版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
礦區(qū)2024-2025學(xué)年中考聯(lián)考數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.菱形ABCD中,對角線AC、BD相交于點O,H為AD邊中點,菱形ABCD的周長為28,則OH的長等于()A.3.5 B.4 C.7 D.142.如圖,已知的周長等于,則它的內(nèi)接正六邊形ABCDEF的面積是()A. B. C. D.3.計算的結(jié)果是(
)A. B. C. D.24.2017年我國大學(xué)生畢業(yè)人數(shù)將達(dá)到7490000人,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為()A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×1075.如圖,數(shù)軸上有M、N、P、Q四個點,其中點P所表示的數(shù)為a,則數(shù)-3a所對應(yīng)的點可能是()A.M B.N C.P D.Q6.下列各數(shù):π,sin30°,﹣,其中無理數(shù)的個數(shù)是()A.1個 B.2個 C.3個 D.4個7.已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是()A.8B.9C.10D.118.若a與﹣3互為倒數(shù),則a=()A.3 B.﹣3 C.13 D.-9.在解方程-1=時,兩邊同時乘6,去分母后,正確的是()A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)10.如圖,若a∥b,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.120° D.150°二、填空題(共7小題,每小題3分,滿分21分)11.已知二次函數(shù)的圖象開口向上,且經(jīng)過原點,試寫出一個符合上述條件的二次函數(shù)的解析式:_____.(只需寫出一個)12.如圖,在△OAB中,C是AB的中點,反比例函數(shù)y=(k>0)在第一象限的圖象經(jīng)過A,C兩點,若△OAB面積為6,則k的值為_____.13.如圖,矩形ABCD中,E為BC的中點,將△ABE沿直線AE折疊時點B落在點F處,連接FC,若∠DAF=18°,則∠DCF=_____度.14.當(dāng)__________時,二次函數(shù)有最小值___________.15.方程的解是__________.16.如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點O為位似中心在y軸的左側(cè)將△OAB縮小得到△OA′B′,若△OAB與△OA′B′的相似比為2:1,則點B(3,﹣2)的對應(yīng)點B′的坐標(biāo)為_____.17.已知:a(a+2)=1,則a2+=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(biāo)(用含a的代數(shù)式表示);(2)若以AD為直徑的圓經(jīng)過點C.①求拋物線的函數(shù)關(guān)系式;②如圖2,點E是y軸負(fù)半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應(yīng)),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標(biāo);③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標(biāo).19.(5分)如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點.求反比例函數(shù)的表達(dá)式在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo)求△PAB的面積.20.(8分)列方程或方程組解應(yīng)用題:為響應(yīng)市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?21.(10分)如圖,AB為⊙O的直徑,直線BM⊥AB于點B,點C在⊙O上,分別連接BC,AC,且AC的延長線交BM于點D,CF為⊙O的切線交BM于點F.(1)求證:CF=DF;(2)連接OF,若AB=10,BC=6,求線段OF的長.22.(10分)閱讀下面材料:已知:如圖,在正方形ABCD中,邊AB=a1.按照以下操作步驟,可以從該正方形開始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關(guān)系,并且一個比一個小.操作步驟作法由操作步驟推斷(僅選取部分結(jié)論)第一步在第一個正方形ABCD的對角線AC上截取AE=a1,再作EF⊥AC于點E,EF與邊BC交于點F,記CE=a2(i)△EAF≌△BAF(判定依據(jù)是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2為②:第二步以CE為邊構(gòu)造第二個正方形CEFG;第三步在第二個正方形的對角線CF上截取FH=a2,再作IH⊥CF于點H,IH與邊CE交于點I,記CH=a3:(iv)用只含a1的式子表示a3為③:第四步以CH為邊構(gòu)造第三個正方形CHIJ這個過程可以不斷進(jìn)行下去.若第n個正方形的邊長為an,用只含a1的式子表示an為④請解決以下問題:(1)完成表格中的填空:①;②;③;④;(2)根據(jù)以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規(guī)作圖).23.(12分)如圖,⊙O是Rt△ABC的外接圓,∠C=90°,tanB=,過點B的直線l是⊙O的切線,點D是直線l上一點,過點D作DE⊥CB交CB延長線于點E,連接AD,交⊙O于點F,連接BF、CD交于點G.(1)求證:△ACB∽△BED;(2)當(dāng)AD⊥AC時,求的值;(3)若CD平分∠ACB,AC=2,連接CF,求線段CF的長.24.(14分)央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣,某校為滿足學(xué)生的閱讀需求,欲購進(jìn)一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會成員隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:此次共調(diào)查了名學(xué)生;將條形統(tǒng)計圖1補充完整;圖2中“小說類”所在扇形的圓心角為度;若該校共有學(xué)生2000人,估計該校喜歡“社科類”書籍的學(xué)生人數(shù).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據(jù)菱形的四條邊都相等求出AB,菱形的對角線互相平分可得OB=OD,然后判斷出OH是△ABD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得OHAB.【詳解】∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD.∵H為AD邊中點,∴OH是△ABD的中位線,∴OHAB7=3.1.故選A.本題考查了菱形的對角線互相平分的性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質(zhì)與定理是解題的關(guān)鍵.2、C【解析】
過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內(nèi)接多邊形的性質(zhì)可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設(shè)⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.此題考查了正多邊形與圓的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.3、C【解析】
化簡二次根式,并進(jìn)行二次根式的乘法運算,最后合并同類二次根式即可.【詳解】原式=3﹣2·=3﹣=.故選C.本題主要考查二次根式的化簡以及二次根式的混合運算.4、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】7490000=7.49×106.故選C.此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.5、A【解析】解:∵點P所表示的數(shù)為a,點P在數(shù)軸的右邊,∴-3a一定在原點的左邊,且到原點的距離是點P到原點距離的3倍,∴數(shù)-3a所對應(yīng)的點可能是M,故選A.點睛:本題考查了數(shù)軸,解決本題的關(guān)鍵是判斷-3a一定在原點的左邊,且到原點的距離是點P到原點距離的3倍.6、B【解析】
根據(jù)無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有π的數(shù),找出無理數(shù)的個數(shù)即可.【詳解】sin30°=,=3,故無理數(shù)有π,-,故選:B.本題考查了無理數(shù)的知識,解答本題的關(guān)鍵是掌握無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有π的數(shù).7、C【解析】試題分析:已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是360÷36=10,故選C.考點:多邊形的內(nèi)角和外角.8、D【解析】試題分析:根據(jù)乘積是1的兩個數(shù)互為倒數(shù),可得3a=1,∴a=13故選C.考點:倒數(shù).9、D【解析】解:,∴3(x﹣1)﹣6=2(3x+1),故選D.點睛:本題考查了等式的性質(zhì),解題的關(guān)鍵是正確理解等式的性質(zhì),本題屬于基礎(chǔ)題型.10、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質(zhì),對頂角相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.平行線的性質(zhì)定理:兩直線平行,同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補,兩條平行線之間的距離處處相等.二、填空題(共7小題,每小題3分,滿分21分)11、y=x2等【解析】分析:根據(jù)二次函數(shù)的圖象開口向上知道a>1,又二次函數(shù)的圖象過原點,可以得到c=1,所以解析式滿足a>1,c=1即可.詳解:∵二次函數(shù)的圖象開口向上,∴a>1.∵二次函數(shù)的圖象過原點,∴c=1.故解析式滿足a>1,c=1即可,如y=x2.故答案為y=x2(答案不唯一).點睛:本題是開放性試題,考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標(biāo)特征,對考查學(xué)生所學(xué)函數(shù)的深入理解、掌握程度具有積極的意義,但此題若想答對需要滿足所有條件,如果學(xué)生沒有注意某一個條件就容易出錯.本題的結(jié)論是不唯一的,其解答思路滲透了數(shù)形結(jié)合的數(shù)學(xué)思想.12、4【解析】
分別過點、點作的垂線,垂足分別為點、點,根據(jù)是的中點得到為的中位線,然后設(shè),,,根據(jù),得到,最后根據(jù)面積求得,從而求得.【詳解】分別過點、點作的垂線,垂足分別為點、點,如圖點為的中點,為的中位線,,,,,,,,,.故答案為:.本題考查了反比例函數(shù)的比例系數(shù)的幾何意義及三角形的中位線定理,關(guān)鍵是正確作出輔助線,掌握在反比例函數(shù)的圖象上任意一點象坐標(biāo)軸作垂線,這一點和垂足以及坐標(biāo)原點所構(gòu)成的三角形的面積是,且保持不變.13、1.【解析】
由折疊的性質(zhì)得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性質(zhì)得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性質(zhì)求出∠ECF=54°,即可得出∠DCF的度數(shù).【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折疊的性質(zhì)得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠FAE=×(90°﹣18°)=1°,∴∠AEF=∠AEB=90°﹣1°=54°,∴∠CEF=180°﹣2×54°=72°,∵E為BC的中點,∴BE=CE,∴FE=CE,∴∠ECF=×(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=1°.故答案為1.本題考查了矩形的性質(zhì)、折疊變換的性質(zhì)、直角三角形的性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識點,求出∠ECF的度數(shù)是解題的關(guān)鍵.14、15【解析】二次函數(shù)配方,得:,所以,當(dāng)x=1時,y有最小值5,故答案為1,5.15、.【解析】
根據(jù)解分式方程的步驟依次計算可得.【詳解】解:去分母,得:,解得:,當(dāng)時,,所以是原分式方程的解,故答案為:.本題主要考查解分式方程,解題的關(guān)鍵是熟練掌握解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結(jié)論.16、(-,1)【解析】
根據(jù)如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或?k進(jìn)行解答.【詳解】解:∵以原點O為位似中心,相似比為:2:1,將△OAB縮小為△OA′B′,點B(3,?2)則點B(3,?2)的對應(yīng)點B′的坐標(biāo)為:(-,1),故答案為(-,1).本題考查了位似變換:位似圖形與坐標(biāo),在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或?k.17、3【解析】
先根據(jù)a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+進(jìn)行計算.【詳解】a(a+2)=1得出a2=1-2a,a2+1-2a+====3.本題考查的是代數(shù)式求解,熟練掌握代入法是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點Q的坐標(biāo)為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數(shù)的解析式進(jìn)行配方即可得到頂點D的坐標(biāo).(2)①以AD為直徑的圓經(jīng)過點C,即點C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標(biāo)可得,而C、D的坐標(biāo)可由a表達(dá)出來,在得出AC、CD、AD的長度表達(dá)式后,依據(jù)勾股定理列等式即可求出a的值.②將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標(biāo)關(guān)鍵是求出點M的坐標(biāo);首先根據(jù)①的函數(shù)解析式設(shè)出M點的坐標(biāo),然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進(jìn)行解答即可.③設(shè)⊙Q與直線CD的切點為G,連接QG,由C、D兩點的坐標(biāo)不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設(shè)出點Q的坐標(biāo),然后用Q點縱坐標(biāo)表達(dá)出QD、QB的長,根據(jù)上面的等式列方程即可求出點Q的坐標(biāo).詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經(jīng)過點C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化簡,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).∵將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°得到△PMN,∴PM∥x軸,且PM=OB=1;設(shè)M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③設(shè)⊙Q與直線CD的切點為G,連接QG,過C作CH⊥QD于H,如下圖:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;設(shè)Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;即點Q的坐標(biāo)為(1,)或(1,).點睛:此題主要考查了二次函數(shù)解析式的確定、旋轉(zhuǎn)圖形的性質(zhì)、圓周角定理以及直線和圓的位置關(guān)系等重要知識點;后兩個小題較難,最后一題中,通過構(gòu)建等腰直角三角形找出QD和⊙Q半徑間的數(shù)量關(guān)系是解題題目的關(guān)鍵.19、(1)反比例函數(shù)的表達(dá)式y(tǒng)=,(2)點P坐標(biāo)(,0),(3)S△PAB=1.1.【解析】(1)把點A(1,a)代入一次函數(shù)中可得到A點坐標(biāo),再把A點坐標(biāo)代入反比例解析式中即可得到反比例函數(shù)的表達(dá)式;(2)作點D關(guān)于x軸的對稱點D,連接AD交x軸于點P,此時PA+PB的值最小.由B可知D點坐標(biāo),再由待定系數(shù)法求出直線AD的解析式,即可得到點P的坐標(biāo);(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點A(1,a)代入一次函數(shù)y=﹣x+4,得a=﹣1+4,
解得a=3,
∴A(1,3),
點A(1,3)代入反比例函數(shù)y=,
得k=3,
∴反比例函數(shù)的表達(dá)式y(tǒng)=,
(2)把B(3,b)代入y=得,b=1∴點B坐標(biāo)(3,1);作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,
∴D(3,﹣1),設(shè)直線AD的解析式為y=mx+n,
把A,D兩點代入得,,
解得m=﹣2,n=1,
∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,
∴點P坐標(biāo)(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.點晴:本題是一道一次函數(shù)與反比例函數(shù)的綜合題,并與幾何圖形結(jié)合在一起來求有關(guān)于最值方面的問題.此類問題的重點是在于通過待定系數(shù)法求出函數(shù)圖象的解析式,再通過函數(shù)解析式反過來求坐標(biāo),為接下來求面積做好鋪墊.20、15千米.【解析】
首先設(shè)小張用騎公共自行車方式上班平均每小時行駛x千米,根據(jù)題意可得等量關(guān)系:騎公共自行車方式所用的時間=自駕車方式所用的時間×4,根據(jù)等量關(guān)系,列出方程,再解即可.【詳解】:解:設(shè)小張用騎公共自行車方式上班平均每小時行駛x千米,根據(jù)題意列方程得:=4×解得:x=15,經(jīng)檢驗x=15是原方程的解且符合實際意義.答:小張用騎公共自行車方式上班平均每小時行駛15千米.21、(1)詳見解析;(2)OF=.【解析】
(1)連接OC,如圖,根據(jù)切線的性質(zhì)得∠1+∠3=90°,則可證明∠3=∠4,再根據(jù)圓周角定理得到∠ACB=90°,然后根據(jù)等角的余角相等得到∠BDC=∠5,從而根據(jù)等腰三角形的判定定理得到結(jié)論;(2)根據(jù)勾股定理計算出AC=8,再證明△ABC∽△ABD,利用相似比得到AD=,然后證明OF為△ABD的中位線,從而根據(jù)三角形中位線性質(zhì)求出OF的長.【詳解】(1)證明:連接OC,如圖,∵CF為切線,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB為直徑,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴,即,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF為△ABD的中位線,∴OF=AD=.本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理和垂徑定理.22、(1)①斜邊和一條直角邊分別相等的兩個直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)見解析.【解析】
(1)①由題意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;②由題意得AB=AE=a1,AC=a1,則CE=a2=a1﹣a1=(﹣1)a1;③同上可知CF=CE=(-1)a1,F(xiàn)H=EF=a2,則CH=a3=CF﹣FH=(-1)2a1;④同理可得an=(-1)n-1a1;(2)根據(jù)題意畫圖即可.【詳解】解:(1)①斜邊和一條直角邊分別相等的兩個直角三角形全等;理由是:如圖1,在Rt△EAF和Rt△BAF中,∵,∴Rt△EAF≌Rt△BAF(HL);②∵四邊形ABCD是正方形,∴AB=BC=a1,∠ABC=90°,∴AC=a1,∵AE=AB=a1,∴CE=a2=a1﹣a1=(﹣1)a1;③∵四邊形CEFG是正方形,∴△CEF是等腰直角三角形,∴CF=CE=(-1)a1,∵FH=EF=a2,∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;④同理可得:an=(-1)n-1a1;故答案為①斜邊和一條直角邊分別相等的兩個直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)所畫正方形CHIJ見右圖.23、(1)詳見解析;(2);(3).【解析】
(1)只要證明∠ACB=∠E,∠AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消毒柜操作規(guī)程
- 2025~2026學(xué)年濟南市“市中區(qū)”八年級第一學(xué)期英語期末考試試題以及答案
- 食品安全質(zhì)量控制流程
- 2026年劇本殺運營公司整車服務(wù)專屬規(guī)范制度
- 2026年劇本殺運營公司投訴處理結(jié)果反饋管理制度
- 護(hù)理基礎(chǔ)理論課件模板
- 環(huán)保包裝材料2025年研發(fā)創(chuàng)新:中心建設(shè)可行性市場評估報告
- 2025年醫(yī)療健康產(chǎn)業(yè)創(chuàng)新與增長報告
- 2026年農(nóng)業(yè)灌溉解決方案行業(yè)創(chuàng)新報告
- 2026年5G通信技術(shù)在工業(yè)互聯(lián)網(wǎng)中的創(chuàng)新報告
- 2026江蘇鹽城市阜寧縣科技成果轉(zhuǎn)化服務(wù)中心選調(diào)10人考試參考題庫及答案解析
- 托管機構(gòu)客戶投訴處理流程規(guī)范
- 2026年及未來5年中國建筑用腳手架行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報告
- 銀行客戶信息安全課件
- 2026年四川單招單招考前沖刺測試題卷及答案
- 2026年全國公務(wù)員考試行測真題解析及答案
- 2025新疆華夏航空招聘筆試歷年難易錯考點試卷帶答案解析
- (2025)70周歲以上老年人換長久駕照三力測試題庫(附答案)
- 金太陽山西省名校三晉聯(lián)盟2025-2026學(xué)年高三上學(xué)期12月聯(lián)合考試語文(26-177C)(含答案)
- 2026年泌尿護(hù)理知識培訓(xùn)課件
- 2026云南省產(chǎn)品質(zhì)量監(jiān)督檢驗研究院招聘編制外人員2人考試參考試題及答案解析
評論
0/150
提交評論