版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆海北市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.二次函數(shù)的圖象是一條拋物線,下列關(guān)于該拋物線的說法正確的是()A.拋物線開口向下 B.拋物線與軸有兩個交點C.拋物線的對稱軸是直線=1 D.拋物線經(jīng)過點(2,3)2.如圖,為的直徑,為上一點,弦平分,交于點,,,則的長為()A.2.5 B.2.8 C.3 D.3.23.如圖,AB是⊙O的直徑,弦CD⊥AB于點E,若AB=8,AE=1,則弦CD的長是()A. B.2 C.6 D.84.如圖,直線l1∥l2∥l3,兩條直線AC和DF與l1,l2,l3分別相交于點A、B、C和點D、E、F,則下列比例式不正確的是()A. B. C. D.5.如圖,AB是⊙O的直徑,點C在⊙O上,若∠B=50°,則∠A的度數(shù)為(
)A.80o B.60o C.40o D.50o6.如圖,AC是電桿AB的一根拉線,現(xiàn)測得BC=6米,∠ABC=90°,∠ACB=52°,則拉線AC的長為(
)米.A.
B.
C.
D.7.如圖,直線分別與⊙相切于,且∥,連接,若,則梯形的面積等于()A.64 B.48 C.36 D.248.二次根式中,的取值范圍是()A. B. C. D.9.一元二次方程x2-2x=0根的判別式的值為()A.4 B.2 C.0 D.-410.如果拋物線開口向下,那么的取值范圍為()A. B. C. D.11.如圖,CD是⊙O的直徑,已知∠1=30°,則∠2等于()A.30° B.45° C.60° D.70°12.如圖,某幢建筑物從2.25米高的窗口用水管向外噴水,噴的水流呈拋物線型(拋物線所在平面與墻面垂直),如果拋物線的最高點離墻1米,離地面3米,則水流下落點離墻的距離是()A.2.5米 B.3米 C.3.5米 D.4米二、填空題(每題4分,共24分)13.如圖,AC是矩形ABCD的對角線,⊙O是△ABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示的方式折疊,使點D與點O重合,折痕為FG,點F,G分別在AD,BC上,連結(jié)OG,DG,若OG⊥DG,且⊙O的半徑長為1,則BC+AB的值______.14.若邊長為2的正方形內(nèi)接于⊙O,則⊙O的半徑是___________.15.某公園有一個圓形噴水池,噴出的水流呈拋物線,水流的高度(單位:)與水流噴出時間(單位:)之間的關(guān)系式為,那么水流從噴出至回落到水池所需要的時間是__________.16.如圖所示,某河堤的橫斷面是梯形,,迎水坡長26米,且斜坡的坡度為,則河堤的高為米.17.如圖,在□ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動.點P運動到F點時停止運動,點Q也同時停止運動.當(dāng)點P運動_____秒時,以點P、Q、E、F為頂點的四邊形是平行四邊形.18.關(guān)于x的方程x2﹣3x﹣m=0的兩實數(shù)根為x1,x2,且,則m的值為_____.三、解答題(共78分)19.(8分)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連接AC,過上一點E作EG∥AC交CD的延長線于點G,連接AE交CD于點F,且EG=FG.(1)求證:EG是⊙O的切線;(2)延長AB交GE的延長線于點M,若AH=2,,求OM的長.20.(8分)某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.(1)按約定,“小李同學(xué)在該天早餐得到兩個油餅”是事件;(可能,必然,不可能)(2)請用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.21.(8分)如圖①,在平行四邊形ABCD中,對角線AC、BD交于點O,AB=AC,AB⊥AC,過點A作AE⊥BD于點E.(1)若BC=6,求AE的長度;(2)如圖②,點F是BD上一點,連接AF,過點A作AG⊥AF,且AG=AF,連接GC交AE于點H,證明:GH=CH.22.(10分)如圖,是⊙的直徑,、是圓周上的點,,弦交于點.(1)求證:;(2)若,求的度數(shù).23.(10分)如圖,AB是⊙O的直徑,C是⊙O上一點,且AC=2,∠CAB=30°,求圖中陰影部分面積.24.(10分)如圖,?ABCD中,連接AC,AB⊥AC,tanB=,E、F分別是BC,AD上的點,且CE=AF,連接EF交AC與點G.(1)求證:G為AC中點;(2)若EF⊥BC,延長EF交BA的延長線于H,若FH=4,求AG的長.25.(12分)已知拋物線經(jīng)過A(0,2)、B(4,0)、C(5,-3)三點,當(dāng)時,其圖象如圖所示.(1)求該拋物線的解析式,并寫出該拋物線的頂點坐標(biāo);(2)求該拋物線與軸的另一個交點的坐標(biāo).26.如圖,△ABC的高AD與中線BE相交于點F,過點C作BE的平行線、過點F作AB的平行線,兩平行線相交于點G,連接BG.(1)若AE=2.5,CD=3,BD=2,求AB的長;(2)若∠CBE=30°,求證:CG=AD+EF.
參考答案一、選擇題(每題4分,共48分)1、B【詳解】A、a=2,則拋物線y=2x2-3的開口向上,所以A選項錯誤;B、當(dāng)y=0時,2x2-3=0,此方程有兩個不相等的實數(shù)解,即拋物線與x軸有兩個交點,所以B選項正確;C、拋物線的對稱軸為直線x=0,所以C選項錯誤;D、當(dāng)x=2時,y=2×4-3=5,則拋物線不經(jīng)過點(2,3),所以D選項錯誤,故選B.2、B【分析】連接BD,CD,由勾股定理求出BD的長,再利用,得出,從而求出DE的長,最后利用即可得出答案.【詳解】連接BD,CD∵為的直徑∵弦平分即解得故選:B.本題主要考查圓周角定理的推論及相似三角形的判定及性質(zhì),掌握圓周角定理的推論及相似三角形的性質(zhì)是解題的關(guān)鍵.3、B【解析】根據(jù)垂徑定理,構(gòu)造直角三角形,連接OC,在RT△OCE中應(yīng)用勾股定理即可.【詳解】試題解析:由題意連接OC,得OE=OB-AE=4-1=3,CE=CD==,CD=2CE=2,故選B.4、D【解析】試題分析:根據(jù)平行線分線段成比例定理,即可進行判斷.解:∵l1∥l2∥l3,∴,,,.∴選項A、B、C正確,D錯誤.故選D.點睛:本題是一道關(guān)于平行線分線段成比例的題目,掌握平行線分線段成比例的相關(guān)知識是解答本題的關(guān)鍵5、C【解析】∵AB是⊙O的直徑,∴∠C=90°,∵∠B=50°,∴∠A=90°-∠B=40°.故選C.6、C【分析】根據(jù)余弦定義:即可解答.【詳解】解:,,米,米;故選C.此題考查了解直角三角形的應(yīng)用,將其轉(zhuǎn)化為解直角三角形的問題是本題的關(guān)鍵,用到的知識點是余弦的定義.7、B【分析】先根據(jù)切線長定理得出,然后利用面積求出OF的長度,即可得到圓的半徑,最后利用梯形的面積公式即可求出梯形的面積.【詳解】連接OF,∵直線分別與⊙相切于,∴.在和中,∴,∴.在和中,∴,∴.∵,.∵,.,∴,,∴梯形的面積為.故選:B.本題主要考查切線的性質(zhì),切線長定理,梯形的面積公式,掌握切線的性質(zhì)和切線長定理是解題的關(guān)鍵.8、A【解析】根據(jù)二次根式有意義的條件:被開方數(shù)為非負(fù)數(shù)解答即可.【詳解】∵是二次根式,∴x-3≥0,解得x≥3.故選A.本題考查了二次根式有意義的條件.熟記二次根式的被開方數(shù)是非負(fù)數(shù)是解題關(guān)鍵.9、A【解析】根據(jù)一元二次方程判別式的公式進行計算即可.【詳解】解:在這個方程中,a=1,b=-2,c=0,∴,故選:A.本題考查一元二次方程判別式,熟記公式正確計算是本題的解題關(guān)鍵.10、D【分析】由拋物線的開口向下可得不等式,解不等式即可得出結(jié)論.【詳解】解:∵拋物線開口向下,∴,∴.故選D.本題考查二次函數(shù)圖象與系數(shù)的關(guān)系,解題的關(guān)鍵是牢記“時,拋物線向上開口;當(dāng)時,拋物線向下開口.”11、C【解析】試題分析:如圖,連接AD.∵CD是⊙O的直徑,∴∠CAD=90°(直徑所對的圓周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所對的圓周角相等),∴∠2=60°考點:圓周角定理12、B【分析】由題意可以知道M(1,2),A(0,2.25),用待定系數(shù)法就可以求出拋物線的解析式,當(dāng)y=0時就可以求出x的值,這樣就可以求出OB的值.【詳解】解:設(shè)拋物線的解析式為y=a(x-1)2+2,把A(0,2.25)代入,得2.25=a+2,a=-0.1.∴拋物線的解析式為:y=-0.1(x-1)2+2.當(dāng)y=0時,0=-0.1(x-1)2+2,解得:x1=-1(舍去),x2=2.OB=2米.故選:B.本題是一道二次函數(shù)的綜合試題,考查了利用待定系數(shù)法求函數(shù)的解析式的運用,運用拋物線的解析式解決實際問題,解答本題是求出拋物線的解析式.二、填空題(每題4分,共24分)13、4+【分析】如圖所示:設(shè)圓O與BC的切點為M,連接OM.由切線的性質(zhì)可知OM⊥BC,然后證明△OMG≌△GCD,得到OM=GC=3,CD=GM=BC﹣BM﹣GC=BC﹣3.設(shè)AB=a,BC=a+3,AC=3a,從而可求得∠ACB=20°,從而得到,故此可求得AB=,則BC=+2.求得AB+BC=4+.【詳解】解:解:如圖所示:設(shè)圓0與BC的切點為M,連接OM.
∵BC是圓O的切線,M為切點,
∴OM⊥BC.
∴∠OMG=∠GCD=90°.
由翻折的性質(zhì)可知:OG=DG.
∵OG⊥GD,
∴∠OGM+∠DGC=90°.
又∵∠MOG+∠OGM=90°,
∴∠MOG=∠DGC.
在△OMG和△GCD中,,∴△OMG≌△GCD.
∴OM=GC=3.
CD=GM=BC-BM-GC=BC-3.
∵AB=CD,
∴BC-AB=3.
設(shè)AB=a,則BC=a+3.
∵圓O是△ABC的內(nèi)切圓,
∴AC=AB+BC-3r.
∴AC=3a.∴.∴∠ACB=20°.∴,∴.故答案為:.考點:3、三角形的內(nèi)切圓與內(nèi)心;3、矩形的性質(zhì);2、翻折變換(折疊問題)14、【分析】連接OB,CO,由題意得∠BOC=90°,OC=OB,在Rt△BOC中,根據(jù)勾股定理即可求解.【詳解】解:連接OB,OC,如圖∵四邊形ABCD是正方形且內(nèi)接于⊙O∴∠BOC=90°,
∴在Rt△BOC中,利用勾股定理得:∵OC=OB,正方形邊長=2∴利用勾股定理得:則∴.
∴⊙O的半徑是,
故答案為:.此題主要考查了正多邊形和圓,本題需仔細(xì)分析圖形,利用勾股定理即可解決問題.15、1【分析】由于水流從拋出至回落到地面時高度h為0,把h=0代入h=30t-5t2即可求出t,也就求出了水流從拋出至回落到地面所需要的時間.【詳解】水流從拋出至回落到地面時高度h為0,
把h=0代入h=30t-5t2得:5t2-30t=0,
解得:t1=0(舍去),t2=1.
故水流從拋出至回落到地面所需要的時間1s.故答案為:1本題考查的是二次函數(shù)在實際生活中的應(yīng)用,關(guān)鍵是正確理解題意,利用函數(shù)解決問題,結(jié)合實際判斷所得出的解.16、24【解析】試題分析:因為斜坡的坡度為,所以BE:AE=,設(shè)BE=12x,則AE=5x;在Rt△ABE中,由勾股定理知:即:解得:x=2或-2(負(fù)值舍去);所以BE=12x=24(米).考點:解直角三角形的應(yīng)用.17、3或1【分析】由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可證得FB=FD,求出AD的長,得出CE的長,設(shè)當(dāng)點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意列出方程并解方程即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵點E是BC的中點,∴CE=BC=AD=9cm,要使點P、Q、E、F為頂點的四邊形是平行四邊形,則PF=EQ即可,設(shè)當(dāng)點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案為3或1.本題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及一元一次方程的應(yīng)用等知識.注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.18、-1.【分析】根據(jù)根與系數(shù)的關(guān)系即可求出答案.【詳解】由題意可知:x1+x2=3,x1x2=﹣m,∵,∴﹣3x1+x1+x2=2x1x2,∴m+3=﹣2m,∴m=﹣1,故答案為:﹣1本題考查根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練運用根與系數(shù)的關(guān)系,本題屬于基礎(chǔ)題型.三、解答題(共78分)19、(1)證明見解析;(2)【分析】(1)連接OE,如圖,通過證明∠GEA+∠OEA=90°得到OE⊥GE,然后根據(jù)切線的判定定理得到EG是⊙O的切線;(2)連接OC,如圖,設(shè)⊙O的半徑為r,則OC=r,OH=r-2,利用勾股定理得到,解得r=3,然后證明Rt△OEM∽Rt△CHA,再利用相似比計算OM的長.【詳解】(1)證明:連接OE,如圖,
∵GE=GF,∴∠GEF=∠GFE,而∠GFE=∠AFH,∴∠GEF=∠AFH,∵AB⊥CD,∴∠OAF+∠AFH=90°,∴∠GEA+∠OAF=90°,∵OA=OE,∴∠OEA=∠OAF,∴∠GEA+∠OEA=90°,即∠GEO=90°,∴OE⊥GE,∴EG是⊙O的切線;(2)解:連接OC,如圖,設(shè)⊙O的半徑為r,則OC=r,OH=r-2,在Rt△OCH中,,解得r=3,在Rt△ACH中,AC=,∵AC∥GE,∴∠M=∠CAH,∴Rt△OEM∽Rt△CHA,∴,即,解得:OM=.本題考查了切線的判斷與性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常?!坝龅角悬c連圓心得半徑.也考查了勾股定理.20、(1)不可能事件;(2).【詳解】試題分析:(1)根據(jù)隨機事件的概念即可得“小李同學(xué)在該天早餐得到兩個油餅”是不可能事件;(2)根據(jù)題意畫出樹狀圖,再由概率公式求解即可.試題解析:(1)小李同學(xué)在該天早餐得到兩個油餅”是不可能事件;(2)樹狀圖法即小張同學(xué)得到豬肉包和油餅的概率為.考點:列表法與樹狀圖法.21、(1)AE=;(2)證明見解析.【分析】(1)根據(jù)題意可得:AB=AC=6,可得AO=3,根據(jù)勾股定理可求BO的值,根據(jù)S△ABO=AB×BO=BO×AE,可求AE的長度.(2)延長AE到P,使AP=BF,可證△ABF≌△APC,可得AF=PC.則GA=PC,由AG⊥AF,AE⊥BE可得∠GAH=∠BFA=∠APC,可證△AGH≌△PHC,結(jié)論可得.【詳解】解:(1)∵AB=AC,AB⊥AC,BC=6∴AB2+AC2=BC2,∴2AC2=72∴AC=AB=6∵四邊形ABCD是平行四邊形∴AO=CO=3在Rt△AOB中,BO==3∵S△ABO=AB×BO=BO×AE∴3×6=3×AE∴AE=(2)如圖:延長AE到P,使AP=BF∵∠BAC=90°,AE⊥BE∴∠BAE+∠ABE=90°,∠BAE+∠CAE=90°∴∠ABE=∠CAE且AB=AC,BF=AP∴△ABF≌△APC∴AF=PC,∠AFB=∠APC∵AG⊥AF,AG=AF∴AG=PC∵∠GAH=∠GAF+∠FAE=90°+∠FAE,∠AFB=∠AEB+∠FAE=90°+∠FAE∴∠GAH=∠AFB∴∠AFB=∠GAH=∠APC,且AG=PC,∠GHA=∠CHP∴△AGH≌△CHP∴GH=HC本題考查了平行四邊形的性質(zhì),全等三角形的性質(zhì)和判定,添加恰當(dāng)輔助線構(gòu)造全等三角形是解決問題的關(guān)鍵.22、(1)詳見解析;(2)36°【分析】(1)連接OP,由已知條件證明,可推出;(2)設(shè),因為OD=DC推出,由OP=OC推出,根據(jù)三角形內(nèi)角和解關(guān)于x的方程即可;【詳解】(1)證明:連接OP.∵,∴PA=PC,在中,∴(SSS),∴;(2)解:設(shè)°,則°,∵OD=DC,∴°,∵OP=OC,∴°,在中,°,∴x+x+3x=180°,解得x=36°,∴=36°.本題主要考查了圓與等腰三角形,全等三角形及三角形內(nèi)角和等知識點,掌握圓的性質(zhì)是解題的關(guān)鍵.23、+【分析】根據(jù)扇形的面積公式進行計算即可.【詳解】解:連接OC且過點O作AC的垂線,垂足為D,如圖所示.∵OA=OC∴AD=1在Rt△AOD中∵∠DAO=30°∴∴OD=,∴由OA=OC;∠DAO=30可得∠COB=60°∴S扇形BOC=∴S陰影=S△AOC+S扇形BOC=+本題考查扇形的面積公式,熟記扇形的面積公式是解題的關(guān)鍵.24、(1)見解析;(2)【分析】(1)欲證明FG=EG,只要證明△AFG≌△CEG即可解決問題;
(2)先根據(jù)等角的三角函數(shù)得tanB==tan∠HAF==,則AF=CE=3,由cos∠C==,可得結(jié)論.【詳解】解:(1)證明:∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠FAG=∠ECG,在△AFG和△CEG中,∵,∴△AFG≌△CEG(AAS),∴AG=CG,∴G為AC中點;(2)解:∵EF⊥BC,AD∥BC,∴AF⊥HF,∠HAF=∠B,∴∠AFH=90°,Rt△AFH中,tanB==tan∠HAF==,∴=,∵FH=4,∴AF=CE=3,Rt△CEG中,cos∠C==,∴,∴AG=CG=.本題考查了平行四邊形的性質(zhì)、全等三角形的判定和性質(zhì),三角函數(shù)等知識,(1)解題的關(guān)鍵是正確尋找全等三角形解決問題,(2)利用三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆喀什地區(qū)2025-2026學(xué)年九年級上學(xué)期期末考試物理試卷(含答案)
- 廣東省揭陽市惠來縣2025-2026學(xué)年八年級數(shù)學(xué)上學(xué)期期末考試(含答案)
- 甘肅省定西市臨洮縣2025-2026學(xué)年下學(xué)期九年級化學(xué)一模練習(xí)試卷(含答案)
- 物化考試題及答案
- 蚊蟲危害題目及答案
- 網(wǎng)上答題題目及答案
- 辦事處行政專員崗位職責(zé)
- 部編版一年級數(shù)學(xué)上冊期末試卷及答案(真題)
- 山西省忻州市忻府區(qū)播明聯(lián)合學(xué)校2022年高二語文測試題含解析
- 2026年培訓(xùn)師專業(yè)技能提升
- 艾梅乙反歧視培訓(xùn)課件
- 管理公司上墻管理制度
- DB64-266-2018 建筑工程資料管理規(guī)程
- 種禽場育種管理制度
- 艾梅乙質(zhì)控管理制度
- 藥店gsp考試試題及答案財務(wù)
- T∕CWEA 24-2024 小型水庫大壩滲透處理技術(shù)導(dǎo)則
- 工程檔案歸檔培訓(xùn)課件
- 消防工程施工資料管理與規(guī)范
- 《2025年CSCO非小細(xì)胞癌診療指南》解讀
- 在線網(wǎng)課學(xué)習(xí)課堂《人工智能(北理 )》單元測試考核答案
評論
0/150
提交評論