2025年中國精算師職業(yè)資格考試(準(zhǔn)精算師概率論與數(shù)理統(tǒng)計)模擬試題及答案 成都_第1頁
2025年中國精算師職業(yè)資格考試(準(zhǔn)精算師概率論與數(shù)理統(tǒng)計)模擬試題及答案 成都_第2頁
2025年中國精算師職業(yè)資格考試(準(zhǔn)精算師概率論與數(shù)理統(tǒng)計)模擬試題及答案 成都_第3頁
2025年中國精算師職業(yè)資格考試(準(zhǔn)精算師概率論與數(shù)理統(tǒng)計)模擬試題及答案 成都_第4頁
2025年中國精算師職業(yè)資格考試(準(zhǔn)精算師概率論與數(shù)理統(tǒng)計)模擬試題及答案 成都_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025年中國精算師職業(yè)資格考試(準(zhǔn)精算師概率論與數(shù)理統(tǒng)計)模擬試題及答案成都一、單項選擇題(每題2分,共30分)1.設(shè)隨機(jī)變量\(X\)服從參數(shù)為\(\lambda\)的泊松分布,且\(P(X=1)=P(X=2)\),則\(\lambda\)的值為()A.1B.2C.3D.4答案:B解析:已知隨機(jī)變量\(X\)服從參數(shù)為\(\lambda\)的泊松分布,其概率質(zhì)量函數(shù)為\(P(X=k)=\frac{\lambda^{k}e^{-\lambda}}{k!}\),\(k=0,1,2,\cdots\)。因為\(P(X=1)=P(X=2)\),所以\(\frac{\lambda^{1}e^{-\lambda}}{1!}=\frac{\lambda^{2}e^{-\lambda}}{2!}\),即\(\lambda=\frac{\lambda^{2}}{2}\),由于\(\lambda>0\),解得\(\lambda=2\)。2.設(shè)\(X\)和\(Y\)是兩個相互獨(dú)立的隨機(jī)變量,且\(X\simN(0,1)\),\(Y\simN(1,1)\),則()A.\(P(X+Y\leqslant0)=\frac{1}{2}\)B.\(P(X+Y\leqslant1)=\frac{1}{2}\)C.\(P(X-Y\leqslant0)=\frac{1}{2}\)D.\(P(X-Y\leqslant1)=\frac{1}{2}\)答案:B解析:因為\(X\)和\(Y\)相互獨(dú)立,且\(X\simN(0,1)\),\(Y\simN(1,1)\),根據(jù)獨(dú)立正態(tài)分布的線性組合仍為正態(tài)分布,可得\(X+Y\simN(0+1,1+1)=N(1,2)\)。對于正態(tài)分布\(Z\simN(\mu,\sigma^{2})\),\(P(Z\leqslant\mu)=\frac{1}{2}\),所以\(P(X+Y\leqslant1)=\frac{1}{2}\)。3.設(shè)總體\(X\simN(\mu,\sigma^{2})\),\(X_1,X_2,\cdots,X_n\)是來自總體\(X\)的樣本,\(\overline{X}=\frac{1}{n}\sum_{i=1}^{n}X_i\),\(S^{2}=\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^{2}\),則\(\frac{(n-1)S^{2}}{\sigma^{2}}\)服從()A.\(N(0,1)\)B.\(\chi^{2}(n-1)\)C.\(t(n-1)\)D.\(F(n-1,n)\)答案:B解析:根據(jù)正態(tài)總體樣本方差的性質(zhì),設(shè)總體\(X\simN(\mu,\sigma^{2})\),\(X_1,X_2,\cdots,X_n\)是來自總體\(X\)的樣本,則\(\frac{(n-1)S^{2}}{\sigma^{2}}\sim\chi^{2}(n-1)\)。4.設(shè)隨機(jī)變量\(X\)的概率密度函數(shù)為\(f(x)=\begin{cases}2x,&0<x<1\\0,&\text{其他}\end{cases}\),則\(P(X\leqslant0.5)\)的值為()A.0.25B.0.5C.0.75D.1答案:A解析:由概率密度函數(shù)求概率,\(P(X\leqslant0.5)=\int_{-\infty}^{0.5}f(x)dx=\int_{0}^{0.5}2xdx=x^{2}\big|_{0}^{0.5}=0.25\)。5.設(shè)\(X\)是一個隨機(jī)變量,\(E(X)=\mu\),\(D(X)=\sigma^{2}\),則對任意常數(shù)\(c\),有()A.\(E[(X-c)^{2}]=E[(X-\mu)^{2}]\)B.\(E[(X-c)^{2}]\geqslantE[(X-\mu)^{2}]\)C.\(E[(X-c)^{2}]<E[(X-\mu)^{2}]\)D.\(E[(X-c)^{2}]=E(X^{2})-c^{2}\)答案:B解析:\(E[(X-c)^{2}]=E[(X-\mu+\mu-c)^{2}]=E[(X-\mu)^{2}+2(X-\mu)(\mu-c)+(\mu-c)^{2}]\)\(=E[(X-\mu)^{2}]+2(\mu-c)E(X-\mu)+(\mu-c)^{2}\),因為\(E(X-\mu)=E(X)-\mu=0\),所以\(E[(X-c)^{2}]=E[(X-\mu)^{2}]+(\mu-c)^{2}\geqslantE[(X-\mu)^{2}]\)。6.設(shè)隨機(jī)變量\(X\)和\(Y\)的相關(guān)系數(shù)為\(0.5\),\(E(X)=E(Y)=0\),\(E(X^{2})=E(Y^{2})=2\),則\(E[(X+Y)^{2}]\)的值為()A.4B.6C.8D.10答案:B解析:首先求\(D(X)=E(X^{2})-[E(X)]^{2}=2\),\(D(Y)=E(Y^{2})-[E(Y)]^{2}=2\)。已知相關(guān)系數(shù)\(\rho_{XY}=0.5\),根據(jù)\(\rho_{XY}=\frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}}\),可得\(Cov(X,Y)=\rho_{XY}\sqrt{D(X)D(Y)}=0.5\times\sqrt{2\times2}=1\)。\(E[(X+Y)^{2}]=E(X^{2}+2XY+Y^{2})=E(X^{2})+2E(XY)+E(Y^{2})\),又\(Cov(X,Y)=E(XY)-E(X)E(Y)\),所以\(E(XY)=Cov(X,Y)+E(X)E(Y)=1\)。則\(E[(X+Y)^{2}]=2+2\times1+2=6\)。7.設(shè)\(X_1,X_2,\cdots,X_n\)是來自總體\(X\)的樣本,總體\(X\)的概率密度函數(shù)為\(f(x)=\begin{cases}\thetax^{\theta-1},&0<x<1\\0,&\text{其他}\end{cases}\),其中\(zhòng)(\theta>0\)為未知參數(shù),則\(\theta\)的矩估計量為()A.\(\frac{\overline{X}}{1-\overline{X}}\)B.\(\frac{1}{\overline{X}}\)C.\(\frac{\overline{X}}{1+\overline{X}}\)D.\(\frac{1}{1-\overline{X}}\)答案:A解析:先求總體的一階矩\(E(X)=\int_{-\infty}^{+\infty}xf(x)dx=\int_{0}^{1}x\cdot\thetax^{\theta-1}dx=\int_{0}^{1}\thetax^{\theta}dx=\frac{\theta}{\theta+1}\)。令\(E(X)=\overline{X}\),即\(\frac{\theta}{\theta+1}=\overline{X}\),解得\(\theta=\frac{\overline{X}}{1-\overline{X}}\),所以\(\theta\)的矩估計量為\(\frac{\overline{X}}{1-\overline{X}}\)。8.設(shè)\(X\)和\(Y\)是兩個隨機(jī)變量,且\(P(X\geqslant0,Y\geqslant0)=\frac{3}{7}\),\(P(X\geqslant0)=P(Y\geqslant0)=\frac{4}{7}\),則\(P(\max\{X,Y\}\geqslant0)\)的值為()A.\(\frac{3}{7}\)B.\(\frac{4}{7}\)C.\(\frac{5}{7}\)D.\(\frac{6}{7}\)答案:C解析:因為\(\max\{X,Y\}\geqslant0\)等價于\(X\geqslant0\)或\(Y\geqslant0\),根據(jù)概率的加法公式\(P(A\cupB)=P(A)+P(B)-P(A\capB)\),這里\(A=\{X\geqslant0\}\),\(B=\{Y\geqslant0\}\),所以\(P(\max\{X,Y\}\geqslant0)=P(X\geqslant0\cupY\geqslant0)=P(X\geqslant0)+P(Y\geqslant0)-P(X\geqslant0,Y\geqslant0)=\frac{4}{7}+\frac{4}{7}-\frac{3}{7}=\frac{5}{7}\)。9.設(shè)總體\(X\)服從參數(shù)為\(\lambda\)的指數(shù)分布,\(X_1,X_2,\cdots,X_n\)是來自總體\(X\)的樣本,則樣本均值\(\overline{X}\)的數(shù)學(xué)期望和方差分別為()A.\(\frac{1}{\lambda},\frac{1}{n\lambda^{2}}\)B.\(\frac{1}{\lambda},\frac{1}{\lambda^{2}}\)C.\(\lambda,\frac{\lambda^{2}}{n}\)D.\(\lambda,\lambda^{2}\)答案:A解析:已知總體\(X\simExp(\lambda)\),則\(E(X)=\frac{1}{\lambda}\),\(D(X)=\frac{1}{\lambda^{2}}\)。樣本均值\(\overline{X}=\frac{1}{n}\sum_{i=1}^{n}X_i\),根據(jù)期望和方差的性質(zhì),\(E(\overline{X})=E(\frac{1}{n}\sum_{i=1}^{n}X_i)=\frac{1}{n}\sum_{i=1}^{n}E(X_i)=\frac{1}{n}\cdotn\cdot\frac{1}{\lambda}=\frac{1}{\lambda}\),\(D(\overline{X})=D(\frac{1}{n}\sum_{i=1}^{n}X_i)=\frac{1}{n^{2}}\sum_{i=1}^{n}D(X_i)=\frac{1}{n^{2}}\cdotn\cdot\frac{1}{\lambda^{2}}=\frac{1}{n\lambda^{2}}\)。10.設(shè)隨機(jī)變量\(X\)服從區(qū)間\([a,b]\)上的均勻分布,即\(X\simU(a,b)\),則\(X\)的中位數(shù)為()A.\(\frac{a+b}{2}\)B.\(a\)C.\(b\)D.\(\frac{b-a}{2}\)答案:A解析:設(shè)中位數(shù)為\(m\),則\(P(X\leqslantm)=\frac{1}{2}\)。對于\(X\simU(a,b)\),其概率密度函數(shù)\(f(x)=\begin{cases}\frac{1}{b-a},&a<x<b\\0,&\text{其他}\end{cases}\),\(P(X\leqslantm)=\int_{a}^{m}\frac{1}{b-a}dx=\frac{m-a}{b-a}=\frac{1}{2}\),解得\(m=\frac{a+b}{2}\)。11.設(shè)\(X_1,X_2,\cdots,X_n\)是來自總體\(X\)的樣本,總體\(X\)的分布函數(shù)為\(F(x;\theta)\),其中\(zhòng)(\theta\)是未知參數(shù),\(\hat{\theta}_n\)是\(\theta\)的一個估計量,若\(\lim_{n\rightarrow\infty}P(|\hat{\theta}_n-\theta|<\varepsilon)=1\)對任意\(\varepsilon>0\)成立,則稱\(\hat{\theta}_n\)是\(\theta\)的()A.無偏估計量B.有效估計量C.一致估計量D.最小方差無偏估計量答案:C解析:根據(jù)一致估計量的定義,若\(\lim_{n\rightarrow\infty}P(|\hat{\theta}_n-\theta|<\varepsilon)=1\)對任意\(\varepsilon>0\)成立,則稱\(\hat{\theta}_n\)是\(\theta\)的一致估計量。12.設(shè)隨機(jī)變量\(X\)服從自由度為\(n\)的\(t\)分布,即\(X\simt(n)\),則\(X^{2}\)服從()A.\(N(0,1)\)B.\(\chi^{2}(n)\)C.\(F(1,n)\)D.\(F(n,1)\)答案:C解析:若\(X\simt(n)\),則\(X=\frac{Z}{\sqrt{\frac{Y}{n}}}\),其中\(zhòng)(Z\simN(0,1)\),\(Y\sim\chi^{2}(n)\),且\(Z\)與\(Y\)相互獨(dú)立。那么\(X^{2}=\frac{Z^{2}/1}{Y/n}\),因為\(Z^{2}\sim\chi^{2}(1)\),根據(jù)\(F\)分布的定義,\(X^{2}\simF(1,n)\)。13.設(shè)\(X\)和\(Y\)是兩個相互獨(dú)立的隨機(jī)變量,它們的分布函數(shù)分別為\(F_X(x)\)和\(F_Y(y)\),則\(Z=\max\{X,Y\}\)的分布函數(shù)為()A.\(F_Z(z)=F_X(z)F_Y(z)\)B.\(F_Z(z)=F_X(z)+F_Y(z)-F_X(z)F_Y(z)\)C.\(F_Z(z)=\max\{F_X(z),F_Y(z)\}\)D.\(F_Z(z)=\min\{F_X(z),F_Y(z)\}\)答案:A解析:\(F_Z(z)=P(Z\leqslantz)=P(\max\{X,Y\}\leqslantz)=P(X\leqslantz,Y\leqslantz)\),因為\(X\)和\(Y\)相互獨(dú)立,所以\(P(X\leqslantz,Y\leqslantz)=P(X\leqslantz)P(Y\leqslantz)=F_X(z)F_Y(z)\)。14.設(shè)總體\(X\)的概率分布為\(P(X=0)=1-p\),\(P(X=1)=p\),\(X_1,X_2,\cdots,X_n\)是來自總體\(X\)的樣本,則\(p\)的極大似然估計量為()A.\(\overline{X}\)B.\(1-\overline{X}\)C.\(\frac{1}{n}\sum_{i=1}^{n}X_i^{2}\)D.\(\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^{2}\)答案:A解析:似然函數(shù)\(L(p)=\prod_{i=1}^{n}p^{X_i}(1-p)^{1-X_i}=p^{\sum_{i=1}^{n}X_i}(1-p)^{n-\sum_{i=1}^{n}X_i}\),取對數(shù)得\(\lnL(p)=\sum_{i=1}^{n}X_i\lnp+(n-\sum_{i=1}^{n}X_i)\ln(1-p)\)。對\(p\)求導(dǎo)并令導(dǎo)數(shù)為0,\(\frac{d\lnL(p)}{dp}=\frac{\sum_{i=1}^{n}X_i}{p}-\frac{n-\sum_{i=1}^{n}X_i}{1-p}=0\),解得\(p=\frac{1}{n}\sum_{i=1}^{n}X_i=\overline{X}\),所以\(p\)的極大似然估計量為\(\overline{X}\)。15.設(shè)隨機(jī)變量\(X\)服從二項分布\(B(n,p)\),已知\(E(X)=2.4\),\(D(X)=1.44\),則\(n\)和\(p\)的值分別為()A.\(n=6,p=0.4\)B.\(n=8,p=0.3\)C.\(n=12,p=0.2\)D.\(n=24,p=0.1\)答案:A解析:對于二項分布\(X\simB(n,p)\),\(E(X)=np\),\(D(X)=np(1-p)\)。已知\(E(X)=2.4\),\(D(X)=1.44\),則\(\begin{cases}np=2.4\\np(1-p)=1.44\end{cases}\),將\(np=2.4\)代入\(np(1-p)=1.44\)得\(2.4(1-p)=1.44\),解得\(p=0.4\),再將\(p=0.4\)代入\(np=2.4\)得\(n=6\)。二、多項選擇題(每題3分,共15分)1.設(shè)隨機(jī)變量\(X\)和\(Y\)相互獨(dú)立,則下列結(jié)論正確的有()A.\(Cov(X,Y)=0\)B.\(\rho_{XY}=0\)C.\(E(XY)=E(X)E(Y)\)D.\(D(X+Y)=D(X)+D(Y)\)答案:ABCD解析:若\(X\)和\(Y\)相互獨(dú)立,則\(E(XY)=E(X)E(Y)\)。\(Cov(X,Y)=E(XY)-E(X)E(Y)=0\),相關(guān)系數(shù)\(\rho_{XY}=\frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}}=0\)。\(D(X+Y)=D(X)+D(Y)+2Cov(X,Y)=D(X)+D(Y)\)。2.設(shè)總體\(X\simN(\mu,\sigma^{2})\),\(X_1,X_2,\cdots,X_n\)是來自總體\(X\)的樣本,\(\overline{X}\)和\(S^{2}\)分別是樣本均值和樣本方差,則下列統(tǒng)計量中服從標(biāo)準(zhǔn)正態(tài)分布的有()A.\(\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}\)B.\(\frac{\overline{X}-\mu}{\frac{S}{\sqrt{n}}}\)C.\(\frac{X_i-\mu}{\sigma}\)D.\(\frac{X_i-\overline{X}}{S}\)答案:AC解析:對于總體\(X\simN(\mu,\sigma^{2})\),\(\overline{X}\simN(\mu,\frac{\sigma^{2}}{n})\),則\(\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}\simN(0,1)\);\(X_i\simN(\mu,\sigma^{2})\),所以\(\frac{X_i-\mu}{\sigma}\simN(0,1)\)。\(\frac{\overline{X}-\mu}{\frac{S}{\sqrt{n}}}\simt(n-1)\),\(\frac{X_i-\overline{X}}{S}\)不服從標(biāo)準(zhǔn)正態(tài)分布。3.設(shè)隨機(jī)變量\(X\)的概率密度函數(shù)\(f(x)\)是偶函數(shù),\(F(x)\)是\(X\)的分布函數(shù),則下列結(jié)論正確的有()A.\(F(-x)=1-F(x)\)B.\(F(-x)=\frac{1}{2}-\int_{0}^{x}f(t)dt\)C.\(P(|X|>x)=2[1-F(x)]\)D.\(P(|X|<x)=2F(x)-1\)答案:ABCD解析:因為\(f(x)\)是偶函數(shù),\(F(-x)=\int_{-\infty}^{-x}f(t)dt\),令\(u=-t\),則\(F(-x)=\int_{x}^{+\infty}f(-u)du=\int_{x}^{+\infty}f(u)du=1-F(x)\)。又\(F(x)=\frac{1}{2}+\int_{0}^{x}f(t)dt\),所以\(F(-x)=1-(\frac{1}{2}+\int_{0}^{x}f(t)dt)=\frac{1}{2}-\int_{0}^{x}f(t)dt\)。\(P(|X|>x)=P(X>x)+P(X<-x)=2P(X>x)=2[1-F(x)]\),\(P(|X|<x)=P(-x<X<x)=F(x)-F(-x)=2F(x)-1\)。4.設(shè)\(X_1,X_2,\cdots,X_n\)是來自總體\(X\)的樣本,\(\hat{\theta}_1\)和\(\hat{\theta}_2\)是總體參數(shù)\(\theta\)的兩個無偏估計量,若\(D(\hat{\theta}_1)<D(\hat{\theta}_2)\),則下列說法正確的有()A.\(\hat{\theta}_1\)比\(\hat{\theta}_2\)有效B.\(\hat{\theta}_2\)比\(\hat{\theta}_1\)有效C.\(E(\hat{\theta}_1)=E(\hat{\theta}_2)=\theta\)D.\(\hat{\theta}_1\)和\(\hat{\theta}_2\)的均方誤差\(MSE(\hat{\theta}_1)<MSE(\hat{\theta}_2)\)答案:ACD解析:無偏估計量滿足\(E(\hat{\theta}_1)=E(\hat{\theta}_2)=\theta\)。在無偏估計量中,方差越小越有效,因為\(D(\hat{\theta}_1)<D(\hat{\theta}_2)\),所以\(\hat{\theta}_1\)比\(\hat{\theta}_2\)有效。均方誤差\(MSE(\hat{\theta})=D(\hat{\theta})+[E(\hat{\theta})-\theta]^{2}\),由于\(\hat{\theta}_1\)和\(\hat{\theta}_2\)是無偏估計量,\(E(\hat{\theta}_1)=E(\hat{\theta}_2)=\theta\),所以\(MSE(\hat{\theta}_1)=D(\hat{\theta}_1)\),\(MSE(\hat{\theta}_2)=D(\hat{\theta}_2)\),則\(MSE(\hat{\theta}_1)<MSE(\hat{\theta}_2)\)。5.設(shè)隨機(jī)變量\(X\)服從參數(shù)為\(\lambda\)的泊松分布,下列說法正確的有()A.\(E(X)=\lambda\)B.\(D(X)=\lambda\)C.\(P(X=k)=\frac{\lambda^{k}e^{-\lambda}}{k!}\),\(k=0,1,2,\cdots\)D.泊松分布具有可加性答案:ABCD解析:對于泊松分布\(X\simP(\lambda)\),其概率質(zhì)量函數(shù)為\(P(X=k)=\frac{\lambda^{k}e^{-\lambda}}{k!}\),\(k=0,1,2,\cdots\),數(shù)學(xué)期望\(E(X)=\lambda\),方差\(D(X)=\lambda\)。若\(X_1\simP(\lambda_1)\),\(X_2\simP(\lambda_2)\),且\(X_1\)與\(X_2\)相互獨(dú)立,則\(X_1+X_2\simP(\lambda_1+\lambda_2)\),即泊松分布具有可加性。三、解答題(每題15分,共45分)1.設(shè)隨機(jī)變量\(X\)和\(Y\)的聯(lián)合概率密度函數(shù)為\(f(x,y)=\begin{cases}kxy,&0<x<1,0<y<1\\0,&\text{其他}\end{cases}\)(1)求常數(shù)\(k\)的值;(2)求\(X\)和\(Y\)的邊緣概率密度函數(shù)\(f_X(x)\)和\(f_Y(y)\);(3)判斷\(X\)和\(Y\)是否相互獨(dú)立。解:(1)根據(jù)聯(lián)合概率密度函數(shù)的性質(zhì)\(\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)dxdy=1\),可得:\(\int_{0}^{1}\int_{0}^{1}kxydxdy=k\int_{0}^{1}xdx\int_{0}^{1}ydy=k\cdot\frac{1}{2}\cdot\frac{1}{2}=1\),解得\(k=4\)。(2)\(X\)的邊緣概率密度函數(shù)\(f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy\),當(dāng)\(0<x<1\)時,\(f_X(x)=\int_{0}^{1}4xydy=4x\cdot\frac{1}{2}y^{2}\big|_{0}^{1}=2x\);當(dāng)\(x\notin(0,1)\)時,\(f_X(x)=0\),所以\(f_X(x)=\begin{cases}2x,&0<x<1\\0,&\text{其他}\end{cases}\)。\(Y\)的邊緣概率密度函數(shù)\(f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx\),當(dāng)\(0<y<1\)時,\(f_Y(y)=\int_{0}^{1}4xydx=4y\cdot\frac{1}{2}x^{2}\big|_{0}^{1}=2y\);當(dāng)\(y\notin(0,1)\)時,\(f_Y(y)=0\),所以\(f_Y(y)=\begin{cases}2y,&0<y<1\\0,&\text{其他}\end{cases}\)。(3)因為\(f(x,y)=4xy\),\(f_X(x)f_Y(y)=2x\cdot2y=4xy\),對于任意的\((x,y)\inR^2\)都有\(zhòng)(f(x,y)=f_X(x)f_Y(y)\),所以\(X\)和\(Y\)相互獨(dú)立。2.設(shè)總體\(X\)的概率密度函數(shù)為\(f(x;\theta)=\begin{cases}\frac{2x}{\theta^{2}},&0<x<\theta\\0,&\text{其他}\end{cases}\),其中\(zhòng)(\theta>0\)是未知參數(shù),\(X_1,X_2,\cdots,X_n\)是來自總體\(X\)的樣本。(1)求\(\theta\)的矩估計量\(\hat{\theta}_1\);(2)求\(\theta\)的極大似然估計量\(\hat{\theta}_2\);(3)判斷\(\hat{\theta}_1\)是否為\(\theta\)的無偏估計量。解:(1)首先求總體的一階矩\(E(X)=\int_{-\infty}^{+\infty}xf(x;\theta)dx=\int_{0}^{\theta}x\cdot\frac{2x}{\theta^{2}}dx=\frac{2}{\theta^{2}}\cdot\frac{1}{3}x^{3}\big|_{0}^{\theta}=\frac{2}{3}\theta\)。令\(E(X)=\overline{X}\),即\(\frac{2}{3}\theta=\overline{X}\),解得\(\theta=\frac{3}{2}\overline{X}\),所以\(\theta\)的矩估計量\(\hat{\theta}_1=\frac{3}{2}\overline{X}\)。(2)似然函數(shù)\(L(\theta)=\prod_{i=1}^{n}f(X_i;\theta)=\begin{cases}\frac{2^{n}\prod_{i=1}^{n}X_i}{\theta^{2n}},&0<X_{(1)}<X_{(n)}<\theta\\0,&\text{其他}\end{cases}\),其中\(zhòng)(X_{(1)}=\min\{X_1,X_2,\cdots,X_n\}\),\(X_{(n)}=\max\{X_1,X_2,\cdots,X_n\}\)。\(L(\theta)\)是關(guān)于\(\theta\)的單調(diào)遞減函數(shù),要使\(L(\theta)\)最大,則\(\theta\)要取最小,又因為\(0<X_{(1)}<X_{(n)}<\theta\),所以\(\theta\)的極大似然估計量\(\hat{\theta}_2=X_{(n)}\)。(3)\(E(\hat{\theta}_1)=E(\frac{3}{2}\overline{X})=\frac{3}{2}E(\overline{X})\),因為\(E(\overline{X})=E(X)=\frac{2}{3}\theta\),所以\(E(\hat{\theta}_1)=\frac{3}{2}\cdot\frac{2}{3}\theta=\theta\),所以\(\hat{\theta}_1\)是\(\theta\)的無偏估計量。3.設(shè)總體\(X\simN(\mu,1)\),\(X_1,X_2,\cdots,X_n\)是來自總體\(X\)的樣本,對假設(shè)檢驗問題\(H_0:\mu=\mu_0\),\(H_1:\mu\neq\mu_0\),取拒絕域為\(W=\left\{\left|\overline{X}-\mu_0\right|>z_{\frac{\alpha}{2}}\frac{1}{\sqrt{n}}\right\}\)。(1)求此檢驗的顯著性水平\(\alpha\);(2)若\(\mu_1\neq\mu_0\),求此檢驗犯第二類錯誤的概率\(\beta\)。解:(1)顯著性水平\(\alpha\)是在\(H_0\)為真時拒絕\(H_0\)的概率,即:\(\alpha=P(\text{拒絕}H_0|H_0\text{為真})=P\left(\left|\overline{X}-\mu_0\right|>z_{\frac{\alpha}{2}}\frac{1}{\sqrt{n}}\right|\mu=\mu_0\right)\)當(dāng)\(\mu=\mu_0\)時,\(\overline{X}\simN(\mu_0,\frac{1}{n})\),\(\frac{\overline{X}-\mu_0}{\frac{1}{\sqrt{n}}}\simN(0,1)\)。\(\alpha=P\left(\frac{\left|\overline{X}-\mu_0\right|}{\frac{1}{\sqrt{n}}}>z_{\frac{\alpha}{2}}\right)=2P\left(\frac{\overline{X}-\mu_0}{\frac{1}{\sqrt{n}}}>z_{\frac{\alpha}{2}}\right)=2(1-\varPhi(z_{\frac{\alpha}{2}}))\),其中\(zhòng)(\varPhi(z)\)是標(biāo)準(zhǔn)正態(tài)分布的分布函數(shù),所以\(\alpha\)就是給定的顯著性水平。(2)犯第二類錯誤的概率\(\beta\)是在\(H_1\)為真時接受\(H_0\)的概率,即:當(dāng)\(\mu=\mu_1\neq\mu_0\)時,\(\overline{X}\simN(\mu_1,\frac{1}{n})\),\(\frac{\overline{X}-\mu_1}{\frac{1}{\sqrt{n}}}\simN(0,1)\)。\(\beta=P(\text{接受}H_0|H_1\text{為真})=P\left(\left|\overline{X}-\mu_0\right|\leqslantz_{\frac{\alpha}{2}}\frac{1}{\sqrt{n}}\right|\mu=\mu_1\right)\)\(=P\left(\mu_0-z_{\frac{\alpha}{2}}\frac{1}{\sqrt{n}}\leqslant\overline{X}\leqslant\mu_0+z_{\frac{\alpha}{2}}\frac{1}{\sqrt{n}}\right|\mu=\mu_1\right)\)\(=\varPhi\left(\frac{\mu_0+z_{\frac{\alpha}{2}}\frac{1}{\sqrt{n}}-\mu_1}{\frac{1}{\sqrt{n}}}\right)-\varPhi\left(\frac{\mu_0-z_{\frac{\alpha}{2}}\frac{1}{\sqrt{n}}-\mu_1}{\frac{1}{\sqrt{n}}}\right)\)。四、證明題(10分)設(shè)\(X_1,X_2,\cdots,X_n\)是來自總體\(X\)的樣本,總體\(X\)的數(shù)學(xué)期望為\(\mu\),方差為\(\sigma

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論