2025年人教版9年級數(shù)學(xué)上冊《圓》專項訓(xùn)練試題(含解析)_第1頁
2025年人教版9年級數(shù)學(xué)上冊《圓》專項訓(xùn)練試題(含解析)_第2頁
2025年人教版9年級數(shù)學(xué)上冊《圓》專項訓(xùn)練試題(含解析)_第3頁
2025年人教版9年級數(shù)學(xué)上冊《圓》專項訓(xùn)練試題(含解析)_第4頁
2025年人教版9年級數(shù)學(xué)上冊《圓》專項訓(xùn)練試題(含解析)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊《圓》專項訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、下列說法正確的是(

)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點所表示的數(shù)為;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角”;⑤如圖,在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點.A.1 B.2 C.3 D.42、已知一個三角形的三邊長分別為5、7、8,則其內(nèi)切圓的半徑為()A. B. C. D.3、如圖,在四邊形ABCD中,則AB=(

)A.4 B.5 C. D.4、如圖,在?ABCD中,為的直徑,⊙O和相切于點E,和相交于點F,已知,,則的長為(

)A. B. C. D.25、已知中,,,,點P為邊AB的中點,以點C為圓心,長度r為半徑畫圓,使得點A,P在⊙C內(nèi),點B在⊙C外,則半徑r的取值范圍是(

)A. B. C. D.6、在平面直角坐標(biāo)系xOy中,已知點A(4,3),以原點O為圓心,5為半徑作⊙O,則()A.點A在⊙O上B.點A在⊙O內(nèi)C.點A在⊙O外D.點A與⊙O的位置關(guān)系無法確定7、已知扇形的半徑為6,圓心角為.則它的面積是(

)A. B. C. D.8、如圖,正三角形PMN的頂點分別是正六邊形ABCDEF三邊的中點,則三角形PMN與六邊形ABCDEF的面積之比()A.1:2 B.1:3 C.2:3 D.3:89、如圖,點A,B的坐標(biāo)分別為,點C為坐標(biāo)平面內(nèi)一點,,點M為線段的中點,連接,則的最大值為()A. B. C. D.10、如圖,拱橋可以近似地看作直徑為250m的圓弧,橋拱和路面之間用數(shù)根鋼索垂直相連,其正下方的路面AB長度為150m,那么這些鋼索中最長的一根的長度為()A.50m B.40m C.30m D.25m第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖所示,AB、AC為⊙O的兩條弦,延長CA到點D,AD=AB,若∠ADB=35°,則∠BOC=________.2、如圖,在平面直角坐標(biāo)系中,點A(0,1)、B(0,﹣1),以點A為圓心,AB為半徑作圓,交x軸于點C、D,則CD的長是____.3、如圖,分別以等邊三角形的每個頂點為圓心、以邊長為半徑,在另兩個頂點間作一段圓弧,三段圓弧圍成的曲邊三角形稱為勒洛三角形.若等邊三角形的邊長為,則勒洛三角形的周長為_____.4、如圖:四邊形ABCD內(nèi)接于⊙O,E為BC延長線上一點,若∠A=n°,則∠DCE=_____°.5、如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.6、一個圓錐的底面半徑r=6,高h(yuǎn)=8,則這個圓錐的側(cè)面積是_____.7、已知的半徑為,直線與相交,則圓心到直線距離的取值范圍是__________.8、如圖,已知是的直徑,是的切線,連接交于點,連接.若,則的度數(shù)是_________.9、如圖,在一邊長為的正六邊形中,分別以點A,D為圓心,長為半徑,作扇形,扇形,則圖中陰影部分的面積為___________.(結(jié)果保留)10、如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)是(20,0),點B的坐標(biāo)是(16,0),點C、D在以O(shè)A為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點C的坐標(biāo)為_____.三、解答題(5小題,每小題6分,共計30分)1、已知:如圖,、是的切線,切點分別是、,為上一點,過點作的切線,交、于、點,已知,求的周長.2、如圖1,正方形ABCD中,點P、Q是對角線BD上的兩個動點,點P從點B出發(fā)沿著BD以1cm/s的速度向點D運動;點Q同時從點D出發(fā)沿著DB以2cm的速度向點B運動.設(shè)運動的時間為xs,△AQP的面積為ycm2,y與x的函數(shù)圖象如圖2所示,根據(jù)圖象回答下列問題:(1)a=.(2)當(dāng)x為何值時,APQ的面積為6cm2;(3)當(dāng)x為何值時,以PQ為直徑的圓與APQ的邊有且只有三個公共點.3、如圖,點C是射線上的動點,四邊形是矩形,對角線交于點O,的平分線交邊于點P,交射線于點F,點E在線段上(不與點P重合),連接,若.(1)證明:(2)點Q在線段上,連接、、,當(dāng)時,是否存在的情形?請說明理由.4、正方形ABCD的四個頂點都在⊙O上,E是⊙O上的一點.(1)如圖①,若點E在上,F(xiàn)是DE上的一點,DF=BE.求證:△ADF≌△ABE;(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE-BE=AE.請說明理由;(3)如圖②,若點E在上.連接DE,CE,已知BC=5,BE=1,求DE及CE的長.5、如圖,正五邊形內(nèi)接于,為上的一點(點不與點重合),求的余角的度數(shù).-參考答案-一、單選題1、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實數(shù)的大小比較,可判斷②;根據(jù)點在數(shù)軸上所對應(yīng)的實數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點所表示的數(shù)為,故本小題錯誤;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角或三個鈍角”,故本小題錯誤;⑤在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點,故本小題正確.故選B【考點】本題主要考查近似數(shù)的精確度定義,實數(shù)的大小比較,點在數(shù)軸上所對應(yīng)的實數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識點,是解題的關(guān)鍵.2、C【解析】【分析】先依據(jù)題意畫出圖形,如圖(見解析),過點A作于D,利用勾股定理可求出AD的長,再根據(jù)三角形內(nèi)切圓的性質(zhì)、三角形的面積公式即可得出答案.【詳解】解:如圖,,內(nèi)切圓O的半徑為,切點為,則過點A作于D,設(shè),則由勾股定理得:則,即解得,即又即解得則內(nèi)切圓的半徑為故選:C.【考點】本題考查了三角形內(nèi)切圓的性質(zhì)、勾股定理等知識點,讀懂題意,正確畫出圖形,并求出AD的長是解題關(guān)鍵.3、D【解析】【分析】延長AD,BC交于點E,則∠E=30°,先在Rt△CDE中,求得CE的長,然后在Rt△ABE中,根據(jù)∠E的正切函數(shù)求得AB的長【詳解】如圖,延長AD,BC交于點E,則∠E=30°,在Rt△CDE中,CE=2CD=6(30°銳角所對直角邊等于斜邊的一半),∴BE=BC+CE=8,在Rt△ABE中,AB=BE·tanE=8×=.故選D.【考點】本題考查了解直角三角形,特殊角的三角函數(shù)值,解此題的關(guān)鍵在于構(gòu)造一個直角三角形,然后利用銳角三角函數(shù)進行解答.4、C【解析】【分析】首先求出圓心角∠EOF的度數(shù),再根據(jù)弧長公式,即可解決問題.【詳解】解:如圖連接OE、OF,∵CD是⊙O的切線,∴OE⊥CD,∴∠OED=90°,∵四邊形ABCD是平行四邊形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°-∠D-∠DFO-∠DEO=30°,∴的長.故選:C.【考點】本題考查切線的性質(zhì)、平行四邊形的性質(zhì)、弧長公式等知識,解題的關(guān)鍵是求出圓心角的度數(shù),記住弧長公式.5、D【解析】【分析】根據(jù)勾股定理,得AB=5,由P為AB的中點,得CP=,要使點A,P在⊙C內(nèi),r>3,r<4,從而確定r的取值范圍.【詳解】∵點A在⊙C內(nèi),∴r>3,∵點B在⊙C外,∴r<4,∴,故選:D.【考點】本題考查了點和圓的位置關(guān)系,利用數(shù)形結(jié)合思想是解題的關(guān)鍵.6、A【解析】【分析】先求出點A到圓心O的距離,再根據(jù)點與圓的位置依據(jù)判斷可得.【詳解】解:∵點A(4,3)到圓心O的距離,∴OA=r=5,∴點A在⊙O上,故選:A.【考點】本題考查了對點與圓的位置關(guān)系的判斷.關(guān)鍵要記住若半徑為,點到圓心的距離為,則有:當(dāng)時,點在圓外;當(dāng)時,點在圓上,當(dāng)時,點在圓內(nèi),也考查了勾股定理的應(yīng)用.7、D【解析】【分析】已知扇形的半徑和圓心角度數(shù)求扇形的面積,選擇公式直接計算即可.【詳解】解:.故選:D【考點】本題考查扇形面積公式的知識點,熟知扇形面積公式及適用條件是解題的關(guān)鍵.8、D【解析】【分析】連接BE,設(shè)正六邊形的邊長為a,首先證明△PMN是等邊三角形,分別求出△PMN,正六邊形ABCDEF的面積即可.【詳解】解:連接BE,設(shè)正六邊形的邊長為a.則AF=a,BE=2a,AF∥BE,∵AP=PB,F(xiàn)N=NE,∴PN=(AF+BE)=1.5a,同理可得PM=MN=1.5a,∴PN=PM=MN,∴△PMN是等邊三角形,∴,故選:D.【考點】本題考查正多邊形與圓,等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)解決問題,屬于中考??碱}型.9、B【解析】【分析】如圖所示,取AB的中點N,連接ON,MN,根據(jù)三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時,OM=ON+MN最大,再根據(jù)等腰直角三角形的性質(zhì)以及三角形的中位線即可解答.【詳解】解:如圖所示,取AB的中點N,連接ON,MN,三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時,OM=ON+MN最大,∵,則△ABO為等腰直角三角形,∴AB=,N為AB的中點,∴ON=,又∵M為AC的中點,∴MN為△ABC的中位線,BC=1,則MN=,∴OM=ON+MN=,∴OM的最大值為故答案選:B.【考點】本題考查了等腰直角三角形的性質(zhì)以及三角形中位線的性質(zhì),解題的關(guān)鍵是確定當(dāng)ON與MN共線時,OM=ON+MN最大.10、D【解析】【分析】設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,先由垂徑定理得AC=BC=AB=75m,再由勾股定理求出OC=100m,然后求出CD的長即可.【詳解】解:設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,則OA=OD=×250=125(m),AC=BC=AB=×150=75(m),∴OC===100(m),∴CD=OD﹣OC=125﹣100=25(m),即這些鋼索中最長的一根為25m,故選:D.【考點】本題考查了垂徑定理和勾股定理等知識;熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.二、填空題1、140°【解析】【分析】在等腰中,根據(jù)三角形的外角性質(zhì)可求出外角的度數(shù);而是同弧所對的圓周角和圓心角,可根據(jù)圓周角和圓心角的關(guān)系求出的度數(shù).【詳解】△ABD中,AB=AD,則:

∴∴故答案為【考點】考查圓周角定理,在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.2、【解析】【分析】根據(jù)題意在中求出,利用垂徑定理得出結(jié)果.【詳解】由題意,在中,,,由垂徑定理知,,故答案為:.【考點】本題考查了勾股定理及垂徑定理,熟練掌握垂徑定理是解決本題的關(guān)鍵.3、πa【解析】【分析】首先根據(jù)等邊三角形的性質(zhì)得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧長公式求出的長=的長=的長=,那么勒洛三角形的周長為【詳解】解:如圖.∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的長=的長=的長=,∴勒洛三角形的周長為故答案為:πa.【考點】本題考查了弧長公式,解題的關(guān)鍵是掌握(弧長為l,圓心角度數(shù)為n,圓的半徑為R),也考查了等邊三角形的性質(zhì).4、n【解析】【分析】利用圓內(nèi)接四邊形的對角互補和鄰補角的性質(zhì)求解.【詳解】∵四邊形ABCD是⊙O的內(nèi)接四邊形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案為n【考點】本題考查了圓內(nèi)接四邊形的性質(zhì).解決本題的關(guān)鍵是掌握:圓內(nèi)接四邊形的對角互補.5、10或70【解析】【分析】分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當(dāng)水位上升到圓心以下時

水面寬80cm時,則,水面上升的高度為:;當(dāng)水位上升到圓心以上時,水面上升的高度為:,綜上可得,水面上升的高度為30cm或70cm,故答案為:10或70.【考點】本題考查了垂徑定理的應(yīng)用,掌握垂徑定理、靈活運用分類討論的思想是解題的關(guān)鍵.6、60π【解析】【分析】利用圓錐的側(cè)面積公式:,求出圓錐的母線即可解決問題.【詳解】解:圓錐的母線,∴圓錐的側(cè)面積=π×10×6=60π,故答案為:60π.【考點】本題考查了圓錐的側(cè)面積,勾股定理等知識,解題的關(guān)鍵是記住圓錐的側(cè)面積公式.7、【解析】【分析】根據(jù)直線AB和圓相交,則圓心到直線的距離小于圓的半徑即可得問題答案.【詳解】∵⊙O的半徑為5,直線AB與⊙O相交,∴圓心到直線AB的距離小于圓的半徑,即0≤d<5;故答案為:0≤d<5.【考點】本題考查了直線與圓的位置關(guān)系;熟記直線和圓的位置關(guān)系與數(shù)量之間的聯(lián)系是解決問題的關(guān)鍵.同時注意圓心到直線的距離應(yīng)是非負(fù)數(shù).8、25【解析】【分析】先由切線的性質(zhì)可得∠OAC=90°,再根據(jù)三角形的內(nèi)角和定理可求出∠AOD=50°,最后根據(jù)“同弧所對的圓周角等于圓心角的一半”即可求出∠B的度數(shù).【詳解】解:∵是的切線,∴∠OAC=90°∵,∴∠AOD=50°,∴∠B=∠AOD=25°故答案為:25.【考點】本題考查了切線的性質(zhì)和圓周角定理,掌握圓周角定理是解題的關(guān)鍵.9、【解析】【分析】先利用正多邊形內(nèi)角和公式求得每個內(nèi)角,再利用扇形面積公式求出扇形ABF、扇形DCE的面積,即可得出結(jié)果.【詳解】由正多邊形每個內(nèi)角公式可得該正六邊形的每一個內(nèi)角;∵,;則陰影部分面積為:.【考點】本題考查了正多邊形和圓、扇形面積計算等知識;掌握正多邊形內(nèi)角的計算公式和扇形面積公式是解題的關(guān)鍵.10、(2,6)【解析】【分析】此題涉及的知識點是平面直角坐標(biāo)系圖像性質(zhì)的綜合應(yīng)用.過點M作MF⊥CD于F,過C作CE⊥OA于E,在Rt△CMF中,根據(jù)勾股定理即可求得MF與EM,進而就可求得OE,CE的長,從而求得C的坐標(biāo).【詳解】∵四邊形OCDB是平行四邊形,點B的坐標(biāo)為(16,0),CD∥OA,CD=OB=16,過點M作MF⊥CD于F,則過C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM?ME=OM?CF=10?8=2,連接MC,∴在Rt△CMF中,∴點C的坐標(biāo)為(2,6).故答案為(2,6).【考點】此題重點考察學(xué)生對坐標(biāo)與圖形性質(zhì)的實際應(yīng)用,勾股定理,注意數(shù)形結(jié)合思想在解題的關(guān)鍵.三、解答題1、的周長是.【解析】【分析】根據(jù)切線長定理得出PA=PB,EB=EQ,F(xiàn)Q=FA,代入PE+EF+PF=PE+EQ+FQ+PF即可求出答案.【詳解】∵PA、PB是⊙O的切線,切點分別是A、B,∴PA=PB=12cm,∵過Q點作⊙O的切線,交PA、PB于E、F點,∴EB=EQ,F(xiàn)Q=FA,∴△PEF的周長是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周長是24cm.【考點】本題主要考查對切線長定理的理解和掌握,能根據(jù)切線長定理得出PA=PB、EB=EQ、FQ=FA是解此題的關(guān)鍵.2、(1)9;(2)x或x=4;(3)x=0或x<2或2<x≤3【解析】【分析】(1)由題意可得Q運動3s達到B,即得BD=6,可知,從而a=AB?AD=9;(2)連接AC交BD于O,可得OA=AC=BD=3,根據(jù)△APQ的面積為6,即得PQ=4,當(dāng)P在Q下面時,x=,當(dāng)P在Q上方時,Q運動3s到B,x=4;(3)當(dāng)x=0時,B與P重合,D與Q重合,此時以PQ為直徑的圓與△APQ的邊有且只有三個公共點,同理t=6時,以PQ為直徑的圓與△APQ的邊有且只有三個公共點,當(dāng)Q運動到BD中點時,以PQ為直徑的圓與AQ相切,與△APQ的邊有且只有三個公共點,x=,當(dāng)P、Q重合時,不構(gòu)成三角形和圓,此時x=2,當(dāng)Q運動到B,恰好P運動到BD中點,x=3,以PQ為直徑的圓與△APQ的邊有且只有三個公共點,即可得到答案.【詳解】解:(1)由題意可得:Q運動3s達到B,∴BD=3×2=6,∵四邊形ABCD是正方形,∴,∴a=AB?AD=9,故答案為:9;(2)連接AC交BD于O,如圖:∵四邊形ABCD是正方形,∴AC⊥BD,OA=AC=BD=3,∵△APQ的面積為6,∴PQ?OA=6,即PQ×3=6,∴PQ=4,而BP=x,DQ=2x,當(dāng)P在Q下面時,6-x-2x=4,∴x=,當(dāng)P在Q上方時,Q運動3s到B,此時PQ=3,∴x=4時,PQ=4,則△APQ的面積為6;綜上所述,x=或x=4;(3)當(dāng)x=0時,如圖:B與P重合,D與Q重合,此時以PQ為直徑的圓與△APQ的邊有且只有三個公共點,同理,當(dāng)Q運動到B,P運動到D時,以PQ為直徑的圓與△APQ的邊有且只有三個公共點,此時t=6,當(dāng)Q運動到BD中點時,如圖:此時x=,以PQ為直徑的圓與AQ相切,故與△APQ的邊有且只有三個公共點,當(dāng)P、Q重合時,如圖:顯然不構(gòu)成三角形和圓,此時x=2,當(dāng)Q運動到B,恰好P運動到BD中點,如圖:此時x=3,以PQ為直徑的圓與△APQ的邊有且只有三個公共點,綜上所述,以PQ為直徑的圓與△APQ的邊有且只有三個公共點,x=0或t=6或≤x<2或2<x≤3.【考點】本題考查正方形中的動點問題,涉及函數(shù)圖象、三角形面積、直線與圓的位置關(guān)系等知識,解題關(guān)鍵是畫出圖形,數(shù)形結(jié)合,分類思想的應(yīng)用.3、(1)見解析(2)不存在的情形,理由見解析【解析】【分析】(1)根據(jù)矩形的性質(zhì)可得∠DAF=∠CFA,從而得到∠CAF=∠CFA,進而AC=CF,再由OB=OC,可得∠OBC=∠OCB,然后根據(jù),可得∠ACF=2∠ECF,即可求證;(2)先假設(shè)DQ=PC,可先證得點A、C、E、D四點共圓,從而得到∠DAE=∠DCE,∠CAE=∠CDE,再由AF平分∠CAD,可得DE=CE,進而得到點E在CD的垂直平分線上,再由,可得∠AQC=∠CPQ,從而得到CP=CQ,CQ=DQ,進而得到點Q在CD的垂直平分線上,得到AF∥BC,AF交射線于點F相矛盾,即可求解.(1)證明:在矩形ABCD中,AD∥BC,OB=OC,∴∠DAF=∠CFA,∵AF平分∠CAD,∴∠DAF=∠CAF,∴∠CAF=∠CFA,∴AC=CF,∵OB=OC,∴∠OBC=∠OCB,∵,∴2∠ECF+∠OCB=180°,∵∠OCB+∠ACF=180°,∴∠ACF=2∠ECF,∴∠ACE=∠FCE,∴AE=EF;(2)解:不存在PC=DQ,理由如下:假設(shè)DQ=PC,∵四邊形ABCD是矩形,∴∠ADC=90°,由(1)得:AC=CF,AE=EF,∴CE⊥AF,即∠AEC=90°,∴∠AEC=∠ADC=90°,∴點A、C、E、D四點共圓,∴∠DAE=∠DCE,∠CAE=∠CDE,∵AF平分∠CAD,∴∠CAE=∠DAE=∠DCE=∠EDC,∴DE=CE,∴點E在CD的垂直平分線上,∵,∠CPQ=∠EDC+∠DEA,∴∠AQC=∠CPQ,∴CP=CQ,∵CP=DQ,∴CQ=DQ,∴點Q在CD的垂直平分線上,∴EQ⊥CD,即AF⊥CD,∵BC⊥CD,∴AF∥BC,AF交射線于點F相矛盾,∴假設(shè)不成立,原結(jié)論成立,即當(dāng)時,不存在的情形.【考點】本題主要考查了矩形的性質(zhì),等腰三角形的判定和性質(zhì),四點共圓問題,反證法,線段垂直平分線的判定,熟練掌握相關(guān)知識點,利用四點共圓解決問題是解題的關(guān)鍵.4、(1)證明見解析;(2)理由見解析;(3)DE=7,CE=【解析】【分析】(1)根據(jù)正方形的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論