版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ADCM
Academy
Researchcentre
AIApplicationsinWeb3SupTechandRegTech:
ARegulatoryPerspective
Preparedby
ShengliangLu*,AmritpalSidhu*,BingshengHe^,BrianByagaba*,
DmitryFedotov*,AlejandroVargas#,HelenaZhang,BarryWest*
FULLPAPER
ADGM(includingFSRARA
andAcademy)NUS,#Mooncheck
Abstract
ThedigitalrealmisexperiencingatransformativeshiftdrivenbytheemergenceofWeb3technologies
andvirtualassets.Thisnewphaseofinternettechnologyleveragesdistributedledgertechnologiesand
smartcontractswhilefosteringdecentralization,increasingtransparency,andreducingdependence
onintermediaries.SuchinnovationsarepivotalinshapingDecentralizedFinance.However,therapid
adoptionofWeb3technologiespresentssignificantrisksunderscoredbyhigh-profilefailuresandsystemicvulnerabilities.
ADGMhasdevelopedaconduciveregulatoryenvironmentthroughitsFinancialServicesRegulatoryAuthority(FSRA)bycreatingatransparentandprogressiveregulatoryframeworkalignedwith
internationalstandardsandsafeguardingstakeholders?interests.
ThiswhitepaperexplorestheintegrationofAIintoregulatorytechnologiestoenhancecompliance
monitoringandriskmanagement.ItdetailstheresearchanddevelopmenteffortsbytheNational
UniversityofSingapore?sAsianInstituteofDigitalFinance,ADGMFSRA,andtheADGMAcademyResearchCentre.Thewhitepaperconcludeswithasummaryofkeyfindingsandproposesfuturecollaborative
effortstofurtherdeveloptheregulatorylandscape.
Keywords:
AI,Cryptocurrency,DeFi,DigitalAsset,RegTech,Regulation,SupTech,VirtualAsset,Web3
ADGM
2
TableofContents
Abstract 2
1–Introduction 4
2–Background 6
3–OpportunitiesforUtilisingAIforRegulatingWeb3Activities 7
4–AIInnovations 8
4.1EmergingAITechnologies
9
4.2AISolutionsintheWeb3RegulatoryDomain 10
4.3ChallengesinAIImplementation 11
4.4FutureDirections 12
5–PilotsofAIInnovationsinADGM(JointWorkwithNUSAIDF) 13
5.1Pilot1:SmartContractSuitabilityAssessmentwithAI 13
5.2Pilot2:AuditReportAssessment 15
5.3Pilot3:SmartDueDiligencewithAI 16
6–ConclusionandFutureWork 18
6.1Conclusion 18
6.2KeyTakeaways 18
6.3FutureWork 19
ACKNOWLEDGMENTS 20
DISCLAIMER 22
ADGM
3
1–INTRODUCTION
ThedigitallandscapeisundergoingrapidtransformationwithWeb3technologiesleadingadvancementsininternettechnology.Builtondistributedledgertechnologies(DLT)andsmartcontracts,Web3technologies
emphasizedecentralization,increasetransparencyandreducerelianceonintermediaries.DLT,including
blockchains,offersasecure,immutableledgerfortransactionsanddata,whilesmartcontractsfacilitate
automatedagreementswithoutintermediaries.Thiscombinationsupportsthedevelopmentofdecentralizedapplications,particularlyinDecentralizedFinance(DeFi),whicharereshapingfinancialtransactionsthroughpeer-to-peerinteractions.
Theglobalcryptocurrencymarketcapitalisationhassurpassedthe$3trillion1markrivallingsomeofthe
world’slargestcompanies,includingAppleandMicrosoft2.Thecryptocurrencyuserbasehasexpanded
significantly,witha34%increasein2023alonerisingfrom432millioninJanuaryto580millionbyDecember3.Thisgrowthunderscorestheincreasingadoptionandintegrationofcryptocurrenciesintotheglobalfinanciallandscape.Additionally,datarevealsthattheUnitedArabEmirates(UAE)leadstheworldincryptocurrencyadoption,withover30%ofitspopulation,approximately3millionpeople,owningdigitalassets4.Thisreflectsthenation’sforward-thinkingembraceoffinancialtechnologyanditsaspirationstobecomeamajorfintechhub.
the
but
ADGMplaysapivotalroleintherapidlyevolvingfinanciallandscape.Overseeingfinancialservicesintheinternationalfinancialcentreandfreezone,theADGMFinancialServicesRegulatoryAuthority(FSRA)isatforefrontoffosteringaregulatoryenvironmentthatisnotonlyseekstosupportthegrowthofDeFiandVAalsothebroaderdigitaltransformationinfinancialservices.
and
TheFSRAhasdevelopedacomprehensiveregulatoryframeworkforvirtualassetsthathasbeencontinuallyrefinedsinceitsintroductionin20185.Thisframeworksupportsinnovationwhileensuringrobustoversight
alignmentwithinternationalstandards.Byembracingdigitaltransformation,ADGMcollaboratescloselywithtechnologyecosystempartnerslikeHub716andresearchinstitutesliketheNationalUniversityofSingapore,promotingtheadoptionofcutting-edge,technicalsolutionswithinADGM.Thisproactiveapproachhelps
positionAbuDhabiasadestinationofchoiceforfinancialcompaniesseekingtoleverageadvancedtechnologiesanddigitalfinancemodels.
Furtherenhancingitsregulatorycapabilities,theADGMFSRAisleveragingadvancementsinRegTechandSupTechtostreamlineregulationandsupervision.ThroughAI-drivenRegTechsolutions,theFSRAcould
providemoreinteractiveandtailoredregulatoryinteractions,makingcompliancemoreefficientand
accessibleforentitiesoperatingwithinADGM.TheimplementationofAI-enabledSupTechtoolscould
supporttheFSRA’soversightandriskmanagementobjectiveswhilereducingcostsforfinancialinstitutions.
Together,theseinitiativesunderscoretheFSRA’smandatetoprovideatransparent,efficient,andprogressivefinancialenvironmentthatnotonlysafeguardstheinterestsofcustomers,investors,andindustryparticipants,butalsofosterssustainablegrowthandinnovationinADGM.
1AsofNovember2024,theglobalcryptocurrencymarketwasat$3.5trillion.
/digital-assets/crypto-prices
2
https://8/
3
/company-news/global-cryptocurrency-owners-grow-to-580-million-through-2023
4
/uae-dominates-global-crypto-adoption-vietnam-surges-to-second
5ADGM(2018)|ADGMlaunchescryptoassetregulatoryframework
/media/announcements/adgm-launches-crypto-asset-regulatory-framework
6Hub71|Hub71
ADMC
Academy
Researchcentre
ADGM
4
SupTech(SupervisoryTechnology)referstotheapplicationoftechnologytoenhancethesupervisory
andoversightfunctionsofregulatoryauthorities.Itinvolvestheuseofadvancedtoolslikedataanalytics,AI,andautomationtoimprovethemonitoringandsupervisionofregulatedactivities,andenforcement
ofregulatoryframeworks.SupTechaimstoprovideregulatorswithmoreeffective,data-driveninsights,andenablethemtobetteridentifyissues,assessrisks,andenforceregulationsinreal-time.
RegTech(RegulatoryTechnology)referstotheuseoftechnologytostreamline,automate,andimproveregulatorycomplianceprocessesforbusinesses.ItleveragesinnovativetoolssuchasAI,machine
learning,automation,anddataanalyticstohelpcompaniesmeetregulatoryrequirementsmore
efficiently,reducecompliancecosts,andenhancetransparencyandreporting.RegTechaimstosimplifycomplexcompliancetasks,suchasmonitoringtransactions,identifyingrisks,andensuringadherencetolegalstandards
NewrisksarisingfromthenatureofWeb3technologies,suchasfailuresofblockchainprotocolslikeTerra(LUNA)7,alongsideemergingvulnerabilitiesinsmartcontracts8,stresstheneedforeffectiveregulatory
frameworksandriskmanagementstrategies.Theinnovativeanddecentralizednatureofblockchain
technologycreatesafertilegroundofexposuretonewformsoffraudandsystemicfailuresthatmustbeaddressedforwideradoptiontobepossible.
Inresponse,amongotherstrategies,ADGMisexploringtheapplicationofAIinregulatoryandsupervisory
technologysolutionstoimprovecompliancemonitoringandriskmanagement.TheAsianInstituteofDigital
FinanceattheNationalUniversityofSingapore(NUSAIDF)conductsFinTechresearchinAItechnologies,
providingtoolsforpredictiveanalytics,anomalydetection,andautomatedcompliance.TheFSRAistesting
andvalidatingtheseAItechnologiestomeettheemergingneedsofregulatingandsupervisingWeb3andVAecosystemseffectively.ThiswhitepapersummarizestheresearchanddevelopmenteffortsofNUSAIDFand
ADGM(includingboththeFSRAandtheADGMAcademyResearchCentre)inimplementingAItechnologiestosupportregulatoryandsupervisoryactivitiesintheWeb3andvirtualassetdomains.
Asthispaperisintendedforabroaderaudienceandnotsetuptoprovidespecificdefinitionsreadersshouldnotethattheterms“VirtualAssets”,“Web3”,“blockchain”,“DLT”,and“network”areusedinterchangeably.
Nonetheless,explanationsofsometermsareprovidedinSection2.
Theremainderofthepaperisoutlinedasfollows.Section2providesthecontextandscopeofthispaper
whileSection3discussesthepotentialopportunitiesforregulatorstoleverageAItechnologies.Section4
discussesAIinnovationsshapingregulatoryactionsandactivities.Section5examinespilotprojects
conductedbyNUSAIDFandADGM,demonstratingpracticalapplicationsoftheseinnovations,suchassmartcontractassessments,securityauditing,andAI-poweredduediligence.Section6concludesthepaperwithasummaryoffindingsandadiscussiononfuturedirectionsandpotentialareastoenhancetheregulatory
landscape.
7Investopedia(2022)|TerraUSDCrashShowsRisksofAlgorithmicStablecoins
/terrausd-crash-shows-risks-of-algorithmic
-stablecoins-5272010
8Cointelegraph(2023)|Curve-Vyperexploit:Thewholestorysofar
/news/curve-vyper-exploit-whole-story-so-far
ADM
Academy
Researchcentre
ADGM
5
2–BACKGROUND
Thissectionaimstoprovideexplanationsforkeytermsthatareusedinthispaper,settingafoundationalbackgroundforreaderstobetterunderstandthediscussionsinlatersections.
VirtualAsset.TheFSRA’sregulatoryframeworkcategorizesdigitalassetsintodistinctclasses,whichalsoincludeFiat-ReferencedTokensandDigitalSecurities.
VAreferstoadigitalrepresentationofvaluethatcanbedigitallytradedandfunctionsas(1)amediumofexchange;and/or(2)aunitofaccount;and/or(3)astoreofvaluebutdoesnothavelegaltenderstatusinanyjurisdiction.AVAis(a)neitherissuednorguaranteedbyanyjurisdictionandfulfilstheabovefunctionsonlybyagreementwithinthecommunityofusersoftheVA;and(b)distinguishedfromfiatcurrencyand
e-money9
Web3.Web3representsthenextevolutionoftheinternet,transitioningfrom“read”(Web1)and“read-
write”(Web2)to“read-write-own”capabilities10.UnlikethecentralizedplatformsofWeb2,Web3leverages
blockchaintechnologytoempoweruserswithtrueownershipoftheirdata,digitalassets,andonline
interactions.Thisdecentralizedparadigmreducesrelianceonintermediaries,fosteringgreateruserautonomyandprivacywhileredefininghowindividualsinteractwithdigitalplatforms.
DLTandBlockchainNetwork.DLTreferstoadigitalsystemforrecordingtransactionsofassetsinwhichthe
dataisstoredacrossmultiplesitesornodessimultaneously.Unliketraditionalcentralizeddatabases,DLTsaredecentralized,eliminatingtheneedforacentralauthorityandenhancingtransparencyandsecurity.Each
participantinthenetworkmaintainsasynchronizedcopyoftheledgertherebyreducingtheriskofsinglepointsoffailure.
BlockchainisaspecifictypeofDLTthatorganizesdataintocryptographicblockswhicharethenlinkedchronologicallytoformachain.Thisstructureensuresthatrecordeddatabecomesimmutable.VAsaretypicallybuiltonblockchainnetworks.InWeb3,DLTandblockchainnetworkspowerDeFiplatformsanddecentralizedapps(dApps)byenablingsecure,transparenttransactions.
DeFi.DeFireferstoafinancialecosystembuiltonblockchainandDLTthatenablespeer-to-peer
transactionsandserviceswithouttheneedfortraditionalintermediarieslikebanksorfinancialinstitutions11.
DeFiapplicationsleveragesmartcontracts,whichareself-executingprogramsonblockchainnetworks,toautomateandenforcefinancialoperationssuchaslending,borrowing,trading,andinvesting.
AI.AIingeneraldefinesacollectionoftechnologiesenablingamachineorsystemtocomprehend,learn,act,reason,andsenselikeahuman12.AIsystemsleveragealgorithms,data,andcomputationalpowertoadaptandimproveovertime.
TheproliferationofAItoolsinrecentyearshasprovidedthefinancialindustrywiththepossibilitytointegrateitscapabilitiesintodiverseusecases.AIoffersnoteworthybenefits,includingenhancedoperationalefficiency,strengthenedregulatorycompliance,personalizedfinancialproducts,andadvanceddataanalytics
capabilities.FSRAlaunchedaninitiative,namedtheOpenRegulation(OpenReg),backin202213,aiming
9Section258ofFSMR(FINANCIALSERVICESANDMARKETSREGULATIONS)/rulebook/financial-services-and-markets
-regulations-2015-0
10Dixon,C.,2024.ReadWriteOwn:BuildingtheNextEraoftheInternet.RandomHouse.
11BIS(2023)|TheTechnologyofDecentralizedFinance(DeFi)
/publ/work1066.htm
12NationalProgramForArtificialIntelligence(2020)|AIGuide.ae/wp-content/uploads/2020/02/AIGuide_EN_v1-online.pdf
13ADGM(2022)|ADGM’sFinancialServicesRegulatoryAuthoritylaunchesitsAIinitiativeonOpenRegulation
/media/announcements/adgms
-financial-services-regulatory-authority-launches-its-ai-initiative-on-open-regulation
ADM
Academy
Researchcentre
ADGM
6
tomakeregulatorycontextmachine-readableregulations.TheprojectenablesRegTechcompaniesanddatasciencecommunitytousetheAItraininggroundtobuildthenextgenerationofAI-enabledRegTechsolutions.
Inthispaper,asapartofFSRA’songoingjourneytoembedAItechnologiesintoFSRAsupervisory
approaches,weelaborateontheAIadoptionforRegTechandSupTechforWeb3regulatoryactions/activities,takingintoconsiderationthevaluableinsightsprovidedinrecentreports14publishedbytheFinancialStabilityBoard(FSB),theregulatoryprinciplesoutlinedEUAIAct15,andtheriskframework
developedbyProjectMindForge16.
3–OPPORTUNITIESFORUTILISINGAIFORREGULATINGWEB3ACTIVITIES
TheregulatoryframeworkforWeb3hasnuancesthatdifferentiateitfromtraditionalregulationsduetotheuniquecharacteristicsofblockchaintechnology,smartcontracts,andspeedofWeb3innovation.
Globally,therecentfocusofregulatingWeb3hasbeenonVAsandtheirtradingplatforms.Thisincludes
enforcinganti-moneylaundering(AML)measuressuchasincorporatingKYT(knowyourtransactions)
solutionsandimplementingtravelrule17requirements,establishingprudentialguidelinesforstablecoinissuersand,morerecently,regulationofdecentralizedownerlessentitiessuchasDLTFoundationsanddecentralisedautonomousorganisations(DAOs).18Theseeffortstocreateregulatoryframeworksandimpositionof
safeguardstoprotectcustomersandinvestorsdemonstrateabroadeningacceptanceofVAandWeb3.
InexaminingtheinherentcharacteristicsofWeb3andVAforthefinancialregulator’sperspective,itiscrucialtoconsider(butnotlimitedto):
》Their24/7continuousoperationwithminimalhumanoversight,facilitatedbyself-executingsmartcontractsonDLTs;
》Theheightenedsecurityrisksduetovulnerabilitiesinsmartcontractcoding,potentialexploits,andrelianceondecentralizednetworks;and
》Theintroductionof‘new’conceptsthateitherrepurposeexistingtraditionalfinancialframeworkswithblockchaininnovationsorpresententirelynovelideaswithnohistoricalprecedent.
》ThedecentralizednatureofWeb3ensuresthattransactionsandsmartcontractsareimmutable,
enhancingtrustandtransparencybutmakingitchallengingtoaddresserrorslike“fat-finger”
mistakes,hacking,orunintendedoutcomes.
RegulatingWeb3activitiesintroducesseveralchallengesthatnecessitateinnovativeregulatoryapproachesandthedevelopmentofnewtoolstoenhancesupervisorymonitoringandenforcementcapabilities.
Nevertheless,thesechallengesalsopresentconsiderableopportunitiestoshapeabetterfuturefortheWeb3ecosystem.
14FSB(2024)|TheFinancialStabilityImplicationsofArtificialIntelligence
/2024/11/the-financial-stability-implications-of-artificial-intelligence/
15European
UnionArtificialIntelligenceActhttps://artificialintelligenceact.eu/
16MAS(2023)|MASPartnersIndustrytoDevelopGenerativeAIRiskFrameworkfortheFinancialSector
.sg/news/media-releases/2023/mas
-partners-industry-to-develop-generative-ai-risk-framework-for-the-financial-sector
17TheFATFRecommendations/en/publications/Fatfrecommendations/Fatf-recommendations.html
18ADGMDLTFoundationsFramework
/dlt-foundations
ADM
Academy
Researchcentre
ADGM
7
Fast-PacedInnovationandRiskIdenti?cation.ThenatureandfastpaceofinnovationinWeb3technologiesmakeitchallengingtopromptlyidentifyandmitigateemergingrisks.Thisdynamicenvironmentrequires
regulatoryprocessesandframeworkstoachieveagreatermeasureofresponsivenesstoensureregulatorsremainagileandabletoeffectivelyidentify,assess,andaddresspotentialrisks.
Thegapinresponsivenessincreasesthepotentialforfraudandmarketfailures.However,theseregulatory
challengesalsoopenupopportunitiestobuildframeworks“fromscratch”,allowingfortheintegrationof
forward-thinkingprinciplesthatcanadaptovertime.Thiscanencouragethedevelopmentofefficient
businessmodelstailoredtotheuniquecharacteristicsofWeb3,ultimatelyfosteringastableyetdynamic
marketplacethatalignswithbothregulatoryandindustrygrowthobjectives.AIcanplayaroleinfacilitatinginvestigationofsuchconcernsandintheconstructionofregulatoryframeworksbyrapidlyidentifying
enhancementsinregulatoryrulebookstoquicklyrespondtoWeb3developments.
AdvancedReal-TimeRiskMonitoring.EffectiveriskmonitoringintheWeb3ecosystemrequiresadvanced
toolscapableofreal-timeanalysisofextensiveblockchaindata.Giventhecontinuous24/7operation
ofDLTsandsmartcontracts,traditionalpoint-in-timeregulatoryapproachesoftenstruggletomanage
thevolumeandcomplexityofdatageneratedbytransactions.Consequently,thereisapressingneedfor
regulatorybodiestodevelopmoresophisticatedanalyticaltools.Implementingcontinuousmonitoring
systemsandautomatedriskmanagementtoolscanaidinmonitoringcompliancetoregulatoryrequirements,enablingproactiveresponsestopotentialthreats.
JurisdictionalComplexities.ThedecentralizednatureofWeb3activitiesoftencreatescross-jurisdictional
challengestoregulatoryapproaches.SinceeachregulatormayhaveadifferentapproachtogoverningVA,firmsmayfinditdifficultandcostlytomaintaincomplianceacrossmultiple,sometimesconflicting,regulatoryrequirementstherebyincreasingthetendencytopracticeregulatoryarbitrage.AI-drivenRegTechtoolscanpotentiallyhelpstreamlineandmanagethesecomplexitiesforfirms.Byautomatingroutinecompliance
tasks,identifyingoverlappingregulatoryrequirements,adaptingtonewrulesmoreefficiently,andassistingregulatoryreportingprocesses,AIcanreducecostsandoperationalburdens,ultimatelymakingiteasierforfirmstomeetdiverseregulatoryexpectations.
Inthefollowingsections,weconsidervariousscenarioswheretheuseofAIoffersbenefitstoregulatoryprocesses.
4–AIINNOVATIONS
TheevolutionofAItechnologieshasexperiencedsignificantadvancements,transformingoperational
andinnovationlandscapesacrossvariousindustries19IntheWeb3andVAspace,AIhasthepotentialtoextensivelyimproveregulatoryoversightandcomplianceefficiency.
ThissectionprovidesanoverviewofemergingAItechnologiesandhowAIinnovationscouldreshapethe
Web3regulatoryenvironment.ItstartswithabriefintroductionofwidelyusedAImodels(weonlyelaboratebrieflyofthepotentiallywidelyusedmodelsforregulatorydomain),followedbyusecasesinadoptingtheseAItechniquesforregulatoryactivities.WealsodiscussthekeychallengesofutilisingAIbeforeconsidering
possibledirectionsforfuturedevelopments.
19McKinsey(2024)|ThestateofAIinearly2024:GenAIadoptionspikesandstartstogeneratevalue
/capabilities/quantumblack/our-insights/
the-state-of-ai
ADM
Academy
Researchcentre
ADGM
8
4.1EmergingAITechnologies
MachineLearning(ML).MLisasubsetofAIthatspecializesinmakingpredictionsordecisionsbasedon
data.20MLalgorithmsexcelatanalysingvastarraysoftransactiondatatodetectpatternsandanomalies
indicativeoffraudulentactivitiesorcomplianceissues.Byemployingsupervised,unsupervised,and
reinforcementlearningtechniques,MLmodelscanadaptandimproveovertime,offeringregulatorspowerfultoolstoimprovemonitoringefficiencyandaccuracywithouttheneedforconstanthumanoversight.
NaturalLanguageProcessing(NLP).NLPfocusesonenablingcomputerstounderstandandprocesshumanlanguage(i.e.,text).21NLPcandeliverefficienciesforregulatoryreviewsandassessmentsthroughautomatedextractionandanalysisofkeyinformationfromvastamountsofdocumentsandcommunications.AdvancedNLPmodelshaveachievedsignificantprogressinbothunderstandingandgeneratinghuman-liketext,whichcanbeutilizedtoautomateresponsestobothregulatoryandpublicinquiries.22
However,NLPtechnologiesmayincludethepotentialformisinterpretationandbiasasNLPmodelsmaynotfullyaccountforvariedcontextortonedependingonculturalorsocietalnorms.Suchchallengesmayleadtoincorrectregulatoryresponsesoractionsifadoptedwithouthumanintervention.
GenerativeAI.GenerativeAIreferstoAItechnologiesthatcangeneratenewcontent(e.g.,text,images,andothermedia)basedonexistingdata.23
However,NLPtechnologiesmayincludethepotentialformisinterpretationandbiasasNLPmodelsmaynotfullyaccountforvariedcontextortonedependingonculturalorsocietalnorms.Suchchallengesmayleadtoincorrectregulatoryresponsesoractionsifadoptedwithouthumanintervention.
AIAgents.AIagentsarespecialisedgenerativeAImodelimplementationsthatcanperformcomplextaskswithprogrammedworkflows,suchasautomatingcustomerserviceinteractions,generatinglegaland
regulatorydocuments,orevenconductingvirtualnegotiationsonbehalfofhumanoperators.24
Intheregulatorycontext,generativeAIandAIagentshavemanypotentialapplications.Forinstance,
theycanbeusedbyregulatedentitiestoautomatethegenerationofdetailedperiodicoron-demand
compliancereports.SuchAItechnologiescanalsobeemployedbyregulatorstoanalyselargedatasetsofregulatoryreturnsandgenerateashortlistofpotentialnon-complianceandriskindicators.However,akintothelimitationsinherentinNLPtechnologies,thecurrentavailablegenerativeAImodels,whicharelargelybasedonlargelanguagemodels(LLMs),havelimitationsinaccuracyandreliabilityofoutputsduetothe
potentialforhallucinationandcontextualmisinterpretation.
GeneralAI.GeneralAIreferstohighlyautonomoussystemscapableofperforminganycognitivetaskthat
ahumanbeingcanundertake.25UnlikegenerativeAI,whichisdesignedforspecificcontentcreationtasks,
generalAIischaracterizedbyitsversatilityandabilitytoadapttoawiderangeofscenarioswithoutprior
specificprogramming.Whilestillconceptual,generalAIcouldfacilitatehighlyadaptivesystemsforregulatoryoversightandcompliancemanagementautonomouslyadjustingtonewregulationsandthecomplexitiesoflegalcompliancewithlittletonohumanintervention.
20IBM(2023)|AIvs.machinelearningvs.deeplearningvs.neuralnetworks:What’sthedifference?
/think/topics/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
21IBM
(2024)|whatisNLP?/topics/natural-language-processing
22PwC(2022)|UnderstandingalgorithmicbiasandhowtobuildtrustinAI/us/en/tech-effect/ai-analytics/algorithmic-bias-and-trust-in-ai.html
23McKinsey(2024)|WhatisgenerativeAI?/featured-insights/mckinsey-explainers/what-is-generative-ai
24
/index/introducing-gpts
25
/2024/04/05/what-is-agi-artificial-general-intelligence
ADM
Academy
Researchcentre
ADGM
9
4.2AISolutionsintheWeb3RegulatoryDomain
InthissectionweexplorehowdiversetypesofAItechnologiesmaybeimplementedintheWeb3regulatoryspacetomeetthechallengesofmonitoring,enforcement,andcompliancemanagement.Wesplitthese
technologiesintotwomajorcategories:applicationsusingnarrowAIandthoseusinggenerativeAI.Note
thatnarrowAIreferstoartificialintelligencesystemsthataredesignedtoperformspecifictasksandoperateunderlimitedconstraints.26Theyarealsoreferredtoas“specificAI”or“weakAI”.
4.2.1NarrowAI-basedApplications
RegulatoryReportingTools.AI-drivenregulatoryreportingtoolscanautomatethecollection,submission
andanalysisofregulatoryreturnsandattestationreports.2728Thesesystemsutilizeadvanceddatamining
andprocessingalgorithmstoextractandorganizeinformationfromvastdatasetstofacilitateseamless
regulatoryreporting.Beyondreportingautomation,AItoolsthatperformpredictiveanalyticsmayenable
regulatedentitiestoidentifyriskfactorsthatcanreducethepotentialforcompliancefailures.Forexample,AIcanbeemployedtomonitorandpredictfinancialrisksthatmayhindercompliancewithliquidityandcapitalobligations.
RiskPro?ling.AIsystemsdedicatedtoriskprofiling29cananalyseandcategorizevirtualassetsorfinancial
entitiesbasedontheirriskcharacteristicsandapplicableregulatoryrequirements.Thesesystemscan
evaluatehistoricalperformance,marketbehaviour,andexternalfactorstomaintainadynamicriskprofile.Bycontinuouslylearningfromnewdataandregulatoryupdates,theseAIprofilerscankeepprofilesapacewiththeevolvingfinanciallandscape30.
KnowYourTransaction(KYT).Utilizinggraphanalyticsandgraphneuralnetworks(GNNs),AI-drivenKYT
andanomalydetectionsystemscanbespecificallydesignedtomonitorandanalyseaccounts31and
transactionsonblockchainnetworks.ByleveragingonthecapabilitiesofAItoexaminecomplexblockchaintransact
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026 年中職進(jìn)化心理學(xué)(進(jìn)化心理基礎(chǔ))試題及答案
- 基于AHP與Schwartz-moon模型的長(zhǎng)城汽車(chē)數(shù)據(jù)資產(chǎn)價(jià)值評(píng)估研究
- 辦公場(chǎng)所租賃補(bǔ)充條款合同協(xié)議2025年
- 城市運(yùn)力匹配分析
- 2025 八年級(jí)數(shù)學(xué)上冊(cè)三角形角平分線與角度計(jì)算課件
- 本溪高中化學(xué)試卷及答案
- 2025年英式口語(yǔ)測(cè)試題目及答案
- 工程采購(gòu)維修合同范本
- 國(guó)際項(xiàng)目建設(shè)合同范本
- 委托代招聘合同范本
- AQ2059-2016 磷石膏庫(kù)安全技術(shù)規(guī)程
- (正式版)SHT 3045-2024 石油化工管式爐熱效率設(shè)計(jì)計(jì)算方法
- 《婦病行》教師教學(xué)
- 《養(yǎng)老護(hù)理員》-課件:協(xié)助臥床老年人使用便器排便
- 初三勵(lì)志、拼搏主題班會(huì)課件
- Cuk斬波完整版本
- GB/T 3521-2023石墨化學(xué)分析方法
- 三維動(dòng)畫(huà)及特效制作智慧樹(shù)知到課后章節(jié)答案2023年下吉林電子信息職業(yè)技術(shù)學(xué)院
- 胰腺囊腫的護(hù)理查房
- 臨床醫(yī)學(xué)概論常見(jiàn)癥狀課件
- 物業(yè)管理理論實(shí)務(wù)教材
評(píng)論
0/150
提交評(píng)論