解析卷-人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試試卷(含答案詳解版)_第1頁
解析卷-人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試試卷(含答案詳解版)_第2頁
解析卷-人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試試卷(含答案詳解版)_第3頁
解析卷-人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試試卷(含答案詳解版)_第4頁
解析卷-人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、平行四邊形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OA=OC=,則點(diǎn)B的坐標(biāo)為()A.(,1) B.(1,) C.(+1,1) D.(1,+1)2、如圖,將矩形紙片按如圖所示的方式折疊,得到菱形,若,則的長為()A.2 B. C.4 D.3、菱形ABCD的周長是8cm,∠ABC=60°,那么這個(gè)菱形的對角線BD的長是()A.cm B.2cm C.1cm D.2cm4、在菱形ABCD中,兩條對角線AC=10,BD=24,則此菱形的邊長為()A.14 B.25 C.26 D.135、如圖所示,在ABCD中,對角線AC,BD相交于點(diǎn)O,過點(diǎn)O的直線EF分別交AD于點(diǎn)E,BC于點(diǎn)F,,則ABCD的面積為(

)A.24 B.32 C.40 D.486、如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個(gè)條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE7、下列測量方案中,能確定四邊形門框?yàn)榫匦蔚氖牵ǎ〢.測量對角線是否互相平分 B.測量兩組對邊是否分別相等C.測量對角線是否相等 D.測量對角線交點(diǎn)到四個(gè)頂點(diǎn)的距離是否都相等8、如圖,在矩形ABCD中,點(diǎn)E是BC的中點(diǎn),連接AE,點(diǎn)F是AE的中點(diǎn),連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.549、如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對角線AC上,得到折痕AE,則點(diǎn)E到點(diǎn)B的距離為()A. B. C. D.10、如圖,四邊形ABCD中,∠A=60°,AD=2,AB=3,點(diǎn)M,N分別為線段BC,AB上的動(dòng)點(diǎn)(含端點(diǎn),但點(diǎn)M不與點(diǎn)B重合),點(diǎn)E,F(xiàn)分別為DM,MN的中點(diǎn),則EF長度的最大值為()A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在等腰△OAB中,OA=OB=2,∠OAB=90°,以AB為邊向右側(cè)作等腰Rt△ABC,則OC的長為__________________.2、如圖,正方形ABCD中,BD為對角線,且BE為∠ABD的角平分線,并交CD延長線于點(diǎn)E,則∠E=______°.3、點(diǎn)D、E分別是△ABC邊AB、AC的中點(diǎn),已知BC=12,則DE=_____4、如圖,為了測量池塘兩岸A,B兩點(diǎn)之間的距離,可在AB外選一點(diǎn)C,連接AC和BC,再分別取AC、BC的中點(diǎn)D,E,連接DE并測量出DE的長,即可確定A、B之間的距離.若量得DE=15m,則A、B之間的距離為__________m5、如圖,菱形ABCD的對角線AC,BD相交于點(diǎn)O,E為DC的中點(diǎn),若,則菱形的周長為__________.6、如圖,在△ABC中,D,E分別是邊AB,AC的中點(diǎn),∠B=50°.現(xiàn)將△ADE沿DE折疊點(diǎn)A落在三角形所在平面內(nèi)的點(diǎn)為A1,則∠BDA1的度數(shù)為_____.7、在菱形ABCD中,∠B=60°,BC=2cm,M為AB的中點(diǎn),N為BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DE,CE,當(dāng)△CDE為等腰三角形時(shí),線段BN的長為_____.8、如圖,在矩形ABCD中,AD=3AB,點(diǎn)G,H分別在AD,BC上,連BG,DH,且,當(dāng)=_______時(shí),四邊形BHDG為菱形.9、如圖,在正方形ABCD中,,E是AB的中點(diǎn),P是AD上任意一點(diǎn),連接PE,PC,若是等腰三角形,則AP的長可能是______.10、如圖,在平面直角坐標(biāo)系中,O是菱形ABCD對角線BD的中點(diǎn),AD∥x軸,AD=4,∠A=60°.將菱形ABCD繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)D落在x軸上,則旋轉(zhuǎn)后點(diǎn)C的對應(yīng)點(diǎn)的坐標(biāo)是_____________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在?ABCD中,對角線AC的垂直平分線EF交AD于點(diǎn)F,交BC于點(diǎn)E,交AC于點(diǎn)O.求證:四邊形AECF是菱形.(小海的證明過程)證明:∵EF是AC的垂直平分線,∴OA=OC,OE=OF,EF⊥AC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴四邊形AECF是菱形.(老師評析)小海利用對角線互相平分證明了四邊形AECF是平行四邊形,再利用對角線互相垂直證明它是菱形,可惜有一步錯(cuò)了.(挑錯(cuò)改錯(cuò))(1)請你幫小海找出錯(cuò)誤的原因;(2)請你根據(jù)小海的思路寫出此題正確的證明過程.

2、如圖,在中,,D是邊上的一點(diǎn),過D作交于點(diǎn)E,,連接交于點(diǎn)F.(1)求證:是的垂直平分線;(2)若點(diǎn)D為的中點(diǎn),且,求的長.3、在平面直角坐標(biāo)系xOy中,點(diǎn)A(x,﹣m)在第四象限,A,B兩點(diǎn)關(guān)于x軸對稱,x=+n(n為常數(shù)),點(diǎn)C在x軸正半軸上,(1)如圖1,連接AB,直接寫出AB的長為;(2)延長AC至D,使CD=AC,連接BD.①如圖2,若OA=AC,求線段OC與線段BD的關(guān)系;②如圖3,若OC=AC,連接OD.點(diǎn)P為線段OD上一點(diǎn),且∠PBD=45°,求點(diǎn)P的橫坐標(biāo).4、△ABC和△GEF都是等邊三角形.問題背景:如圖1,點(diǎn)E與點(diǎn)C重合且B、C、G三點(diǎn)共線.此時(shí)△BFC可以看作是△AGC經(jīng)過平移、軸對稱或旋轉(zhuǎn)得到.請直接寫出得到△BFC的過程.遷移應(yīng)用:如圖2,點(diǎn)E為AC邊上一點(diǎn)(不與點(diǎn)A,C重合),點(diǎn)F為△ABC中線CD上一點(diǎn),延長GF交BC于點(diǎn)H,求證:.聯(lián)系拓展:如圖3,AB=12,點(diǎn)D,E分別為AB、AC的中點(diǎn),M為線段BD上靠近點(diǎn)B的三等分點(diǎn),點(diǎn)F在射線DC上運(yùn)動(dòng)(E、F、G三點(diǎn)按順時(shí)針排列).當(dāng)最小時(shí),則△MDG的面積為_______.5、我們知道正多邊形的定義是:各邊相等,各角也相等的多邊形叫做正多邊形.(1)如圖①,在各邊相等的四邊形ABCD中,當(dāng)AC=BD時(shí),四邊形ABCD正四邊形;(填“是”或“不是”)(2)如圖②,在各邊相等的五邊形ABCDE中,AC=CE=EB=BD=DA,求證:五邊形ABCDE是正五邊形;(3)如圖③,在各邊相等的五邊形ABCDE中,減少相等對角線的條數(shù)也能判定它是正五邊形,問:至少需要幾條對角線相等才能判定它是正五邊形?請說明理由.-參考答案-一、單選題1、C【解析】【分析】作,求得、的長度,即可求解.【詳解】解:作,如下圖:則在平行四邊形中,,∴∴為等腰直角三角形則,解得∴故選:C【點(diǎn)睛】此題考查了平行四邊形的性質(zhì),等腰直角三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是靈活運(yùn)用相關(guān)性質(zhì)進(jìn)行求解.2、D【解析】【分析】根據(jù)菱形及矩形的性質(zhì)可得到∠BAC的度數(shù),從而根據(jù)直角三角形的性質(zhì)求得BC的長.【詳解】解:∵四邊形AECF為菱形,∴∠FCO=∠ECO,EC=AE,由折疊的性質(zhì)可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又∵EC=AE,AB=AE+EB=6,∴EB=2,EC=4,∴Rt△BCE中,,故選:D.【點(diǎn)睛】本題主要考查了菱形的性質(zhì)以及矩形的性質(zhì),解決問題的關(guān)鍵是根據(jù)折疊以及菱形的性質(zhì)發(fā)現(xiàn)特殊角,根據(jù)30°的直角三角形中各邊之間的關(guān)系求得BC的長.3、B【解析】【分析】由菱形的性質(zhì)得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再證△ABC是等邊三角形,得AC=AB=2(cm),則OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【詳解】解:∵菱形ABCD的周長為8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等邊三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故選:B.【點(diǎn)睛】此題考查了菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定,解題的關(guān)鍵是熟練掌握菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定方法.4、D【解析】【分析】由菱形的性質(zhì)和勾股定理即可求得AB的長.【詳解】解:∵四邊形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,在Rt△ABO中,AB==13,故選:D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理等知識(shí),熟練掌握菱形的性質(zhì),由勾股定理求出AB=13是解題的關(guān)鍵.5、B【解析】【分析】先根據(jù)平行四邊形的性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,從而可得,然后根據(jù)平行四邊形的性質(zhì)即可得.【詳解】解:∵四邊形是平行四邊形,,,在和中,∵,,,,則的面積為,故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),熟練掌握平行四邊形的性質(zhì)是解題關(guān)鍵.6、B【解析】【分析】先證明四邊形BCED為平行四邊形,再根據(jù)矩形的判定進(jìn)行解答.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE為矩形,故本選項(xiàng)不符合題意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四邊形DBCE不能為矩形,故本選項(xiàng)符合題意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE為矩形,故本選項(xiàng)不符合題意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE為矩形,故本選項(xiàng)不符合題意.故選:B.【點(diǎn)睛】本題考查了平行四邊形的判定和性質(zhì)、矩形的判定等知識(shí),判定四邊形BCED為平行四邊形是解題的關(guān)鍵.7、D【解析】【分析】由平行四邊形的判定與性質(zhì)、矩形的判定分別對各個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】解:A、∵對角線互相平分的四邊形是平行四邊形,∴對角線互相平分且相等的四邊形才是矩形,∴選項(xiàng)A不符合題意;B、∵兩組對邊分別相等是平行四邊形,∴選項(xiàng)B不符合題意;C、∵對角線互相平分且相等的四邊形才是矩形,∴對角線相等的四邊形不是矩形,∴選項(xiàng)C不符合題意;D、∵對角線交點(diǎn)到四個(gè)頂點(diǎn)的距離都相等,∴對角線互相平分且相等,∵對角線互相平分且相等的四邊形是矩形,∴選項(xiàng)D符合題意;故選:D.【點(diǎn)睛】本題考查了矩形的判定、平行四邊形的判定與性質(zhì)、解題的關(guān)鍵是熟記矩形的判定定理.8、C【解析】【分析】過點(diǎn)F作,分別交于M、N,由F是AE中點(diǎn)得,根據(jù),計(jì)算即可得出答案.【詳解】如圖,過點(diǎn)F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點(diǎn)E是BC的中點(diǎn),∴,∵F是AE中點(diǎn),∴,∴.故選:C.【點(diǎn)睛】本題考查矩形的性質(zhì)與三角形的面積公式,掌握是解題的關(guān)鍵.9、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解設(shè)BE=x,在Rt△EFC中利用勾股定理列出方程,通過解方程可得答案.【詳解】解:矩形ABCD,設(shè)BE=x,∵AE為折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,則點(diǎn)E到點(diǎn)B的距離為:.故選:C.【點(diǎn)睛】本題考查了勾股定理和矩形與折疊問題;二次根式的乘法運(yùn)算,利用對折得到,再利用勾股定理列方程是解本題的關(guān)鍵.10、A【解析】【分析】根據(jù)三角形的中位線定理得出EF=DN,從而可知DN最大時(shí),EF最大,因?yàn)镹與B重合時(shí)DN最大,此時(shí)根據(jù)勾股定理求得DN,從而求得EF的最大值.連接DB,過點(diǎn)D作DH⊥AB交AB于點(diǎn)H,再利用直角三角形的性質(zhì)和勾股定理求解即可;【詳解】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大時(shí),EF最大,∴N與B重合時(shí)DN=DB最大,在Rt△ADH中,∵∠A=60°∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2,∴DB=,∴EFmax=DB=,∴EF的最大值為.故選A【點(diǎn)睛】本題考查了三角形的中位線定理,勾股定理,含30度角的直角三角形的性質(zhì),利用中位線求得EF=DN是解題的關(guān)鍵.二、填空題1、2或2##或【解析】【分析】如圖1,以AB為斜邊作等腰Rt△ABC,根據(jù)等腰直角三角形的性質(zhì)得到∠OAB=∠ABO=45°,∠CAB=∠CBA=45°,∠ACB=90°,推出四邊形AOBC是正方形,根據(jù)勾股定理得到OC=AB;如圖2,以AB為直角邊作等腰Rt△ABC,求得∠ABC=45°,根據(jù)等腰直角三角形的性質(zhì)得到∠ABO=45°,根據(jù)勾股定理得到BC,于是得到結(jié)論.【詳解】解:如圖1,以AB為斜邊作等腰Rt△ABC,∵OA=OB=2,∠OAB=90°,∴∠OAB=∠ABO=45°,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,∠ACB=90°,∴∠AOB=∠OAC=∠ACB=∠CBO=90°,∴四邊形AOBC是正方形,∴OC=AB==2;如圖2,以AB為直角邊作等腰Rt△ABC,∴∠ABC=45°,∵OA=OB=2,∠OAB=90°,∴∠ABO=45°,AB=2,∴∠CBO=90°,∵△ABC是等腰直角三角形,∴BC==4,∴OC=,當(dāng)以AB、BC為直角邊作等腰直角三角形時(shí),與圖2的解法相同;綜上所述,OC的長為2或2,故答案為:2或2.【點(diǎn)睛】本題考查了勾股定理,等腰直角三角形以及正方形的判定,正確的作出圖形,進(jìn)行分類討論是解題的關(guān)鍵.2、22.5【解析】【分析】由平行線的性質(zhì)可知,由角平分線的定義得,進(jìn)而可求∠E的度數(shù).【詳解】解:為正方形,,,,平分,,又,,故答案為:22.5.【點(diǎn)睛】本題考查了正方形的性質(zhì),平行線的性質(zhì),角平分線的定義,熟練掌握正方形的性質(zhì)是解答本題的關(guān)鍵.3、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進(jìn)行計(jì)算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點(diǎn),∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點(diǎn)睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關(guān)鍵.4、30【解析】【分析】根據(jù)三角形中位線的性質(zhì)解答即可.【詳解】解:∵點(diǎn)D,E分別是AC,BC的中點(diǎn),∴DE是△ABC的中位線,∴AB=2DE=30m.故填30.【點(diǎn)睛】本題主要考查的是三角形中位線定理,掌握三角形的中位線平行于第三邊且等于第三邊的一半是解答本題的關(guān)鍵.5、16【解析】【分析】由菱形的性質(zhì)和三角形中位線定理即可得菱形的邊長,從而可求得菱形的周長.【詳解】∵四邊形ABCD是菱形,且對角線相交于點(diǎn)O∴點(diǎn)O是AC的中點(diǎn)∵E為DC的中點(diǎn)∴OE為△CAD的中位線∴AD=2OE=2×2=4∴菱形的周長為:4×4=16故答案為:16【點(diǎn)睛】本題考查了菱形的性質(zhì)及三角形中位線定理、菱形周長等知識(shí),掌握這些知識(shí)是解答本題的關(guān)鍵.6、80°【解析】【分析】由翻折的性質(zhì)得∠ADE=∠A1DE,由中位線的性質(zhì)得DE//BC,由平行線的性質(zhì)得∠ADE=∠B=50°,即可解決問題.【詳解】解:由題意得:∠ADE=∠A1DE;∵D、E分別是邊AB、AC的中點(diǎn),∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°?100°=80°.故答案為:80°.【點(diǎn)睛】本題主要考查了翻折變換及其應(yīng)用問題;同時(shí)還考查了三角形的中位線定理等幾何知識(shí)點(diǎn).熟練掌握各性質(zhì)是解題的關(guān)鍵.7、cm或2cm【解析】【分析】分兩種情況:①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,由菱形的性質(zhì)得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=120°,證出D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如圖2,當(dāng)CE=CD上,CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2(含CE=DE這種情況).【詳解】解:分兩種情況,①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,∵四邊形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M(jìn)為AB的中點(diǎn),∴AM=BM=1,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:,解得:x=,即BN=cm;②當(dāng)CE=CD時(shí),CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,如圖2所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2cm(符合題干要求);綜上所述,當(dāng)△CDE為等腰三角形時(shí),線段BN的長為cm或2cm;故答案為cm或2cm.【點(diǎn)睛】本題考查了折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、三點(diǎn)共線、勾股定理、直角三角形的性質(zhì)、等腰三角形的性質(zhì)等知識(shí),熟練掌握并靈活運(yùn)用是解題的關(guān)鍵.8、【解析】【分析】設(shè)則再利用矩形的性質(zhì)建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設(shè)AD=3AB,設(shè)則矩形ABCD,解得:故答案為:【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì),菱形的性質(zhì),利用圖形的性質(zhì)建立方程確定之間的關(guān)系是解本題的關(guān)鍵.9、或或【解析】【分析】分三種情況:當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),利用等腰三角形的性質(zhì)和正方形的性質(zhì)進(jìn)行求解即可.【詳解】解:如圖1,當(dāng)時(shí),∵四邊形ABCD是正方形,∴∠B=∠D=90°,BC=DC,∴,∴則,∵E是AB的中點(diǎn),∴∴;如圖2.當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),∵四邊形ABCD是正方形,∴AD=BC,∠A=∠B=90°,∵E是AB的中點(diǎn),∴AE=BE,∴△ADE≌△BCE(SAS),∴即PE=CE,是等腰三角形.∴;如圖3.當(dāng)時(shí),設(shè),則,在直角△PDC中,,在直角△AEP中,,則.解得,即.綜上所述,AP的長可能是1或2或.故答案為:1或2或.【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì),正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,解題的關(guān)鍵在于能夠熟練掌握等腰三角形的性質(zhì)和正方形的性質(zhì).10、或##或【解析】【分析】分當(dāng)D落在x軸正半軸時(shí)和當(dāng)D落在x軸負(fù)半軸時(shí),兩種情況討論求解即可.【詳解】解:如圖1所示,當(dāng)D落在x軸正半軸時(shí),∵O是菱形ABCD對角線BD的中點(diǎn),∴AO⊥DO,∴當(dāng)D落在x軸正半軸時(shí),A點(diǎn)在y軸正半軸,∴同理可得A、B、C三點(diǎn)均在坐標(biāo)軸上,且點(diǎn)C在y軸負(fù)半軸,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴點(diǎn)C的坐標(biāo)為(0,);如圖2所示,當(dāng)D落在x軸負(fù)半軸時(shí),同理可得,∴點(diǎn)C的坐標(biāo)為(0,);∴綜上所述,點(diǎn)C的坐標(biāo)為(0,)或(0,),故答案為:(0,)或(0,).【點(diǎn)睛】本題主要考查了菱形的性質(zhì),坐標(biāo)與圖形,含30度角的直角三角形的性質(zhì),勾股定理,熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)見解析【分析】(1)由垂直平分線的性質(zhì)可求解;(2)由“”可證,可得,且,,由菱形的判定可證四邊形是菱形.【詳解】解:(1)是的垂直平分線,,,不能得出;(2)四邊形是平行四邊形,.是的垂直平分線,,,且,,且四邊形是平行四邊形.四邊形是菱形.【點(diǎn)睛】本題考查了菱形的判定,全等三角形的判定和性質(zhì),線段垂直平分線的性質(zhì),平行四邊形的性質(zhì),解題的關(guān)鍵是熟練運(yùn)用線段垂直平分線的性質(zhì).2、(1)見解析;(2)6【分析】(1)由BC=BD,可得∠BCD=∠BDC,再由及,可得∠ECD=∠EDC,則有EC=ED,從而可得點(diǎn)B、E在線段CD的垂直平分線上,從而可得結(jié)論;(2)由D點(diǎn)是AB的中點(diǎn)及BC=BD,可得△BDC是等邊三角形,從而由30度的直角三角形的性質(zhì)可分別求得EC、BE,由AE=BE,即可求得AC的長.【詳解】(1)∵BC=BD∴∠BCD=∠BDC,點(diǎn)B在線段CD的垂直平分線上∵,∴∠BCD+∠ECD=∠EDC+∠BDC∴∠ECD=∠EDC∴EC=ED∴點(diǎn)E在線段CD的垂直平分線上∴BE是線段CD的垂直平分線(2)D點(diǎn)是AB的中點(diǎn),∠ACB=90゜∴CD是Rt△ABC斜邊上的中線∴CD=BD∴CD=BC=BD∴△BDC是等邊三角形∴∠BCD=∠DBC=60゜∴∠ECF=90゜-60゜=30゜由(1)知,BF⊥CD∴EC=2EF=2,∴BE=2EC=4∵DE⊥AB,點(diǎn)D為AB的中點(diǎn)∴AE=BE=4∴AC=AE+EC=4+2=6【點(diǎn)睛】本題考查了線段垂直平分線的性質(zhì)定理和判定定理,直角三角形斜邊上的中線的性質(zhì),30度角的直角三角形的性質(zhì),等邊三角形的判定與性質(zhì);題目雖不難,但涉及的知識(shí)點(diǎn)比較多,靈活運(yùn)用這些知識(shí)是解題的關(guān)鍵.3、(1)6;(2)①OC=BD,OC∥BD;②3.【分析】(1)利用二次根式的被開方數(shù)是非負(fù)數(shù),求出m=3,判斷出A,B兩點(diǎn)坐標(biāo),可得結(jié)論;(2)①結(jié)論:OC=BD,OC∥BD.連接AB交x軸于點(diǎn)T.利用等腰三角形的三線合一的性質(zhì)得出OC=2CT,利用三角形中位線定理得出CT∥BD,BD=2CT,由此即可得;②連接AB交OC于點(diǎn)T,過點(diǎn)P作PH⊥OC于H.證明△OTB≌△PHO(AAS),推出BT=OH=3,即可得出結(jié)論.【詳解】解:(1)由題意,,∴m=3,∴x=n,∴A(n,﹣3),∵A,B關(guān)于x軸對稱,∴B(n,3),∴AB=3﹣(﹣3)=6,故答案為:6;(2)①結(jié)論:OC=BD,OC∥BD.理由:如圖,連接AB交x軸于點(diǎn)T.

∵A,B關(guān)于x軸對稱,∴AB⊥OC,AT=TB,∵AO=AC,∴OT=CT(等腰三角形的三線合一),∴OC=2CT,∵AC=CD,AT=TB,∴CT∥BD,BD=2CT,∴OC=BD,OC∥BD;②如圖,連接AB交OC于點(diǎn)T,過點(diǎn)作于點(diǎn),,,∵AC=OC=CD,∴∠COA=∠OAC,∠COD=∠CDO,∴2∠OAC+2∠CDO=180°,∴∠OAC+∠CDO=90°,∴∠AOD=90°,∵A,B關(guān)于x軸對稱,∴OT⊥AB,OA=OB,∴∠OBT=∠OAT,∵∠COD+∠AOC=90°,∠AOC+∠OAT=90°,∴∠OAT=∠COD,∴∠OBT=∠COD,即∠OBT=∠POH,∵BD∥OC,∴∠PDB=∠POH=∠OBT,∠ABD=90°,∵∠PBD=45°,∴∠ABP=45°,∵∠OBP=∠OBT+∠ABP=∠OBT+45°,∠OPB=∠PBD+∠PDB=45°+∠PDB,∴∠OBP=∠OPB,∴OB=PO,在和中,,∴△OTB≌△PHO(AAS),∴BT=OH=3,故點(diǎn)P的橫坐標(biāo)為3.【點(diǎn)睛】本題考查了坐標(biāo)與軸對稱變化、三角形中位線定理、等腰三角形的三線合一等知識(shí)點(diǎn),較難的是題(2)②,通過作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.4、(1)以點(diǎn)C為旋轉(zhuǎn)中心將逆時(shí)針旋轉(zhuǎn)就得到;(2)見解析;(3).【分析】(1)只需要利用SAS證明△BCF≌△ACG即可得到答案;(2)法一:以為邊作,與的延長線交于點(diǎn)K,如圖,先證明,然后證明,得到,則,過點(diǎn)F作FM⊥BC于M,求出,即可推出,則,即:;法二:過F作,.先證明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性質(zhì)求出,再證明得到,則;(3)如圖3-1所示,連接,GM,AG,先證明△ADE是等邊三角形,得到DE=AE,即可證明得到,即點(diǎn)G在的角平分線所在直線上運(yùn)動(dòng).過G作,則,最小即是最小,故當(dāng)M、G、P三點(diǎn)共線時(shí),最?。蝗鐖D3-2所示,過點(diǎn)G作GQ⊥AB于Q,連接DG,求出DM和QG的長即可求解.【詳解】(1)∵△ABC和△GEF都是等邊三角形,∴BC=AC,CF=CG,∠ACB=∠FCG=60°,∴∠ACB+∠ACF=∠FCG+∠ACF,∴∠FCB=∠GCA,∴△BCF≌△ACG(SAS),∴△BFC可以看作是△AGC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60度所得;(2)法一:證明:以為邊作,與的延長線交于點(diǎn)K,如圖,∵和均為等邊三角形,∴,∠GFE=60°,∴,∴∠EFH+∠ACB=180°,∴,∵,∴.∵是等邊的中線,∴,∴,∴∴.在與中,∴,∴,∴,過點(diǎn)F作FM⊥BC于M,∴KM=CM,∵∠K=30°,∴∴,∴,∴,即:;法二證明:過F作,.∴是等邊的中線,∴,,∴△FCN≌△FCM(AAS),F(xiàn)C=2FN,∴CM=CN,,同法一,.在與中,∴∴,∴;(3)如圖3-1所示,連接,GM,AG,∵D,E分別是AB,AC的中點(diǎn),∴DE是△ABC的中位線,CD⊥AB,∴DE∥BC,∠CDA=90°,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等邊三角形,∠FDE=30°,∴DE=AE,∵△GEF是等邊三角形,∴EF=EG,∠GEF=60°,∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,∴∴,即點(diǎn)G在的角平分線所在直線上運(yùn)動(dòng).過G作,則,∴最小即是最小,∴當(dāng)M、G、P三點(diǎn)共線時(shí),最小如圖3-2所示,過點(diǎn)G作GQ⊥AB于Q,連接DG,∴QG=PG,∵∠MAP=60°,∠MPA=90°,∴∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論