代數(shù)關(guān)系式,確定運(yùn)動(dòng)變化過(guò)程中的數(shù)量關(guān)系,圖形位置關(guān)系,分類畫(huà)出符合題設(shè)條件的圖形進(jìn)行討論,就能找到解決的途徑,有效避免思維混亂.2、10【解析】【分析】根據(jù)正方形的性質(zhì),結(jié)合題意易求證,,,即可利用“ASA”證明,得出.最后根據(jù)勾股定理可求出,即正方形的面積為10.【詳解】∵四邊形ABCD是正方形,∴,,∴.根據(jù)題意可知:,,∴,,∴在和中,,∴,∴.∵在中,,∴正方形ABCD的面積是10.故答案為:10.【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.3、【解析】【分析】利用平行四邊形的性質(zhì):鄰角互補(bǔ),對(duì)角相等,即可求得答案.【詳解】解:在平行四邊形ABCD中,、是的鄰角,是的對(duì)角,,,故答案為:,,.【點(diǎn)睛】本題主要是考查了平行四邊形的性質(zhì):對(duì)角相等,鄰角互補(bǔ),熟練掌握平行四邊形的性質(zhì),求解決本題的關(guān)鍵.4、120240【解析】【分析】(1)由折疊的性質(zhì)可得∠A=∠BPQ=120°;(2)由周角的性質(zhì)可得∠BPD+∠QPD+∠BPQ=360°,即可求解;(3)由菱形的性質(zhì)可得BQ=QD,QH⊥BD,BH=DH,由“SSS”可證△ABQ≌△EDQ,可得∠AQB=∠BQP=∠EQD=∠PQD=45°,由直角三角形的性質(zhì)可求解.【詳解】解:(1)∵將五邊形紙片ABCDE沿BD折疊,∴∠A=∠BPQ=120°,∠QED=∠QPD,∠BCD=∠BPD,故答案為:120;(2)∵∠BPD+∠QPD+∠BPQ=360°,∴∠BPD+∠QPD=240°,∴∠BCD+∠QED=240°,故答案為:240;(3)如圖,連接PC,交BD于H,∵四邊形BPDC是菱形,∴PC是BD的垂直平分線,BP=PD=BC=CD,∵Q,P,C三點(diǎn)共線,∴QC是BD的垂直平分線,∴BQ=QD,QH⊥BD,BH=DH,由折疊可知:∠A=∠BPQ=120°,AB=BP=2=DE=DP,∠AQB=∠BQP,∠EQD=∠PQD,AQ=QP=QE,∴∠BPH=60°,∴∠PBH=30°,∴PHBP=1,BHPH,在△ABQ和△EDQ中,,∴△ABQ≌△EDQ(SSS),∴∠AQB=∠EQD,∴∠AQB=∠BQP=∠EQD=∠PQD,∵∠AQE=180°,∴∠AQB=∠BQP=∠EQD=∠PQD=45°,∴∠QBH=∠BQP=45°,∴BH=QH,∴BQBH,故答案為:.【點(diǎn)睛】本題考查了翻折變換,菱形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形的性質(zhì)等知識(shí),掌握折疊的性質(zhì)是解題的關(guān)鍵.5、10【解析】【分析】過(guò)E作EF⊥AD于F,根據(jù)矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,得出△ANM≌△ENM,可得AM=EM,根據(jù)矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4,根據(jù)勾股定理,即,解方程m=10即可.【詳解】解:過(guò)E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據(jù)勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點(diǎn)睛】本題考查折疊軸對(duì)稱性質(zhì),矩形判定與性質(zhì),勾股定理,掌握折疊軸對(duì)稱性質(zhì),矩形判定與性質(zhì),勾股定理是解題關(guān)鍵.6、##【解析】【分析】如圖,取AD的中點(diǎn)O,連接OP、OC,然后求出OP、OC的長(zhǎng),最后根據(jù)三角形的三邊關(guān)系即可解答.【詳解】解:如圖,取AD的中點(diǎn)O,連接OP、OC∵∠PAD=∠PDB,∠PDB+∠ADP=90°,∴∠PAD+∠ADP=90°,即∠APD=90°,∵AO=OD,∴PO=OA=AD,∴∴OP=,∵BD=CD=4,OD=,∴∵PC≤OP+OC,∴PC≤,∴PC的最大值為.故填:.【點(diǎn)睛】本題主要考查了直角三角形斜邊中線的性質(zhì)、勾股定理等知識(shí)點(diǎn),解題的關(guān)鍵在于正確添加常用輔助線,進(jìn)而求得OP、OC的長(zhǎng).7、【解析】【分析】不管P點(diǎn)在l上哪個(gè)位置,PD始終等于PD',故求PD'+PB可以轉(zhuǎn)化成求PD+PB,顯然當(dāng)D、P、D'共線時(shí)PD+PB最短.【詳解】過(guò)點(diǎn)D作DM⊥AB交BA的延長(zhǎng)線于點(diǎn)M,∵四邊形ABCD是平行四邊形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折變換可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四邊形ADED′是菱形,∴點(diǎn)D與點(diǎn)D′關(guān)于直線l對(duì)稱,連接BD交直線l于點(diǎn)P,此時(shí)PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值為,故答案為:.【點(diǎn)睛】本題考查平行四邊形性質(zhì)和菱形性質(zhì),掌握這些是本題解題關(guān)鍵.8、【解析】【分析】過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設(shè)CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點(diǎn)睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關(guān)鍵.9、8【解析】【分析】正方形邊長(zhǎng)相等設(shè)為,對(duì)角線長(zhǎng)已知,利用勾股定理求解邊長(zhǎng)的平方,即為正方形的面積.【詳解】解:設(shè)邊長(zhǎng)為,對(duì)角線為故答案為:.【點(diǎn)睛】本題考察了正方形的性質(zhì)以及勾股定理.解題的關(guān)鍵在于求解正方形的邊長(zhǎng).10、8【解析】【分析】運(yùn)用三角形的中位線的知識(shí)解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點(diǎn)∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點(diǎn)睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關(guān)鍵.三、解答題1、(1)見(jiàn)祥解;(2)AB=DC=DE=DF=CF,證明見(jiàn)詳解.【分析】(1)根據(jù)四邊形ABCD是平行四邊形,得出AB∥CD即(AB∥ED),AB=CD,根據(jù),可證四邊形ABDE為平行四邊形,得出AB=DE即可;(2)根據(jù)EF⊥BF,CD=ED,根據(jù)直角三角形斜邊中線可得DF=CD=ED,再證△DCF為等邊三角形即可.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴AB∥CD即(AB∥ED),AB=CD,∵,∴四邊形ABDE為平行四邊形,∴AB=DE,∴CD=ED,∴點(diǎn)D為CE中點(diǎn);(2)結(jié)論為:AB=DC=DE=DF=CF,∵EF⊥BF,CD=ED,∴DF=CD=ED,∵AB∥CD,∠ABC=60°,∴∠DCF=∠ABC=60°,∴△DCF為等邊三角形,∴CF=CD=DF=AB=ED.【點(diǎn)睛】本題考查平行四邊形的判定與性質(zhì),線段中點(diǎn)判定,直角三角形斜邊中線性質(zhì),等邊三角形判定與性質(zhì),掌握平行四邊形的判定與性質(zhì),線段中點(diǎn)判定,直角三角形斜邊中線性質(zhì),等邊三角形判定與性質(zhì)是解題關(guān)鍵.2、(1)見(jiàn)解析;(2)當(dāng)∠B1FE=60°時(shí),四邊形EFGB為菱形,理由見(jiàn)解析【分析】(1)由題意,,結(jié)合,得,同理可得,即,結(jié)合,依據(jù)平行四邊形的判定定理即可證明四邊形BEFG是平行四邊形;(2)根據(jù)菱形的性質(zhì)可得,結(jié)合(1)中結(jié)論得出為等邊三角形,依據(jù)等邊三角形的性質(zhì)及(1)中結(jié)論即可求出角的大?。驹斀狻孔C明:(1)∵,∴.又∵,∴.∴.同理可得:.∴,又∵,∴四邊形BEFG是平行四邊形;(2)當(dāng)時(shí),四邊形EFGB為菱形.理由如下:∵四邊形BEFG是菱形,∴,由(1)得:,∴,∴為等邊三角形,∴,∴.【點(diǎn)睛】題目主要考查平行四邊形和菱形的判定定理和性質(zhì),矩形的折疊問(wèn)題,等邊三角形的性質(zhì),熟練掌握特殊四邊形的判定和性質(zhì)是解題關(guān)鍵.3、(1)平行四邊形,理由見(jiàn)解析;(2)四邊形的面積為24;(3)AB=BC或AC⊥BD等(答案不唯一)【分析】(1)利用平行四邊形的判定:兩組對(duì)邊分別平行的四邊形是平行四邊形,即可證明.(2)利用矩形的性質(zhì),得到對(duì)角線互相平分,進(jìn)而證明四邊形是菱形,分別求出菱形的對(duì)角線長(zhǎng)度,利用對(duì)角線乘積的一半,求解面積即可.(3)添加的條件只要可以證明即可得到矩形.【詳解】解:(1)四邊形BPCO是平行四邊形,
∵BP∥AC,CP∥BD,∴四邊形BPCO是平行四邊形.(2)連接OP.∵四邊形ABCD是矩形,∴OB=BD,OC=AC,AC=BD,∠ABC=90°,∴OB=OC.又四邊形BPCO是平行四邊形,∴□BPCO是菱形.
∴OP⊥BC.又∵AB⊥BC,∴OP∥AB.又∵AC∥BP,四邊形是平行四邊形,∴OP=AB=6.∴S菱形BPCO=.(3)AB=BC或AC⊥BD等(答案不唯一).當(dāng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年英語(yǔ)四六級(jí)模擬考試題目與標(biāo)準(zhǔn)答案
- 2026年汽車維修技師技能考核汽車電路與發(fā)動(dòng)機(jī)原理測(cè)試
- 公司員工制度
- 2026年電氣技術(shù)實(shí)踐測(cè)試題庫(kù)電氣工程安裝與維護(hù)
- 2026年智能制造成型技術(shù)自動(dòng)化制造題目精解
- 職業(yè)性皮膚病的職業(yè)健康防護(hù)技術(shù)
- 職業(yè)性皮膚病的激光治療應(yīng)用
- 2026年財(cái)務(wù)管理實(shí)務(wù)與操作高級(jí)考試模擬
- 職業(yè)性皮炎皮膚屏障修復(fù)
- 體育榮譽(yù)制度
- 17.2019版NOUAP壓瘡指南解讀 解讀2019 壓力性損傷和治療臨床實(shí)踐指南
- 2025至2030年中國(guó)轉(zhuǎn)染試劑行業(yè)市場(chǎng)發(fā)展規(guī)模及市場(chǎng)分析預(yù)測(cè)報(bào)告
- 2026屆新高考英語(yǔ)熱點(diǎn)復(fù)習(xí)+讀后續(xù)寫
- 華為員工持股管理制度
- 瓜子二手車直賣網(wǎng)流程表
- 房屋繼承確權(quán)協(xié)議書(shū)
- 五年級(jí)語(yǔ)文下冊(cè) 第一單元 1 古詩(shī)三首教學(xué)設(shè)計(jì) 新人教版
- 2025年湖南化工職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- 辦公樓物業(yè)安全管理
- T-CSOE 0003-2024 井下套管外永置式光纜安裝要求
- 三年級(jí)英語(yǔ)下冊(cè)閱讀理解真題
評(píng)論
0/150
提交評(píng)論