蘇教版初中數(shù)學知識點總結(jié)_第1頁
蘇教版初中數(shù)學知識點總結(jié)_第2頁
蘇教版初中數(shù)學知識點總結(jié)_第3頁
蘇教版初中數(shù)學知識點總結(jié)_第4頁
蘇教版初中數(shù)學知識點總結(jié)_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

初中數(shù)學知識點大全

第一章實數(shù)

正整數(shù)

o

一、重要概念整數(shù)

有理數(shù)(有限或無限循環(huán)性i負整數(shù)

{正分數(shù)

分數(shù)

1?數(shù)的分類及概念實數(shù)V負分數(shù)

數(shù)系表::無理數(shù)(無限不循環(huán)小數(shù)){旌器

{整數(shù)

傳理數(shù)

2.非負數(shù):正實數(shù)與零的統(tǒng)稱。

分數(shù)

正數(shù)

(表為:*20)q理數(shù)

?(a為用贖《)0

二整數(shù)

常見的非負數(shù)有:,理數(shù)

(a>0)、

分數(shù)

性質(zhì):假設(shè)干個非負數(shù)的和為0,負數(shù)則

。理數(shù)

每個非負擔數(shù)均為0。

3.倒數(shù):①定義及表示法②性質(zhì):A.1/a(aw±l);B.1/a中,awO;C.OVaVl時1/a

時,l/aVl;D.積為1。

4.相反數(shù):①定義及表示法②性質(zhì):A.awO時,ar-a;B.a與-a在數(shù)軸上的位置;C.和為0,

商為T。

5.數(shù)軸:①定義(〃三要素〃)

②作用:A.直觀地比擬實數(shù)的大小;B.明確表達絕對值意義;C.建立點與實數(shù)的一一對應(yīng)關(guān)系。

6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)一自然數(shù))

定義及表示:奇數(shù):2n-l偶數(shù):2n(n為自然數(shù))

a(a>0)

7.絕對值:①定義(兩種):a

-a(a<0)

代數(shù)定義:

幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應(yīng)的點到原點的距離。

②Ia|》0,符號〃||是〃非負數(shù)〃的標志;③數(shù)a的絕對值只有一個;

④處理任何類型的題目,只要其中有〃II〃出現(xiàn),其關(guān)鍵一步是去掉〃II〃符號。

二、實數(shù)的運算

運算法則(加、減、乘、除、乘方、開方)

運算定律(五個一加法[乘法]交換律、結(jié)合律;[乘法對加法的分配律)

運算順序:A.高級運算到低級運算;B.(同級運算)從〃左〃至『右〃(如5+X5);C.(有括號

時)由〃小〃到〃中〃到〃大”。

第二章代數(shù)式?單項式

式:多項式

L代數(shù)式與有理式有理式1

彳弋數(shù)三

用運算符號把數(shù)或表示數(shù)的無理式字母連結(jié)而成的式子,叫做

代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。整式和分式統(tǒng)稱為有理式。

2.整式和分式

含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。

沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

有除法運算并且除式中含有字母的有理式叫做分式。

3.單項式與多項式

沒有加減運算的整式叫做單項式。(數(shù)字與字母的積一包括單獨的一個數(shù)或字母)

幾個單項式的和,叫做多項式。

說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、

多項式區(qū)分開。②進展代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對

象。劃分代數(shù)式類別時丁是從外形來看。

4.系數(shù)與指數(shù)區(qū)別與聯(lián)系:①從位置上看:②從表示的意義上看

5.同類項及其合并條件:①字母一樣;②一樣字母的指數(shù)一樣合并依據(jù):乘法分配律

6.根式表示方根的代數(shù)式叫做根式。含有關(guān)于字母開方運算的代數(shù)式叫做無理式。

注意:①從外形上判斷;②區(qū)別:石、曲是根式,但不是無理式(是無理數(shù))。

7.算術(shù)平方根

⑴正數(shù)a的正的平方根(&[a20一與〃平方根〃的區(qū)別]);

⑵算術(shù)平方根與絕對值

①我系:都是非負數(shù),而二Ia|②區(qū)別:|a|中,a為一切實數(shù);而中,a為非負數(shù)。

8.同類二次根式、最簡二次根式、分母有理化:把分母中的根號劃去叫做分母有理化。

化為最簡二次根式以后,被開方數(shù)一樣的二次根式叫做同類二次根式。

滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因

式。

運算定律、性質(zhì)、法則

1.分式的加、減、乘、除、乘方、開方法則2.分式的性質(zhì)

bbmb_-b_b

⑴根木性質(zhì):a=am(mWO)⑵符號法則:。以一。

⑶繁分式:①定義;②化簡方法(兩種)

3.整式運算法則(去括號、添括號法則)

4.幕的運算性質(zhì):①?!ǎ?。"二優(yōu)…;②優(yōu)=③(優(yōu)")"=。7④

(,=£昌-"=哈)〃

⑤匕b技巧:ab

5.乘法法則:(1)單X單;⑵單X多;⑶多X多。

6.乘法公式正、逆用)=a-±2ah+h-g+b)(a-b)二/一從

(a±b)(/不必+〃)二/

7.除法法則:(1)單+單;(2)多+單。

8.因式分解:⑴定義;(2)方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根

公式法。

9.算術(shù)根的性質(zhì):行=同;(右)2=。(〃之。);疝=&,逐620,(320);\7&(a^O,b

>0)(正用、逆用)

10.根式運算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:

b4ab1

A.右;B.a.QmyTa-n4b

11.科學記數(shù)法:〃xlO〃(iWaV10,n是整數(shù))

第三章統(tǒng)計初步

重要概念

1.總體:考察對象的全體。2.個體:總體中每一個考察對象。

3.樣本:從總體中抽出的一局部個體。4.樣本容量:樣本中個體的數(shù)目。

5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。

6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中同位置的兩個數(shù)據(jù)

的平均數(shù))

計算方法

X=一(玉+工?+°,,+工〃)

1.樣本平均數(shù):⑴〃;

⑵假設(shè)再二七一",%=%一〃,??.,則x=f+4(a—常數(shù),②%,…,X〃接

近較整的常數(shù)a);

一貨"十%)力H---hX,.

X=~~~—---------力+%+…+人=〃)

⑶加權(quán)平均數(shù):

⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置〕的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),

樣本容量越大,估計越準確。

°]_-

52——[(X,-X)2+(X,—X)2+…+(X〃-X)2]

2.樣本方差:⑴〃

)1.2.2.2—2

--?s=—[(X.+x3H-----Fx)-nx|

⑵假設(shè)內(nèi)=玉—-"2=%—〈???,£=怎_4,則,I?3—接近

/、…、%的平均數(shù)的較〃整〃的常數(shù));假設(shè)再、/、…、乙較〃小〃較〃整〃,則

222

S=—[(%]+X2+…+xj)一〃「]

n

⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動大小)的特征數(shù),當樣本容量較大時,樣本方差非常

接近總體方差,通常用樣本方差去估計總體方差。

3.樣本標準差:s=E

第四章直線形

一、直線、相交線、平行線

1.線段、射線、直線三者的區(qū)別與聯(lián)系

從〃圖形〃、〃表示法〃、〃界限〃、〃端點個數(shù)〃、〃根本性質(zhì)〃等方面加以分析。

2.線段的中點及表示

3.直線、線段的根本性質(zhì)(用〃線段的根本性質(zhì)〃論證〃三角形兩邊之和大于第三邊〃)

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)6.互為余角、互為補角及表示方法

7.角的平分線及其表示8.對頂角及性質(zhì)

9.垂線及根本性質(zhì)(利用它證明〃直角三角形中斜動大于直角動〃)

10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條

直線平行。

12.定義、命題、命題的組成13.公理、定理14.逆命題

二、三角形分類:⑴按邊分;⑵按角分

1.定義(包括內(nèi)、外角)

2.三角形的邊角關(guān)系:(D角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角

和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形

中,?

等邊<=>等角大邊<==>大角小邊<=>小角

3.三角形的主要線

討論:①定義②XX線的交點一三角形的義心③性質(zhì)

①高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形的判定與性質(zhì)5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)⑵特殊三角形全等的判定:①一般方法②專

用方法

6.三角形的面積⑴一般計算公式⑵性質(zhì):等底等高的三角形面積相等。

7.重要輔助線⑴中點配中點構(gòu)成中位線;(2功口倍中線;(3)添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法⑵間接證法一反證法:①反設(shè)②歸謬③結(jié)論

⑶證線段相等、角相等常通過證三角形全等⑷證線段倍分關(guān)系:加倍法、折半法

⑸證線段和差關(guān)系:延結(jié)法、截余法⑹證面積關(guān)系:將面積表示出來

三、四邊形分類表:

1.一般性質(zhì)(角)(1)內(nèi)角和:360°(2)順次連結(jié)各邊中點得平行四邊形。⑶外角和:360°

推論1:順次連結(jié)對角線相等的四邊形各邊中點得菱形。

推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點得矩形。

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

⑶判定步驟:四邊形一平行四邊形一矩形一正方形一菱形——

⑷對角線的紐帶作用:

3.對稱圖形⑴軸對稱(定義及性質(zhì));(2)中心對稱(定義及性質(zhì))

4.有關(guān)定理:①平行線等分線段定理及其推論1、2②三角形、梯形的中位線定理

③平行線間的距離處處相等。

5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中?!ㄆ揭埔谎?、〃平移對角線〃、〃作高〃、

〃連結(jié)頂點和對腰中點并延長與底邊相交〃轉(zhuǎn)化為三角形。

6.作圖:任意等分線段。

第五章方程(組)

一、根本概念

1.方程、方程的解(根)、方程組的解、解方程

一次方程

(組)“整式方置二次方程

有理方程〔高次方程

1.分類:

方程1〔分式方程

二、解方程的依據(jù)一等式性質(zhì)無理方程

1.a=b-a+c=b+c2?a=b*-->ac=bc(c#0)

三、解法

1.一元一次方程的解法:去分母一去括號一移項一合并同類項一系數(shù)化成1一解。

2.元一次方程組的解法:⑴根本思想:〃消元〃⑵方法:①代入法②加減法

四、一元二次方程

1.定義及一般形式:—+公+。=0("0)

2.解法:⑴直接開平方法(注意特征)⑵配方法(注意步驟一推倒求根公式)

—±'Jb~-4cic,2A、八、

x,o=------------(zb~-4ac>0)

⑶公式法:"2〃⑷因式分解法(特征:左邊二0)

h

=

+/--?-V|,=一

3.根的判別式:△=〃-4碇4.根與系數(shù)頂?shù)年P(guān)系:

逆定理:假設(shè)玉+/=〃2,王32=〃,則以為,Z為根的一元二次方程是:-氏+〃=0。

222

5,常用等式:xf+%2=U1+^2)-2x^2(x(-x2)=(x,+x2)-4x^2

五、可化為一元二次方程的方程

1.分式方程

⑴定義

去分母

⑵根本思想:分式方程I>整式方程

⑶根本解法:①去分母法②換元法⑷驗根及方法

2.無理方程

乘方

無理方程三£〉有理方程

⑴定義⑵根本思想:

⑶根本解法;①乘方法(注意技巧?。。趽Q元法⑷驗根及方法

3.簡單的二元二次方程組

由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。

六、列方程(組)解應(yīng)用題

㈠概述列方程(組)解應(yīng)用題是中學數(shù)學聯(lián)系實際的一個重要方面。其具體步驟是:

⑴審題。理解題意。弄清問題中量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。

⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方

程越易列,但越難解。

⑶用含未知數(shù)的代數(shù)式表示相關(guān)的量。

⑷尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,

未知數(shù)個數(shù)與方程個數(shù)是一樣的。

⑸解方程及檢驗。⑹答案。

綜上所述,列方程(組)解應(yīng)用題實質(zhì)是先把實際問題轉(zhuǎn)化為數(shù)學問題(設(shè)元、列方程),在

由數(shù)學問題的解決而導(dǎo)致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著

承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。

㈡常用的相等關(guān)系

aC

1.行程問題(勻速運動)根本關(guān)系:s=vtA.----------------?-----------tB

_甲一相遇處一

⑴相遇問題(同時出發(fā)):$甲+$乙-他;廂=如

⑵追及問題(同時出發(fā)):C

A?--------------<-------*B

假設(shè)甲出發(fā)t小時后,乙才出發(fā),而后在B甲一R甲)(相遇

A?----------------------------tB

處追上甲,則乙一(相遇

⑶水中航行:“順=船速+水速;"逆=船速一水速

1.配料問題:溶質(zhì)二溶液X濃度2.溶液二溶質(zhì)+溶劑3.增長率問題:%=為(1±〃)""

4.工程問題;根本關(guān)系:工作量-工作效率X工作時間(常把工作量看著單位〃1")。

5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。

㈢注意語言與解析式的互化

如,〃多"、〃少〃、〃增加了〃、〃增加為(到)〃、〃同時〃、〃擴大為(到)〃如擴大了〃、……

又如,一個三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c,則這個三位數(shù)為:100a+10b+c,

而不是abco

㈣注意從語言表達中寫出相等關(guān)系。

如,*比丫大3,則*-y=3或*=y+3或*-3=y。又如,*與丫的差為3,則*-y=3c

㈤注意單位換算如,〃小時〃〃分鐘〃的換算;s、v、t單位的一致等。

第六章一元一次不等式(組)

1.定義:a>b^a<b>a>b、a&b、a寺b。

2.一元一次不等式:a*>b、a*<b、a*》b、a*&b、a*fb(a=^O)。

3.一元一次不等式組:

4.不等式的性質(zhì):(l)a>b<——>a+c>b+c(2)a>b<——>ac>bc(c>0)

(3)a>b?——>ac<bc(c<0)(4)(傳遞性)a>b,b>c^a>c(5)a>b,c>d—>a+c>b+d.

5.一元一次不等式的解、解一元一次不等式

6.一元一次不等式組的解、解一元一次不等式組(在數(shù)軸上表示解集)

第七章相似形

b_d_

一、本章的兩套定理‘反比性質(zhì):

ac

第一套(比例的有關(guān)性質(zhì)):dcab

—=—<=>ad=hc^>更比性質(zhì):一=一或一=一

b(1bacd,,,,

涉及概念:①第四比例項②比例中項

比例根本定理、

a±b_c±d

合比性質(zhì):

③比的前項、后項,比的內(nèi)項、~b~=~~d~外項④

黃金分割等。

二、相似三角形性質(zhì)1.對應(yīng)線段…;2.對應(yīng)周長…;3.對應(yīng)面積…。

三、相關(guān)作圖①作第四比例項;②作比例中項。

四、證(解)題規(guī)律、輔助線

1.〃等積〃變〃比例〃,〃比例〃找〃相似〃。

2.找相似找不到,找中間比。方法:將等式左右兩切的比表示出來。

amc.p-.Llzxamcm,

(1)/?ndnn(2)/?ndn

amcm,,—mm、

—=一,——=-r(zm=m,n=n或一=—)

(3)hndnnn

3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。

4.比照例問題,常用處理方法是將〃一份〃看著k;對于等比問題,常用處理方法是設(shè)〃公比〃

為ko

5.對于復(fù)雜的幾何圖形,采用將局部需要的圖形(或根本圖形)〃抽〃出來的方法處理。

第八章函數(shù)及其圖象

一、平面直角坐標系

1.各象限內(nèi)點的坐標的特點2.坐標軸上點的坐標的特點

3.關(guān)于坐標軸、原點對稱的點的坐標的特點4.坐標平面內(nèi)點與有序?qū)崝?shù)對的對應(yīng)關(guān)系

二、函數(shù)

1.表示方法:⑴解析法;(2)列表法;(3)圖象法。

2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實際問題有意義。

3.畫函數(shù)圖象:(1)列表;⑵描點;⑶連線。

三、幾種特殊函數(shù)(定義一圖象一性質(zhì))

1.正比例函數(shù)

⑴定義:y=k*義W0)或y/*=k。⑵圖象:直線(過原點)⑶性質(zhì):①k>0,…②k<0,…

2.一次函數(shù)

⑴定義:y=k*+b(k#0)

⑵圖象:直線過點(0,b)一與y軸的交點和Jb/k,0)一與*軸的交點。

⑶性質(zhì):①k>0,…

②k<0,…

⑷圖象的四種情況:

3.二次函數(shù)

(k>0,b>0)(k>0,b<0)(k<0,b<0)

⑴定義

y=ax2+w0)(一般式)y=a(x-h)2+2(。工0)(頂點式)

特殊地,>=?(〃,°),y=?+%("°)都是二次函數(shù)。

⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。

y=.+"+c("°)用配方法變?yōu)槎?心一研則頂點為(h,k);對稱軸為直線

*=h;a>0時,開口向上;a<0時,開口向下。

⑶性質(zhì):a>0時,在對稱軸左側(cè)…,右側(cè)…;a<0時,在對稱軸左側(cè)…,右側(cè)…。

4?反比例函數(shù)

y=—=kx

⑴定義:%或*y=k(kW0)。(2)圖象:雙曲線(兩支)一用描點法畫出。

⑶性質(zhì):①k>0時,圖象位于…,y隨*…;②k<0時,圖象位于…,丫隨*…;③兩支曲線無限接

近于坐標軸但永遠不能到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論