2024-2025學(xué)年人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》達(dá)標(biāo)測(cè)試練習(xí)題(詳解)_第1頁
2024-2025學(xué)年人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》達(dá)標(biāo)測(cè)試練習(xí)題(詳解)_第2頁
2024-2025學(xué)年人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》達(dá)標(biāo)測(cè)試練習(xí)題(詳解)_第3頁
2024-2025學(xué)年人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》達(dá)標(biāo)測(cè)試練習(xí)題(詳解)_第4頁
2024-2025學(xué)年人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》達(dá)標(biāo)測(cè)試練習(xí)題(詳解)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》達(dá)標(biāo)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在△ABC和△DEF中,已知AB=DE,BC=EF,根據(jù)(SAS)判定△ABC≌△DEF,還需的條件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三個(gè)均可以2、下列說法正確的是(

)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點(diǎn)所表示的數(shù)為;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角”;⑤如圖,在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn).A.1 B.2 C.3 D.43、如圖,△ABC中,已知∠B=∠C,點(diǎn)E,F(xiàn),P分別是AB,AC,BC上的點(diǎn),且BE=CP,BP=CF,若∠A=112°,則∠EPF的度數(shù)是(

)A.34° B.36° C.38° D.40°4、如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M,連接OM,下列結(jié)論:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正確的個(gè)數(shù)為()A.4 B.3 C.2 D.15、如圖,,,要使,直接利用三角形全等的判定方法是A.AAS B.SAS C.ASA D.SSS6、如圖,在和中,,則下列結(jié)論中錯(cuò)誤的是(

)A. B. C. D.E為BC中點(diǎn)7、如圖,AB=AD,∠BAO=∠DAO,由此可以得出的全等三角形是()A.≌ B.≌C.≌ D.≌8、圖,,,則的對(duì)應(yīng)邊是(

)A. B. C. D.9、作的平分線時(shí),以O(shè)為圓心,某一長(zhǎng)度為半徑作弧,與OA,OB分別相交于C,D,然后分別以C,D為圓心,適當(dāng)?shù)拈L(zhǎng)度為半徑作弧使兩弧在的內(nèi)部相交于一點(diǎn),則這個(gè)適當(dāng)?shù)拈L(zhǎng)度(

)A.大于 B.等于 C.小于 D.以上都不對(duì)10、如圖,在中,,,點(diǎn)E在BC的延長(zhǎng)線上,的平分線BD與的平分線CD相交于點(diǎn)D,連接AD,則下列結(jié)論中,正確的是A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,已知BE=DC,請(qǐng)?zhí)砑右粋€(gè)條件,使得△ABE≌△ACD:_____.2、如圖,在△ABC中,點(diǎn)D、E分別為邊AC、BC上的點(diǎn),且AD=DE,AB=BE,∠A=70°,則∠CED=______度.3、如圖,已知在四邊形中,厘米,厘米,厘米,,點(diǎn)為線段的中點(diǎn).如果點(diǎn)在線段上以3厘米/秒的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).當(dāng)點(diǎn)的運(yùn)動(dòng)速度為___________厘米/秒時(shí),能夠使與以,,三點(diǎn)所構(gòu)成的三角形全等.4、如圖,中,,,D為延長(zhǎng)線上一點(diǎn),,且,與的延長(zhǎng)線交于點(diǎn)P,若,則__________.5、如圖,已知,請(qǐng)你添加一個(gè)條件,使得,你添加的條件是_____.(不添加任何字母和輔助線)6、已知∠AOB=60°,以O(shè)為圓心,以任意長(zhǎng)為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)度為半徑作弧,兩弧在∠AOB內(nèi)交于點(diǎn)P,以O(shè)P為邊作∠POC=15°,則∠BOC的度數(shù)為__________.7、如圖所示,點(diǎn)在一塊直角三角板上(其中),于點(diǎn),于點(diǎn),若,則_________度.8、如圖,平分,.填空:因?yàn)槠椒?,所以________.從而________.因此________.9、如圖,將一張直角三角形紙片對(duì)折,使點(diǎn)B、C重合,折痕為DE,連接DC,若AC=6cm,∠ACB=90°,∠B=30°,則△ADC的周長(zhǎng)是_____cm.10、如圖,已知AC與BF相交于點(diǎn)E,ABCF,點(diǎn)E為BF中點(diǎn),若CF=8,AD=5,則BD=_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在中,,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作,DE交線段AC于E.(1)點(diǎn)D從B向C運(yùn)動(dòng)時(shí),逐漸變__________(填“大”或“小”),但與的度數(shù)和始終是__________度.(2)當(dāng)DC的長(zhǎng)度是多少時(shí),,并說明理由.2、小明和小亮在學(xué)習(xí)探索三角形全等時(shí),碰到如下一題:如圖1,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關(guān)系?(1)請(qǐng)你幫他們解答,并說明理由.(2)細(xì)心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點(diǎn)E,連接CE、DE,則有CE=DE,你知道為什么嗎?(如圖2)(3)小亮在小明說出理由后,提出如果在AB的延長(zhǎng)線上任取一點(diǎn)P,也有第2題類似的結(jié)論.請(qǐng)你幫他畫出圖形,并證明結(jié)論.3、如圖,已知AB=AD,AC=AE,∠BAE=∠DAC.求證:∠C=∠E.4、如圖,在五邊形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線.(1)求證:△ABE≌△DCE;(2)當(dāng)∠A=80°,∠ABC=140°,時(shí),∠AED=_________度(直接填空).5、△ABC、△DPC都是等邊三角形.(1)如圖1,求證:AP=BD;(2)如圖2,點(diǎn)P在△ABC內(nèi),M為AC的中點(diǎn),連PM、PA、PB,若PA⊥PM,且PB=2PM.①求證:BP⊥BD;②判斷PC與PA的數(shù)量關(guān)系并證明.-參考答案-一、單選題1、B【解析】【分析】根據(jù)三角形全等的判定中的SAS,即兩邊夾角.已知兩條邊相等,只需要它們的夾角相等即可.【詳解】要使兩三角形全等,已知AB=DE,BC=EF,要用SAS判斷,還差?yuàn)A角,即∠B=∠E.故選:B.【考點(diǎn)】本題考查了三角形全等的判定方法.三角形全等的判定是中考的熱點(diǎn),一般以考查三角形全等的方法為主.2、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實(shí)數(shù)的大小比較,可判斷②;根據(jù)點(diǎn)在數(shù)軸上所對(duì)應(yīng)的實(shí)數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯(cuò)誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點(diǎn)所表示的數(shù)為,故本小題錯(cuò)誤;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角或三個(gè)鈍角”,故本小題錯(cuò)誤;⑤在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn),故本小題正確.故選B【考點(diǎn)】本題主要考查近似數(shù)的精確度定義,實(shí)數(shù)的大小比較,點(diǎn)在數(shù)軸上所對(duì)應(yīng)的實(shí)數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識(shí)點(diǎn),是解題的關(guān)鍵.3、A【解析】【分析】由三角形內(nèi)角和定理可得∠B=∠C=34°,由△EBP≌△PCF可得∠EPB=∠PFC,再由三角形外角的性質(zhì)便可解答;【詳解】解:△BAC中,∠B=∠C,∠A=112°,則∠B=∠C=34°,△EBP和△PCF中:BE=CP,∠EBP=∠PCF,BP=CF,∴△EBP≌△PCF(SAS),∴∠EPB=∠PFC,∵∠BPF=∠EPB+∠EPF=∠C+∠PFC,∴∠EPF=∠C=34°,故選:A.【考點(diǎn)】本題考查了三角形內(nèi)角和定理,全等三角形的判定和性質(zhì),三角形外角的性質(zhì);掌握全等三角形的判定定理和性質(zhì)是解題關(guān)鍵.4、A【解析】【分析】由題意易得∠AOC=∠BOD,然后根據(jù)三角形全等的性質(zhì)及角平分線的判定定理可進(jìn)行求解.【詳解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正確;過點(diǎn)O作OE⊥AC于點(diǎn)E,OF⊥BD于點(diǎn)F,BD與OA相交于點(diǎn)H,如圖所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正確;所以正確的個(gè)數(shù)有4個(gè);故選A.【考點(diǎn)】本題主要考查全等三角形的性質(zhì)與判定及角平分線的判定定理,熟練掌握全等三角形的性質(zhì)與判定及角平分線的判定定理是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)平行線性質(zhì)得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根據(jù)全等三角形的判定定理SAS即可推出△ABD≌△CDB,從而推出∠A=∠C,即可得出答案.【詳解】,,在和中,,≌,,故選B.【考點(diǎn)】本題考查了平行線性質(zhì)、全等三角形的判定與性質(zhì)的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)定理是解題的關(guān)鍵.6、D【解析】【分析】首先證明,推出,,由,推出,推出,即可一一判斷.【詳解】解:∵,∴和為直角三角形,在和中,,∴,∴,,,∵,∴,∴,故A、B、C正確,故選:D.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì).7、B【解析】【分析】觀察圖形,運(yùn)用SAS可判定△ABO與△ADO全等.【詳解】解:∵AB=AD,∠BAO=∠DAO,AO是公共邊,

∴△ABO≌△ADO(SAS).故選B.【考點(diǎn)】本題考查全等三角形的判定,屬基礎(chǔ)題,比較簡(jiǎn)單.8、C【解析】【分析】根據(jù)全等三角形中對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,可知BC=DA.【詳解】解:∵ABC≌△CDA,∠BAC=∠DCA,∴∠BAC與∠DCA是對(duì)應(yīng)角,∴BC與DA是對(duì)應(yīng)邊(對(duì)應(yīng)角對(duì)的邊是對(duì)應(yīng)邊).故選C.【考點(diǎn)】本題考查了全等三角形中對(duì)應(yīng)邊的找法,解題的關(guān)鍵是掌握書寫的特點(diǎn).9、A【解析】【分析】根據(jù)作已知角的角平分線的方法即可判斷.【詳解】因?yàn)榉謩e以C,D為圓心畫弧時(shí),要保證兩弧在的內(nèi)部交于一點(diǎn),所以半徑應(yīng)大于,故選:A.【考點(diǎn)】本題考查了作圖-基本作圖:熟練掌握5種基本作圖(作一條線段等于已知線段;作一個(gè)角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點(diǎn)作已知直線的垂線).10、B【解析】【分析】由∠ABC=50°,∠ACB=60°,可判斷出AC≠AB,根據(jù)三角形內(nèi)角和定理可求出∠BAC的度數(shù),根據(jù)鄰補(bǔ)角定義可求出∠ACE度數(shù),由BD平分∠ABC,CD平分∠ACE,根據(jù)角平分線的定義以及三角形外角的性質(zhì)可求得∠BDC的度數(shù),繼而根據(jù)三角形內(nèi)角和定理可求得∠DOC的度數(shù),據(jù)此對(duì)各選項(xiàng)進(jìn)行判斷即可得.【詳解】∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=70°,∠ACE=180°-∠ACB=120°,AC≠AB,∵BD平分∠ABC,CD平分∠ACE,∴∠DBC=∠ABC=25°,∠DCE=∠ACD=∠ACE=60°,∴∠BDC=∠DCE-∠DBC=35°,∴∠DOC=180°-∠OCD-∠ODC=180°-60°-35°=85°,∵∠DBC=25°,∠BDC=35°,∴BC≠CD,故選B.【考點(diǎn)】本題考查了三角形內(nèi)角和定理,等腰三角形判定,角平分線的定義等,熟練掌握角平分線的定義以及三角形內(nèi)角和定理是解本題的關(guān)鍵.二、填空題1、∠B=∠C【解析】【分析】根據(jù)全等三角形的判定方法解答即可.【詳解】解:∵BE=DC,∠A=∠A,∴根據(jù)AAS,可以添加∠B=∠C,使得△ABE≌△ACD,故答案為:∠B=∠C.【考點(diǎn)】本題考查全等三角形的判定,解題的關(guān)鍵是熟練掌握全等三角形的判定方法,屬于中考??碱}型.2、110【解析】【分析】根據(jù)SSS證△ABD≌△EBD,得∠BED=∠A=70°,進(jìn)而得出∠CED.【詳解】解:∵AD=DE,AB=BE又BD=BD∴△ABD≌△EBD(SSS)∴∠BED=∠A=70°∴∠CED=180°-∠BED=180°-70°=110°故本題答案為110.【考點(diǎn)】本題通過考查全等三角形的判定和性質(zhì),進(jìn)而得出結(jié)論.3、3或【解析】【分析】分兩種情況討論,依據(jù)全等三角形的對(duì)應(yīng)邊相等,即可得到點(diǎn)Q的運(yùn)動(dòng)速度.【詳解】解:設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,則BP=3t,CP=8﹣3t,∵∠B=∠C,∴①當(dāng)BE=CP=6,BP=CQ時(shí),△BPE與△CQP全等,此時(shí),6=8﹣3t,解得t,∴BP=CQ=2,此時(shí),點(diǎn)Q的運(yùn)動(dòng)速度為23厘米/秒;②當(dāng)BE=CQ=6,BP=CP時(shí),△BPE與△CQP全等,此時(shí),3t=8﹣3t,解得t,∴點(diǎn)Q的運(yùn)動(dòng)速度為6厘米/秒;故答案為:3或.【考點(diǎn)】本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,解題的關(guān)鍵是掌握全等三角形的對(duì)應(yīng)邊相等.4、【解析】【分析】作于,根據(jù)全等三角形性質(zhì)得出CP=PM,DC=AM,設(shè)PC=PM=x,AC=BC=3x,AM=DC=5x,求出BD=2x,即可求出答案.【詳解】解:作于,,,,,,,,在和中,,,,,,,,在和中,,,,,設(shè),,,,,故答案為:.【考點(diǎn)】本題考查了三角形內(nèi)角和定理,全等三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的推理能力.5、或或.【解析】【分析】根據(jù)圖形可知證明已經(jīng)具備了一個(gè)公共角和一對(duì)相等邊,因此可以利用ASA、SAS、AAS證明兩三角形全等.【詳解】∵,,∴可以添加,此時(shí)滿足SAS;添加條件,此時(shí)滿足ASA;添加條件,此時(shí)滿足AAS,故答案為或或;【考點(diǎn)】本題考查了全等三角形的判定,是一道開放題,解題的關(guān)鍵是牢記全等三角形的判定方法.6、或【解析】【分析】以O(shè)為圓心,以任意長(zhǎng)為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)度為半徑作弧,兩弧在內(nèi)交于點(diǎn)P,則OP為的平分線,以O(shè)P為邊作,則為作或的角平分線,即可求解.【詳解】解:以O(shè)為圓心,以任意長(zhǎng)為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)度為半徑作弧,兩弧在內(nèi)交于點(diǎn)P,得到OP為的平分線,再以O(shè)P為邊作,則為作或的角平分線,所以或.故答案為:或.【考點(diǎn)】本題考查的是復(fù)雜作圖,主要要理解作圖是在作角的平分線,同時(shí)要考慮以O(shè)P為邊作的兩種情況,避免遺漏.7、15【解析】【分析】根據(jù),,判斷OB是的角平分線,即可求解.【詳解】解:由題意,,,,即點(diǎn)O到BC、AB的距離相等,∴OB是的角平分線,∵,∴.故答案為:15.【考點(diǎn)】本題考查角平分線的定義及判定,熟練掌握“到一個(gè)角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上”是解題的關(guān)鍵.8、

【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由內(nèi)錯(cuò)角相等可以得出兩直線平行.【詳解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(內(nèi)錯(cuò)角相等,兩直線平行).故答案為:∠CAB,∠CAB,DC.【考點(diǎn)】本題考查了平行線的判定定理以及角平分線的定義,解題的關(guān)鍵是找出∠CAB=∠2.解決該類題型只需牢牢掌握平行線的判定定理即可.9、18【解析】【分析】【詳解】解:根據(jù)折疊前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周長(zhǎng)是18cm.故答案為8.10、3【解析】【分析】利用全等三角形的判定定理和性質(zhì)定理可得結(jié)果.【詳解】解:∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵點(diǎn)E為BF中點(diǎn),∴BE=FE,在△ABE與△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=8,∵AD=5,∴BD=3,故答案為:3.【考點(diǎn)】本題主要考查了全等三角形的判定定理和性質(zhì)定理,熟練掌握定理是解答此題的關(guān)鍵.三、解答題1、(1)小;140(2)當(dāng)DC=2時(shí),△ABD≌△DCE,理由見解析【解析】【分析】(1)利用三角形的內(nèi)角和即可得出結(jié)論;(2)當(dāng)DC=2時(shí),利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(1)在△ABD中,∠B+∠BAD+∠ADB=180°,設(shè)∠BAD=x°,∠BDA=y°,∴40°+x+y=180°,∴y=140-x(0<x<100),當(dāng)點(diǎn)D從點(diǎn)B向C運(yùn)動(dòng)時(shí),x增大,∴y減小,+=180°-故答案為:小,140;(2)當(dāng)DC=2時(shí),△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);【考點(diǎn)】此題主要考查學(xué)生對(duì)等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形外角的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,三角形的內(nèi)角和公式,解本題的關(guān)鍵是分類討論.2、(1),理由見解析;(2)見解析;(3)見解析【解析】【分析】(1)根據(jù)全等三角形的判定定理證得;(2)由(1)中的全等三角形的對(duì)應(yīng)角相等證得,則由全等三角形的判定定理證得,則對(duì)應(yīng)邊;(3)同(2),利用全等三角形的對(duì)應(yīng)邊相等證得結(jié)論.【詳解】解:(1),理由如下:如圖1,在與中,,;(2)如圖2,由(1)知,,則.在與中,,,;(3)如圖3,.理由同(2),,則.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì).在應(yīng)用全等三角形的判定時(shí),要注意三角形間的公共邊和公共角,必要時(shí)添加適當(dāng)輔助線構(gòu)造三角形.3、見解析.【解析】【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根據(jù)“SAS”可判斷△ABC≌△ADE,根據(jù)全等的性質(zhì)即可得到∠C=∠E.【詳解】∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS),∴∠C=∠E.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì):判斷三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等.4、(1)見解析;(2)100【解析】【分析】(1)根據(jù)∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線,可得∠ABE=∠DCE,∠CBE=∠BCE,推出BE=CE,由此利用SAS證明△ABE≌△DCE;(2)根據(jù)三角形全等的性質(zhì)求出∠D的度數(shù),利用公式求出五邊形的內(nèi)角和,即可得到答案.(1)證明:∵∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線,∴∠ABE=∠CBE=∠ABC,∠BCE=∠DCE=∠BCD,∴∠ABE=∠DCE,∠CBE=∠BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論