北師大版七年級(jí)數(shù)學(xué)下冊(cè)-期末試卷測試卷(解析版)_第1頁
北師大版七年級(jí)數(shù)學(xué)下冊(cè)-期末試卷測試卷(解析版)_第2頁
北師大版七年級(jí)數(shù)學(xué)下冊(cè)-期末試卷測試卷(解析版)_第3頁
北師大版七年級(jí)數(shù)學(xué)下冊(cè)-期末試卷測試卷(解析版)_第4頁
北師大版七年級(jí)數(shù)學(xué)下冊(cè)-期末試卷測試卷(解析版)_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北師大版七年級(jí)數(shù)學(xué)下冊(cè)期末試卷測試卷(解析版)一、解答題1.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點(diǎn),點(diǎn)為上一點(diǎn),連接,若的平分線交線段于點(diǎn),連接,若,過點(diǎn)作交的延長線于點(diǎn),且,求的度數(shù).2.如圖1,已知直線CD∥EF,點(diǎn)A,B分別在直線CD與EF上.P為兩平行線間一點(diǎn).(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關(guān)系?并說明理由;(3)利用(2)的結(jié)論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請(qǐng)你寫出∠P與∠P1的數(shù)量關(guān)系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)3.問題情境:(1)如圖1,,,.求度數(shù).小穎同學(xué)的解題思路是:如圖2,過點(diǎn)作,請(qǐng)你接著完成解答.問題遷移:(2)如圖3,,點(diǎn)在射線上運(yùn)動(dòng),當(dāng)點(diǎn)在、兩點(diǎn)之間運(yùn)動(dòng)時(shí),,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點(diǎn)作),請(qǐng)說明理由;(3)在(2)的條件下,如果點(diǎn)在、兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請(qǐng)你猜想、、之間的數(shù)量關(guān)系并證明.4.已知直線,點(diǎn)P為直線、所確定的平面內(nèi)的一點(diǎn).(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點(diǎn)E在射線上,過點(diǎn)E作,作,點(diǎn)G在直線上,作的平分線交于點(diǎn)H,若,,求的度數(shù).5.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點(diǎn),點(diǎn)M,點(diǎn)N分別是直線CD,EF上一點(diǎn)(不與P,Q重合),連接PM,MN.(1)點(diǎn)M,N分別在射線QC,QF上(不與點(diǎn)Q重合),當(dāng)∠APM+∠QMN=90°時(shí),①試判斷PM與MN的位置關(guān)系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過N點(diǎn)作AB的平行線)(2)點(diǎn)M,N分別在直線CD,EF上時(shí),請(qǐng)你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時(shí)∠APM與∠QMN的關(guān)系.(注:此題說理時(shí)不能使用沒有學(xué)過的定理)二、解答題6.如圖,直線,一副三角板(,,)按如圖①放置,其中點(diǎn)在直線上,點(diǎn)均在直線上,且平分.(1)求的度數(shù).(2)如圖②,若將三角形繞點(diǎn)以每秒的速度按逆時(shí)針方向旋轉(zhuǎn)(的對(duì)應(yīng)點(diǎn)分別為).設(shè)旋轉(zhuǎn)時(shí)間為秒.①在旋轉(zhuǎn)過程中,若邊,求的值;②若在三角形繞點(diǎn)旋轉(zhuǎn)的同時(shí),三角形繞點(diǎn)以每秒的速度按順時(shí)針方向旋轉(zhuǎn)(的對(duì)應(yīng)點(diǎn)分別為).請(qǐng)直接寫出當(dāng)邊時(shí)的值.7.如圖1,由線段組成的圖形像英文字母,稱為“形”.(1)如圖1,形中,若,則______;(2)如圖2,連接形中兩點(diǎn),若,試探求與的數(shù)量關(guān)系,并說明理由;(3)如圖3,在(2)的條件下,且的延長線與的延長線有交點(diǎn),當(dāng)點(diǎn)在線段的延長線上從左向右移動(dòng)的過程中,直接寫出與所有可能的數(shù)量關(guān)系.8.為了安全起見在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈射線從開始順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射線從開始順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交又照射巡視.若燈轉(zhuǎn)動(dòng)的速度是每秒2度,燈轉(zhuǎn)動(dòng)的速度是每秒1度.假定主道路是平行的,即,且.(1)填空:_________;(2)若燈射線先轉(zhuǎn)動(dòng)30秒,燈射線才開始轉(zhuǎn)動(dòng),在燈射線到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?(3)如圖2,若兩燈同時(shí)轉(zhuǎn)動(dòng),在燈射線到達(dá)之前.若射出的光束交于點(diǎn),過作交于點(diǎn),且,則在轉(zhuǎn)動(dòng)過程中,請(qǐng)?zhí)骄颗c的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)說明理由.9.如圖1,為直線上一點(diǎn),過點(diǎn)作射線,將一直角三角板()的直角頂點(diǎn)放在點(diǎn)處,一邊在射線上,另一邊與都在直線的上方,將圖1中的三角板繞點(diǎn)以每秒3°的速度沿順時(shí)針方向旋轉(zhuǎn)一周.(1)幾秒后與重合?(2)如圖2,經(jīng)過秒后,,求此時(shí)的值.(3)若三角板在轉(zhuǎn)動(dòng)的同時(shí),射線也繞點(diǎn)以每秒6°的速度沿順時(shí)針方向旋轉(zhuǎn)一周,那么經(jīng)過多長時(shí)間與重合?請(qǐng)畫圖并說明理由.(4)在(3)的條件下,求經(jīng)過多長時(shí)間平分?請(qǐng)畫圖并說明理由.10.已知:和同一平面內(nèi)的點(diǎn).(1)如圖1,點(diǎn)在邊上,過作交于,交于.根據(jù)題意,在圖1中補(bǔ)全圖形,請(qǐng)寫出與的數(shù)量關(guān)系,并說明理由;(2)如圖2,點(diǎn)在的延長線上,,.請(qǐng)判斷與的位置關(guān)系,并說明理由.(3)如圖3,點(diǎn)是外部的一個(gè)動(dòng)點(diǎn).過作交直線于,交直線于,直接寫出與的數(shù)量關(guān)系,并在圖3中補(bǔ)全圖形.三、解答題11.如圖,直線,、是、上的兩點(diǎn),直線與、分別交于點(diǎn)、,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),連接、.(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),,,則_____.(2)若點(diǎn)與點(diǎn)、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.12.解讀基礎(chǔ):(1)圖1形似燕尾,我們稱之為“燕尾形”,請(qǐng)寫出、、、之間的關(guān)系,并說明理由;(2)圖2形似8字,我們稱之為“八字形”,請(qǐng)寫出、、、之間的關(guān)系,并說明理由:應(yīng)用樂園:直接運(yùn)用上述兩個(gè)結(jié)論解答下列各題(3)①如圖3,在中,、分別平分和,請(qǐng)直接寫出和的關(guān)系;②如圖4,.(4)如圖5,與的角平分線相交于點(diǎn),與的角平分線相交于點(diǎn),已知,,求和的度數(shù).13.在中,,,點(diǎn)在直線上運(yùn)動(dòng)(不與點(diǎn)、重合),點(diǎn)在射線上運(yùn)動(dòng),且,設(shè).(1)如圖①,當(dāng)點(diǎn)在邊上,且時(shí),則__________,__________;(2)如圖②,當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的左側(cè)時(shí),其他條件不變,請(qǐng)猜想和的數(shù)量關(guān)系,并說明理由;(3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的右側(cè)時(shí),其他條件不變,和還滿足(2)中的數(shù)量關(guān)系嗎?請(qǐng)?jiān)趫D③中畫出圖形,并給予證明.(畫圖痕跡用黑色簽字筆加粗加黑)14.如果三角形的兩個(gè)內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說法的序號(hào));(3)如圖2,,為直線上兩點(diǎn),點(diǎn)在直線外,且.若是直線上一點(diǎn),且是“準(zhǔn)互余三角形”,請(qǐng)直接寫出的度數(shù).15.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時(shí),證明:平分.(2)若如圖2擺放時(shí),則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,請(qǐng)直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時(shí),請(qǐng)直接寫出旋轉(zhuǎn)的時(shí)間.【參考答案】一、解答題1.(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點(diǎn)E作,延長DC至Q,過點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的解析:(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點(diǎn)E作,延長DC至Q,過點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過點(diǎn)E作,延長DC至Q,過點(diǎn)M作,,,AF平分FH平分設(shè),.【點(diǎn)睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進(jìn)行推理是解此題的關(guān)鍵.2.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結(jié)論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯(cuò)角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯(cuò)角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質(zhì))即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結(jié)論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結(jié)論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的定義,熟記性質(zhì)與概念是解題的關(guān)鍵,此類題目,難點(diǎn)在于過拐點(diǎn)作平行線.3.(1)見解析;(2),理由見解析;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=解析:(1)見解析;(2),理由見解析;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點(diǎn)P在BA的延長線上,②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;理由:如圖4,過作交于,,,,,,,,又,;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由:如圖5,過作交于,,,,,,,,又.【點(diǎn)睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角以及同旁內(nèi)角.4.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360解析:(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點(diǎn)P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點(diǎn)睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5.(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條解析:(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過點(diǎn)N作NH∥CD,利用角平分線的定義以及平行線的性質(zhì)求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質(zhì)即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點(diǎn)N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當(dāng)點(diǎn)M,N分別在射線QC,QF上時(shí),如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線QC,線段PQ上時(shí),如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線QD,QF上時(shí),如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點(diǎn)睛】本題主要考查了平行線的判定與性質(zhì),熟練掌握兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,同位角相等等知識(shí)是解題的關(guān)鍵.二、解答題6.(1)60°;(2)①6s;②s或s【分析】(1)利用平行線的性質(zhì)角平分線的定義即可解決問題.(2)①首先證明∠GBC=∠DCN=30°,由此構(gòu)建方程即可解決問題.②分兩種情形:如圖③中,當(dāng)解析:(1)60°;(2)①6s;②s或s【分析】(1)利用平行線的性質(zhì)角平分線的定義即可解決問題.(2)①首先證明∠GBC=∠DCN=30°,由此構(gòu)建方程即可解決問題.②分兩種情形:如圖③中,當(dāng)BG∥HK時(shí),延長KH交MN于R.根據(jù)∠GBN=∠KRN構(gòu)建方程即可解決問題.如圖③-1中,當(dāng)BG∥HK時(shí),延長HK交MN于R.根據(jù)∠GBN+∠KRM=180°構(gòu)建方程即可解決問題.【詳解】解:(1)如圖①中,∵∠ACB=30°,∴∠ACN=180°-∠ACB=150°,∵CE平分∠ACN,∴∠ECN=∠ACN=75°,∵PQ∥MN,∴∠QEC+∠ECN=180°,∴∠QEC=180°-75°=105°,∴∠DEQ=∠QEC-∠CED=105°-45°=60°.(2)①如圖②中,∵BG∥CD,∴∠GBC=∠DCN,∵∠DCN=∠ECN-∠ECD=75°-45°=30°,∴∠GBC=30°,∴5t=30,∴t=6s.∴在旋轉(zhuǎn)過程中,若邊BG∥CD,t的值為6s.②如圖③中,當(dāng)BG∥HK時(shí),延長KH交MN于R.∵BG∥KR,∴∠GBN=∠KRN,∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,∴∠KRN=90°-(60°+4t)=30°-4t,∴5t=30°-4t,∴t=s.如圖③-1中,當(dāng)BG∥HK時(shí),延長HK交MN于R.∵BG∥KR,∴∠GBN+∠KRM=180°,∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,∴∠KRM=90°-(180°-60°-4t)=4t-30°,∴5t+4t-30°=180°,∴t=s.綜上所述,滿足條件的t的值為s或s.【點(diǎn)睛】本題考查幾何變換綜合題,考查了平行線的性質(zhì),旋轉(zhuǎn)變換,角平分線的定義等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)用分類討論的思想思考問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題,屬于中考?jí)狠S題.7.(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長BA,DC交于E,應(yīng)用四邊形的內(nèi)角和定理與平角的定義即可解決問題.(3)分兩種情形分別求解即可;【詳解】解:(1)過M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案為:50°;(2)∠A+∠C=30°+α,延長BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下圖所示:延長BA、DC使之相交于點(diǎn)E,延長MC與BA的延長線相交于點(diǎn)F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的內(nèi)外角之間的關(guān)系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如圖所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α.綜上所述,∠A-∠DCM=30°+α或30°-α.【點(diǎn)睛】本題考查了平行線的性質(zhì).解答該題時(shí),通過作輔助線準(zhǔn)確作出輔助線l∥AB,利用平行線的性質(zhì)(兩直線平行內(nèi)錯(cuò)角相等)將所求的角∠M與已知角∠A、∠C的數(shù)量關(guān)系聯(lián)系起來,從而求得∠M的度數(shù).8.(1)72°;(2)30秒或110秒;(3)不變,∠BAC=2∠BCD【分析】(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度數(shù);(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,解析:(1)72°;(2)30秒或110秒;(3)不變,∠BAC=2∠BCD【分析】(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度數(shù);(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,分兩種情況進(jìn)行討論:當(dāng)0<t<90時(shí),根據(jù)2t=1?(30+t),可得t=30;當(dāng)90<t<150時(shí),根據(jù)1?(30+t)+(2t-180)=180,可得t=110;(3)設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒,根據(jù)∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,據(jù)此可得∠BAC和∠BCD關(guān)系不會(huì)變化.【詳解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×=72°,故答案為:72;(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,①當(dāng)0<t<90時(shí),如圖1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1?(30+t),解得t=30;②當(dāng)90<t<150時(shí),如圖2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1?(30+t)+(2t-180)=180,解得t=110,綜上所述,當(dāng)t=30秒或110秒時(shí),兩燈的光束互相平行;(3)∠BAC和∠BCD關(guān)系不會(huì)變化.理由:設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD關(guān)系不會(huì)變化.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及角的和差關(guān)系的運(yùn)用,解決問題的關(guān)鍵是運(yùn)用分類思想進(jìn)行求解,解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).9.(1)10秒;(2)20秒;(3)20秒,畫圖見解析;(4)秒,畫圖見解析【分析】(1)用角的度數(shù)除以轉(zhuǎn)動(dòng)速度即可得;(2)求出∠AON=60°,結(jié)合旋轉(zhuǎn)速度可得時(shí)間t;(3)設(shè)∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,畫圖見解析;(4)秒,畫圖見解析【分析】(1)用角的度數(shù)除以轉(zhuǎn)動(dòng)速度即可得;(2)求出∠AON=60°,結(jié)合旋轉(zhuǎn)速度可得時(shí)間t;(3)設(shè)∠AON=3t,則∠AOC=30°+6t,由題意列出方程,解方程即可;(4)根據(jù)轉(zhuǎn)動(dòng)速度關(guān)系和OC平分∠MOB,由題意列出方程,解方程即可.【詳解】解:(1)∵30÷3=10,∴10秒后ON與OC重合;(2)∵M(jìn)N∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴經(jīng)過t秒后,MN∥AB,t=20秒.(3)如圖3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板繞點(diǎn)O以每秒3°的速度,射線OC也繞O點(diǎn)以每秒6°的速度旋轉(zhuǎn),設(shè)∠AON=3t,則∠AOC=30°+6t,∵OC與OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即經(jīng)過20秒時(shí)間OC與OM重合;(4)如圖4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板繞點(diǎn)O以每秒3°的速度,射線OC也繞O點(diǎn)以每秒6°的速度旋轉(zhuǎn),設(shè)∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=∠BOM=(90°-3t),由題意得:180°-(30°+6t)=(90°-3t),解得:t=秒,即經(jīng)過秒OC平分∠MOB.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),角的計(jì)算以及方程的應(yīng)用,關(guān)鍵是應(yīng)該認(rèn)真審題并仔細(xì)觀察圖形,找到各個(gè)量之間的關(guān)系求出角的度數(shù)是解題的關(guān)鍵.10.(1)圖見解析,,理由見解析;(2),理由見解析;(3)圖見解析,或.【分析】(1)根據(jù)平行線的畫法補(bǔ)全圖形即可得,根據(jù)平行線的性質(zhì)可得,由此即可得;(2)如圖(見解析),先根據(jù)平行線的性質(zhì)可解析:(1)圖見解析,,理由見解析;(2),理由見解析;(3)圖見解析,或.【分析】(1)根據(jù)平行線的畫法補(bǔ)全圖形即可得,根據(jù)平行線的性質(zhì)可得,由此即可得;(2)如圖(見解析),先根據(jù)平行線的性質(zhì)可得,再根據(jù)等量代換可得,然后根據(jù)平行線的判定即可得;(3)先根據(jù)點(diǎn)D的位置畫出如圖(見解析)的兩種情況,再分別利用平行線的性質(zhì)、對(duì)頂角相等即可得.【詳解】(1)由題意,補(bǔ)全圖形如下:,理由如下:,,,,;(2),理由如下:如圖,延長BA交DF于點(diǎn)O,,,,,;(3)由題意,有以下兩種情況:①如圖3-1,,理由如下:,,,,,由對(duì)頂角相等得:,;②如圖3-2,,理由如下:,,,,.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì)等知識(shí)點(diǎn),較難的是題(3),正確分兩種情況討論是解題關(guān)鍵.三、解答題11.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計(jì)算∠PFD即可;(2)根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí);②當(dāng)點(diǎn)P在AB上方時(shí);③當(dāng)點(diǎn)P在CD下方時(shí),分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí),過點(diǎn)P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點(diǎn)P在AB上方時(shí),如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點(diǎn)P在CD下方時(shí),∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點(diǎn)睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問題.12.(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據(jù)三角形外角等于不相鄰的兩個(gè)內(nèi)角之和即可得出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理及對(duì)頂角相等即可得出結(jié)解析:(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據(jù)三角形外角等于不相鄰的兩個(gè)內(nèi)角之和即可得出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理及對(duì)頂角相等即可得出結(jié)論;(3)①根據(jù)角平分線的定義及三角形內(nèi)角和定理即可得出結(jié)論;②連結(jié)BE,由(2)的結(jié)論及四邊形內(nèi)角和為360°即可得出結(jié)論;(4)根據(jù)(1)的結(jié)論、角平分線的性質(zhì)以及三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1).理由如下:如圖1,,,,;(2).理由如下:在中,,在中,,,;(3)①,,、分別平分和,,.故答案為:.②連結(jié).∵,.故答案為:;(4)由(1)知,,,,,,,,,,,;.【點(diǎn)睛】本題考查了角平分線的性質(zhì),三角形內(nèi)角和;熟練掌握角平分線的性質(zhì),進(jìn)行合理的等量代換是解題的關(guān)鍵.13.(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,根據(jù)三角形外角的性質(zhì)得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形內(nèi)角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如圖②,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,從而得出結(jié)論∠BAD=2∠CDE;(3)如圖③,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,從而得出結(jié)論∠BAD=2∠CDE.【詳解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案為60,30.(2)∠BAD=2∠CDE,理由如下:如圖②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如圖③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),從圖形中得出相關(guān)角度之間的關(guān)系是解題的關(guān)鍵.14.(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角形”的定義,分類討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準(zhǔn)互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準(zhǔn)互余三角形”;(2)①∵,∴,∴是“準(zhǔn)互余三角形”,故①正確;②∵,,∴,∴不是“準(zhǔn)互余三角形”,故②錯(cuò)誤;③設(shè)三角形的三個(gè)內(nèi)角分別為,且,∵三角形是“準(zhǔn)互余三角形”,∴或,∴,∴,∴“準(zhǔn)互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當(dāng)2∠A+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當(dāng)∠A+2∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如圖③,當(dāng)2∠APB+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠APB=20°;如圖④,當(dāng)2∠A+∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;綜上,∠APB的度數(shù)是10°或20°或40°或110°時(shí),是“準(zhǔn)互余三角形”.【點(diǎn)睛】本題是三角形綜合題,考查了三角形內(nèi)角和定理,三角形的外角的性質(zhì),解題關(guān)鍵是理解題意,根據(jù)三角形內(nèi)角和定理和三角形的外角的性質(zhì),結(jié)合新定義進(jìn)行求解.15.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論