(完整版)七年級下學(xué)期實數(shù)模擬數(shù)學(xué)試題(二)解析_第1頁
(完整版)七年級下學(xué)期實數(shù)模擬數(shù)學(xué)試題(二)解析_第2頁
(完整版)七年級下學(xué)期實數(shù)模擬數(shù)學(xué)試題(二)解析_第3頁
(完整版)七年級下學(xué)期實數(shù)模擬數(shù)學(xué)試題(二)解析_第4頁
(完整版)七年級下學(xué)期實數(shù)模擬數(shù)學(xué)試題(二)解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

一、選擇題1.按如圖所示的程序計算,若開始輸入的值為25,則最后輸出的y值是()A. B. C.5 D.2.已知邊長為的正方形面積為8,則下列關(guān)于的說法中,錯誤的是()A.是無理數(shù) B.是8的算術(shù)平方根C.滿足不等式組 D.的值不能在數(shù)軸表示3.定義一種新運算“*”,即,例如.則的值為()A.12 B.24 C.27 D.304.若實數(shù)p,q,m,n在數(shù)軸上的對應(yīng)點的位置如圖所示,且滿足,則絕對值最小的數(shù)是()A.p B.q C.m D.n5.已知T1=,T2=,T3=,,Tn=,其中為正整數(shù).設(shè)Sn=T1+T2+T3++Tn,則S2021值是()A. B. C. D.6.?dāng)?shù)軸上A,B,C,D四點中,兩點之間的距離最接近于的是()A.點C和點D B.點B和點C C.點A和點C D.點A和點B7.下列說法中,錯誤的有()①符號相反的數(shù)與為相反數(shù);②當(dāng)時,;③如果,那么;④數(shù)軸上表示兩個有理數(shù)的點,較大的數(shù)表示的點離原點較遠(yuǎn);⑤數(shù)軸上的點不都表示有理數(shù).A.0個 B.1個 C.2個 D.3個8.對于任意不相等的兩個實數(shù)a,b,定義運算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值為()A.﹣40 B.﹣32 C.18 D.109.已知,,,,,……,根據(jù)這一規(guī)律,的個位數(shù)字是()A.2 B.4 C.8 D.610.規(guī)定:f(x)=|x﹣2|,g(y)=|y+3|,例如f(﹣4)=|﹣4﹣2|=6,g(﹣4)=|﹣4+3|=1.下列結(jié)論正確的個數(shù)是()①若x=2,y=3,則f(x)+g(y)=6;②若f(x)+g(x)=0,則2x﹣3y=13;③若x<﹣3,則f(x)+g(x)=﹣1﹣2x;④能使f(x)=g(x)成立的x的值不存在.A.1個 B.2個 C.3個 D.4個二、填空題11.對于這樣的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,則﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值為_____.12.規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.當(dāng)﹣1<x<1時,化簡[x]+(x)+[x)的結(jié)果是_____.13.現(xiàn)定義一種新運算:對任意有理數(shù)a、b,都有a?b=a2﹣b,例如3?2=32﹣2=7,2?(﹣1)=_____.14.用“☆”定義一種新運算:對于任意有理數(shù)a和b,規(guī)定a☆b=.例如:(-3)☆2==2.從﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任選兩個有理數(shù)做a,b(a≠b)的值,并計算a☆b,那么所有運算結(jié)果中的最大值是_____.15.在研究“數(shù)字黑洞”這節(jié)課中,樂樂任意寫下了一個四位數(shù)(四數(shù)字完全相同的除外),重新排列各位數(shù)字,使其組成一個最大的數(shù)和一個最小的數(shù),然后用最大的數(shù)減去最小的數(shù),得到差:重復(fù)這個過程,……,樂樂發(fā)現(xiàn)最后將變成一個固定的數(shù),則這個固定的數(shù)是__________.16.若我們規(guī)定表示不小于x的最小整數(shù),例如,,則以下結(jié)論:①;②;③的最小值是0;④存在實數(shù)x使成立.其中正確的是______.(填寫所有正確結(jié)論的序號)17.在求1+3+32+33+34+35+36+37+38的值時,張紅發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38①,然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得,3S-S=39-1,即2S=39-1,所以S=.得出答案后,愛動腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正確答案是______.18.將1,,,按如圖方式排列.若規(guī)定(m,n)表示第m排從左向右第n個數(shù),如(5,4)表示的數(shù)是(即第5排從左向右第4個數(shù)),那么(2021,1011)所表示的數(shù)是___.19.若.則=______.20.定義運算“@”的運算法則為:x@y=,則2@6=____.三、解答題21.規(guī)定:求若千個相同的有理數(shù)(均不等于)的除法運算叫做除方,如等,類比有理數(shù)的乘方,我們把記作,讀作“的圈次方”,記作,讀作“的圈次方”,一般地,把記作,讀作“”的圈次方.(初步探究)(1)直接寫出計算結(jié)果:;;(2)關(guān)于除方,下列說法錯誤的是()A.任何非零數(shù)的圈次方都等于B.對于任何正整數(shù)C.D.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù)(深入思考)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?(3)試一試:,依照前面的算式,將,的運算結(jié)果直接寫成冪的形式是,;(4)想一想:將一個非零有理數(shù)的圓次方寫成冪的形式是:;(5)算一算:.22.在已有運算的基礎(chǔ)上定義一種新運算:,的運算級別高于加減乘除運算,即的運算順序要優(yōu)先于運算,試根據(jù)條件回答下列問題.(1)計算:;(2)若,則;(3)在數(shù)軸上,數(shù)的位置如下圖所示,試化簡:;(4)如圖所示,在數(shù)軸上,點分別以1個單位每秒的速度從表示數(shù)-1和3的點開始運動,點向正方向運動,點向負(fù)方向運動,秒后點分別運動到表示數(shù)和的點所在的位置,當(dāng)時,求的值.23.觀察下來等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式兩邊的數(shù)字分別是對稱的,且每個等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為“數(shù)字對稱等式”.(1)根據(jù)以上各等式反映的規(guī)律,使下面等式成為“數(shù)字對稱等式”:52×_____=______×25;(2)設(shè)這類等式左邊的兩位數(shù)中,個位數(shù)字為a,十位數(shù)字為b,且2≤a+b≤9,則用含a,b的式子表示這類“數(shù)字對稱等式”的規(guī)律是_______.24.小學(xué)的時候我們已經(jīng)學(xué)過分?jǐn)?shù)的加減法法則:“同分母分?jǐn)?shù)相加減,分母不變,分子相加減;異分母分?jǐn)?shù)相加減,先通分,轉(zhuǎn)化為同分母分?jǐn)?shù),再加減.”如:,反之,這個式子仍然成立,即:.(1)問題發(fā)現(xiàn)觀察下列等式:①,②,③,…,猜想并寫出第個式子的結(jié)果:.(直接寫出結(jié)果,不說明理由)(2)類比探究將(1)中的的三個等式左右兩邊分別相加得:,類比該問題的做法,請直接寫出下列各式的結(jié)果:①;②;(3)拓展延伸計算:.25.?dāng)?shù)學(xué)中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的運算,記為,如,則,則.①根據(jù)定義,填空:_________,__________.②若有如下運算性質(zhì):.根據(jù)運算性質(zhì)填空,填空:若,則__________;___________;③下表中與數(shù)x對應(yīng)的有且只有兩個是錯誤的,請直接找出錯誤并改正.x1.5356891227錯誤的式子是__________,_____________;分別改為__________,_____________.26.觀察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1……(1)根據(jù)以上規(guī)律,則(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此歸納出一般性規(guī)律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.(3)根據(jù)以上規(guī)律求1+3+32+…+349+350的結(jié)果.27.下列等式:,,,將以上三個等式兩邊分別相加得:.(1)觀察發(fā)現(xiàn):__________.(2)初步應(yīng)用:利用(1)的結(jié)論,解決以下問題“①把拆成兩個分子為1的正的真分?jǐn)?shù)之差,即;②把拆成兩個分子為1的正的真分?jǐn)?shù)之和,即;(3)定義“”是一種新的運算,若,,,求的值.28.小學(xué)的時候我們已經(jīng)學(xué)過分?jǐn)?shù)的加減法法則:“同分母分?jǐn)?shù)相加減,分母不變,分子相加減;異分母分?jǐn)?shù)相加減,先通分,轉(zhuǎn)化為同分母分?jǐn)?shù),再加減.”如:,反之,這個式子仍然成立,即:.(1)問題發(fā)現(xiàn)觀察下列等式:①,②,③,…,猜想并寫出第個式子的結(jié)果:.(直接寫出結(jié)果,不說明理由)(2)類比探究將(1)中的的三個等式左右兩邊分別相加得:,類比該問題的做法,請直接寫出下列各式的結(jié)果:①;②;(3)拓展延伸計算:.29.探究與應(yīng)用:觀察下列各式:1+3=21+3+5=21+3+5+7=21+3+5+7+9=2……問題:(1)在橫線上填上適當(dāng)?shù)臄?shù);(2)寫出一個能反映此計算一般規(guī)律的式子;(3)根據(jù)規(guī)律計算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(結(jié)果用科學(xué)記數(shù)法表示)30.先閱讀然后解答提出的問題:設(shè)a、b是有理數(shù),且滿足,求ba的值.解:由題意得,因為a、b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),由于是無理數(shù),所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問題:設(shè)x、y都是有理數(shù),且滿足,求x+y的值.【參考答案】***試卷處理標(biāo)記,請不要刪除一、選擇題1.B解析:B【分析】根據(jù)已知進(jìn)行計算,并判斷每一步輸出結(jié)果即可得到答案.【詳解】解:∵25的算術(shù)平方根是5,5不是無理數(shù),∴再取5的平方根,而5的平方根為,是無理數(shù),∴輸出值y=,故選:B.【點睛】本題考查實數(shù)分類及計算,判斷每步計算結(jié)果是否為無理數(shù)是解題的關(guān)鍵.2.D解析:D【分析】根據(jù)題意求得,根據(jù)無理數(shù)的定義,算術(shù)平方根的定義,無理數(shù)的估算,實數(shù)與數(shù)軸一一對應(yīng)逐項分析判斷即可【詳解】解:根據(jù)題意,,則A.是無理數(shù),故該選項正確,不符合題意;B.是8的算術(shù)平方根,故該選項正確,不符合題意;C.即,則滿足不等式組,故該選項正確,不符合題意;D.的值能在數(shù)軸表示,故該選項不正確,符合題意;故選D【點睛】本題考查了無理數(shù)的定義,算術(shù)平方根的定義,無理數(shù)的估算,實數(shù)與數(shù)軸一一對應(yīng),是解題的關(guān)鍵.無理數(shù)的定義:“無限不循環(huán)的小數(shù)是無理數(shù)”,平方根:如果一個數(shù)的平方等于,那么這個數(shù)就叫的平方根,其中屬于非負(fù)數(shù)的平方根稱之為算術(shù)平方根.3.C解析:C【分析】根據(jù)新定義的公式代入計算即可.【詳解】∵,∴=,故選C.【點睛】本題考查了新定義下的實數(shù)計算,準(zhǔn)確理解新定義公式是解題的關(guān)鍵.4.C解析:C【分析】根據(jù),并結(jié)合數(shù)軸可知原點在q和m之間,且離m點最近,即可求解.【詳解】解:∵結(jié)合數(shù)軸可得:,即原點在q和m之間,且離m點最近,∴絕對值最小的數(shù)是m,故選:C.【點睛】本題考查實數(shù)與數(shù)軸,解題的關(guān)鍵是明確數(shù)軸的特點,利用數(shù)形結(jié)合的思想解答.5.A解析:A【分析】根據(jù)數(shù)字間的規(guī)律探索列式計算【詳解】解:由題意可得:T1=,T2=,T3=∴Tn=∴T2021=∴S2021=T1+T2+T3++T2021=======故選:A.【點睛】本題考查實數(shù)數(shù)字類的規(guī)律探索,探索規(guī)律,準(zhǔn)確計算是解題關(guān)鍵.6.A解析:A【分析】先估算出的范圍,結(jié)合數(shù)軸可得答案.【詳解】解:∵4<6<9,∴2<<3,∴兩點之間的距離最接近于的是點C和點D.故選:A.【點睛】本題考查的是實數(shù)與數(shù)軸,熟知實數(shù)與數(shù)軸上各點是一一對應(yīng)關(guān)系是解答此題的關(guān)鍵.7.D解析:D【分析】根據(jù)相反數(shù)、絕對值、數(shù)軸表示數(shù)以及有理數(shù)的乘法運算等知識綜合進(jìn)行判斷即可.【詳解】解:符號相反,但絕對值不等的兩個數(shù)就不是相反數(shù),例如5和-3,因此①不正確;a≠0,即a>0或a<0,也就是a是正數(shù)或負(fù)數(shù),因此|a|>0,所以②正確;例如-1>-3,而(-1)2<(-3)2,因此③不正確;例如-5表示的點到原點的距離比1表示的點到原點的距離遠(yuǎn),但-5<1,因此④不正確;數(shù)軸上的點與實數(shù)一一對應(yīng),而實數(shù)包括有理數(shù)和無理數(shù),因此⑤正確;綜上所述,錯誤的結(jié)論有:①③④,故選:D.【點睛】本題考查相反數(shù)、絕對值、數(shù)軸表示數(shù),對每個選項進(jìn)行判斷是得出正確答案的前提.8.D解析:D【分析】直接利用題中的新定義給出的運算公式計算得出答案.【詳解】解:(-5)※4=(﹣5)2﹣42+1=10.故選:D.【點睛】本題主要考查了實數(shù)運算,以及定義新運算,正確運用新定義給出的運算公式是解題關(guān)鍵.9.C解析:C【分析】通過觀察,,,,,…知,他們的個位數(shù)是4個數(shù)一循環(huán),2,4,8,6,…因為2019÷4=504…3,所以的個位數(shù)字與的個位數(shù)字相同是8.【詳解】解:仔細(xì)觀察,,,,,…;可以發(fā)現(xiàn)他們的個位數(shù)是4個數(shù)一循環(huán),2,4,8,6,…∵2019÷4=504…3,∴的個位數(shù)字與的個位數(shù)字相同是8.故答案是:8.【點睛】本題考查了尾數(shù)特征,解題的關(guān)鍵是根據(jù)已知條件,找出規(guī)律:2的乘方的個位數(shù)是每4個數(shù)一循環(huán),2,4,8,6,….10.C解析:C【分析】①根據(jù)公式代入計算即可判斷;②根據(jù)絕對值的非負(fù)性求出x及y的值,再代入計算進(jìn)行判斷;③根據(jù)公式利用絕對值的性質(zhì)化簡后計算即可判斷;④根據(jù)公式解絕對值方程即可判斷.【詳解】解:①∵x=2,y=3,∴f(x)+g(y)=f(2)+g(3)=|2﹣2|+|3+3|=0+6=6;故正確,符合題意;②∵f(x)+g(y)=|x﹣2|+|y+3|=0,∴x﹣2=0,y+3=0,∴x=2,y=﹣3,∴2x﹣3y=2×2﹣3×(﹣3)=13,故正確,符合題意;③若x<﹣3,則f(x)+g(x)=|x﹣2|+|x+3|=2﹣x﹣x﹣3=﹣1﹣2x,故正確,符合題意;④若f(x)=g(x),則|x﹣2|=|x+3|,即x﹣2=x+3或x﹣2=﹣x﹣3,解得:x=﹣0.5,即能使已知等式成立的x的值存在,故錯誤,不符合題意;故選:C.【點睛】此題考查有理數(shù)混合運算法則,絕對值的非負(fù)性,解一元一次方程,正確理解計算公式是解題的關(guān)鍵.二、填空題11.-1.【分析】根據(jù)多項式的乘法得出字母的值,進(jìn)而代入解答即可.【詳解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根據(jù)多項式的乘法得出字母的值,進(jìn)而代入解答即可.【詳解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a(bǔ)0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案為:﹣1【點睛】本題考查了代數(shù)式求值,解題的關(guān)鍵是根據(jù)題意求得a0,a1,a2,a3,a4,a5的值.12.﹣2或﹣1或0或1或2.【分析】有三種情況:①當(dāng)時,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②當(dāng)時,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三種情況:①當(dāng)時,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②當(dāng)時,[x]=0,(x)=0,[x)=0,∴[x]+(x)+[x)=0;③當(dāng)時,[x]=0,(x)=1,[x)=0或1,∴[x]+(x)+[x)=1或2;綜上所述,化簡[x]+(x)+[x)的結(jié)果是-2或﹣1或0或1或2.故答案為-2或﹣1或0或1或2.點睛:本題是一道閱讀理解題.讀懂題意并進(jìn)行分類討論是解題的關(guān)鍵.【詳解】請在此輸入詳解!13.5【解析】利用題中的新定義可得:2?(﹣1)=4﹣(﹣1)=4+1=5.故答案為:5.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.解析:5【解析】利用題中的新定義可得:2?(﹣1)=4﹣(﹣1)=4+1=5.故答案為:5.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.14.8【解析】解:當(dāng)a>b時,a☆b==a,a最大為8;當(dāng)a<b時,a☆b==b,b最大為8,故答案為:8.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.解析:8【解析】解:當(dāng)a>b時,a☆b==a,a最大為8;當(dāng)a<b時,a☆b==b,b最大為8,故答案為:8.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.15.6174【分析】任選四個不同的數(shù)字,組成個最大的數(shù)和一個最小的數(shù),用大數(shù)減去小數(shù),如1234,4321-

1234=

3087,8730-378=

8352

,8532一2358=

617解析:6174【分析】任選四個不同的數(shù)字,組成個最大的數(shù)和一個最小的數(shù),用大數(shù)減去小數(shù),如1234,4321-

1234=

3087,8730-378=

8352

,8532一2358=

6174,6174是符合條件的4位數(shù)中唯一會產(chǎn)生循環(huán)的(7641-1467=

6174)

這個在數(shù)學(xué)上被稱之為卡普耶卡(Kaprekar)猜想.【詳解】任選四個不同的數(shù)字,組成一個最大的數(shù)和一個最小的數(shù),用大數(shù)減去小數(shù),用所得的結(jié)果的四位數(shù)重復(fù)上述的過程,最多七步必得6174,如1234,4321-1234

=3087,8730

-378

=

8352,8532-2358=

6174,這一現(xiàn)象在數(shù)學(xué)上被稱之為卡普耶卡(Kaprekar)猜想,故答案為:6174.【點睛】此題考查數(shù)字的規(guī)律運算,正確理解題意通過計算發(fā)現(xiàn)規(guī)律并運用解題是關(guān)鍵.16.③④【分析】根據(jù)的定義逐個判斷即可得.【詳解】①表示不小于的最小整數(shù),則,結(jié)論錯誤②,則,結(jié)論錯誤③表示不小于x的最小整數(shù),則,因此的最小值是0,結(jié)論正確④若,則此時,因此,存在實解析:③④【分析】根據(jù)的定義逐個判斷即可得.【詳解】①表示不小于的最小整數(shù),則,結(jié)論錯誤②,則,結(jié)論錯誤③表示不小于x的最小整數(shù),則,因此的最小值是0,結(jié)論正確④若,則此時,因此,存在實數(shù)x使成立,結(jié)論正確綜上,正確的是③④故答案為:③④.【點睛】本題考查了新定義下的實數(shù)運算,理解新定義是解題關(guān)鍵.17..【解析】試題分析:設(shè)S=1+m+m2+m3+m4+…+m2016…①,在①式的兩邊都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…②②一①得:解析:.【解析】試題分析:設(shè)S=1+m+m2+m3+m4+…+m2016…①,在①式的兩邊都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…②②一①得:mS―S=m2017-1.∴S=.考點:閱讀理解題;規(guī)律探究題.18.1【分析】所給一系列數(shù)是4個數(shù)一循環(huán),看是第幾個數(shù),除以4,根據(jù)余數(shù)得到相應(yīng)循環(huán)的數(shù)即可.【詳解】解:前2020排共有的個數(shù)是:,表示的數(shù)是第個數(shù),,第2021排的第1011個數(shù)為1.解析:1【分析】所給一系列數(shù)是4個數(shù)一循環(huán),看是第幾個數(shù),除以4,根據(jù)余數(shù)得到相應(yīng)循環(huán)的數(shù)即可.【詳解】解:前2020排共有的個數(shù)是:,表示的數(shù)是第個數(shù),,第2021排的第1011個數(shù)為1.故答案為:1.【點睛】本題考查算術(shù)平方根與規(guī)律型:數(shù)字的變化類,根據(jù)規(guī)律判斷出是第幾個數(shù)是解本題的關(guān)鍵.19.1【分析】根據(jù)平方數(shù)和算術(shù)平方根的非負(fù)性即可求得a、b的值,再帶入求值即可.【詳解】∵,∴,∴a-2=0,b+1=0,∴a=2,b=-1,∴=,故答案為:1【點睛】本題主要考解析:1【分析】根據(jù)平方數(shù)和算術(shù)平方根的非負(fù)性即可求得a、b的值,再帶入求值即可.【詳解】∵,∴,∴a-2=0,b+1=0,∴a=2,b=-1,∴=,故答案為:1【點睛】本題主要考查非負(fù)數(shù)的性質(zhì),解題的關(guān)鍵是掌握偶次乘方的非負(fù)性和算數(shù)平方根的非負(fù)性.20.4【分析】把x=2,y=6代入x@y=中計算即可.【詳解】解:∵x@y=,∴2@6==4,故答案為4.【點睛】本題考查了有理數(shù)的運算能力,注意能由代數(shù)式轉(zhuǎn)化成有理數(shù)計算的式子.解析:4【分析】把x=2,y=6代入x@y=中計算即可.【詳解】解:∵x@y=,∴2@6==4,故答案為4.【點睛】本題考查了有理數(shù)的運算能力,注意能由代數(shù)式轉(zhuǎn)化成有理數(shù)計算的式子.三、解答題21.(1),;(2)C;(3),;(4);(5)-5.【分析】概念學(xué)習(xí):(1)分別按公式進(jìn)行計算即可;(2)根據(jù)定義依次判定即可;深入思考:(3)由冪的乘方和除方的定義進(jìn)行變形,即可得到答案;(4)把除法化為乘法,第一個數(shù)不變,從第二個數(shù)開始依次變?yōu)榈箶?shù),結(jié)果第一個數(shù)不變?yōu)閍,第二個數(shù)及后面的數(shù)變?yōu)?,則;(5)將第二問的規(guī)律代入計算,注意運算順序.【詳解】解:(1);;故答案為:,;(2)A、任何非零數(shù)的圈2次方都等于1;所以選項A正確;B、因為多少個1相除都是1,所以對于任何正整數(shù)n,1?都等于1;

所以選項B正確;C、,,則;故選項C錯誤;D、負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù),故D正確;故選:;(3)根據(jù)題意,,由上述可知:;(4)根據(jù)題意,由(3)可知,;故答案為:(5).【點睛】本題考查了有理數(shù)的混合運算,也是一個新定義的理解與運用;一方面考查了有理數(shù)的乘除法及乘方運算,另一方面也考查了學(xué)生的閱讀理解能力;注意:負(fù)數(shù)的奇數(shù)次方為負(fù)數(shù),負(fù)數(shù)的偶數(shù)次方為正數(shù),同時也要注意分?jǐn)?shù)的乘方要加括號,對新定義,其實就是多個數(shù)的除法運算,要注意運算順序.22.(1)5;(2)5或1;(3)1+y-2x;(4)t1=3;t2=【分析】(1)根據(jù)題中的新運算列出算式,計算即可得到結(jié)果;(2)根據(jù)題中的新運算列出方程,解方程即可得到結(jié)果;(3)根據(jù)題中的新運算列出代數(shù)式,根據(jù)數(shù)軸得出x、y的取值范圍進(jìn)行化簡即可;(4)根據(jù)A、B在數(shù)軸上的移動方向和速度可分別用代數(shù)式表示出數(shù)和,再根據(jù)(2)的解題思路即可得到結(jié)果.【詳解】解:(1);(2)依題意得:,化簡得:,所以或,解得:x=5或x=1;(3)由數(shù)軸可知:0<x<1,y<0,所以===(4)依題意得:數(shù)a=?1+t,b=3?t;因為,所以,化簡得:,解得:t=3或t=,所以當(dāng)時,的值為3或.【點睛】本題主要考查了定義新運算、有理數(shù)的混合運算和解一元一次方程,根據(jù)定義新運算列出關(guān)系式是解題的關(guān)鍵.23.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)觀察等式,發(fā)現(xiàn)規(guī)律,等式的左邊:兩位數(shù)所乘的數(shù)是這個兩位數(shù)的個位數(shù)字變?yōu)榘傥粩?shù)字,十位數(shù)字變?yōu)閭€位數(shù)字,兩個數(shù)字的和放在十位;等式的右邊:三位數(shù)與左邊的三位數(shù)字百位與個位數(shù)字交換,兩位數(shù)與左邊的兩位數(shù)十位與個位數(shù)字交換然后相乘,根據(jù)此規(guī)律進(jìn)行填空即可;(2)按照(1)中對稱等式的方法寫出,然后利用多項式的乘法進(jìn)行寫出即可.【詳解】解:(1)∵5+2=7,∴左邊的三位數(shù)是275,右邊的三位數(shù)是572,∴52×275=572×25,(2)左邊的兩位數(shù)是10b+a,三位數(shù)是100a+10(a+b)+b;右邊的兩位數(shù)是10a+b,三位數(shù)是100b+10(a+b)+a;“數(shù)字對稱等式”為:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案為275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【點睛】本題是對數(shù)字變化規(guī)律的考查,根據(jù)已知信息,理清利用左邊的兩位數(shù)的十位數(shù)字與個位數(shù)字變化得到其它的三個數(shù)字是解題的關(guān)鍵.24.(1);(2)①;②;(3).【分析】(1)根據(jù)題目中的式子可以寫出第n個式子的結(jié)果;(2)①根據(jù)題目中的式子的特點和(1)中的結(jié)果,可以求得所求式子的值;②根據(jù)題目中的式子的特點和(1)中的結(jié)果,可以求得所求式子的值;(3)根據(jù)題目中式子的特點,可以求得所求式子的值.【詳解】解:(1)由題目中的式子可得,,故答案為:;(2)①,故答案為:;②,故答案為:;(3).【點睛】本題考查數(shù)字的變化類、有理數(shù)的混合運算,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)題目中式子的變化特點,求出所求式子的值.25.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根據(jù)定義可得:f(10b)=b,即可求得結(jié)論;②根據(jù)運算性質(zhì):f(mn)=f(m)+f(n),f()=f(n)-f(m)進(jìn)行計算;③通過9=32,27=33,可以判斷f(3)是否正確,同樣依據(jù)5=,假設(shè)f(5)正確,可以求得f(2)的值,即可通過f(8),f(12)作出判斷.【詳解】解:①根據(jù)定義知:f(10b)=b,∴f(10)=1,f(103)=3.故答案為:1,3.②根據(jù)運算性質(zhì),得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020,f(5)=f()=f(10)-f(2)=1-0.3010=0.6990.故答案為:0.6020;0.6990.③若f(3)≠2a-b,則f(9)=2f(3)≠4a-2b,f(27)=3f(3)≠6a-3b,從而表中有三個對應(yīng)的f(x)是錯誤的,與題設(shè)矛盾,∴f(3)=2a-b;若f(5)≠a+c,則f(2)=1-f(5)≠1-a-c,∴f(8)=3f(2)≠3-3a-3c,f(6)=f(3)+f(2)≠1+a-b-c,表中也有三個對應(yīng)的f(x)是錯誤的,與題設(shè)矛盾,∴f(5)=a+c,∴表中只有f(1.5)和f(12)的對應(yīng)值是錯誤的,應(yīng)改正為:f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1,f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c.∵9=32,27=33,∴f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b.【點睛】本題考查了冪的應(yīng)用,新定義運算等,解題的關(guān)鍵是深刻理解所給出的定義或規(guī)則,將它們轉(zhuǎn)化為我們所熟悉的運算.26.(1)x7-1;(2)xn+1-1;(3).【分析】(1)仿照已知等式寫出答案即可;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論