版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Insights
Producedinpartnershipwith
boom
TomeettheirAIambitions,
organizationsmustshiftfrompilotsandexperimentstoenterprise-widedeployment.
Aplaybookfor
craftingAIstrategy
2MITTechnologyReviewInsights
Preface
“AplaybookforcraftingAIstrategy”isanMITTechnologyReviewInsightsreport
sponsoredbyBoomi.Toproducethisreport,MITTechnologyReviewInsights
conductedaglobalsurveyofC-suiteandseniordataexecutivesacrosscountries
andindustries.Thereportalsodrawsonin-depthinterviewsconductedwithbusinessleadersondataandAI.
AdamGreenwastheauthorofthereport,TeresaElseywastheeditor,andNicolaCrepaldiwasthepublisher.Theresearchiseditoriallyindependent,andtheviewsexpressedarethoseofMITTechnologyReviewInsights.
Wewouldliketothankthefollowingexecutivesandexpertsfortheirtimeandinsights:KevinCollins,FounderandChiefExecutiveOfficer,CharliAI
AmyMachado,SeniorResearchManager,IDCMattMcLarty,ChiefTechnologyOfficer,Boomi
SPSingh,SeniorVicePresidentandGlobalHead,EnterpriseApplicationIntegrationandServices,Infosys
Aboutthesurvey
ThesurveyformingthebasisofthisreportwasconductedbyMITTechnologyReview
InsightsinMarch2024.Thesurveysampleconsistsof205executivesanddataand
technologyleaders.Elevenindustriesarerepresented:financialservices,manufacturing,ITandtelecommunications,consumergoodsandretail,pharmaceuticalandhealthcare,government,travelandhospitality,professionalservices,energyandutilities,transportandlogistics,andmediaandmarketing.
Nearlyallsurveyrespondents(88%)comefromtheC-suite.Theseincludechief
executiveofficers(20%),chiefinformationofficers(18%),chieftechnologyofficers
(19%),andchiefdataofficers(15%).Therespondents’organizationsareheadquarteredinNorthAmerica(31%);Europe,theMiddleEast,andAfrica(25%);Asia-Pacific(26%);andCentralandSouthAmerica(18%).AllrespondentsworkatorganizationswithmorethanUS$500millioninglobalannualrevenue,with73%representingorganizations
generatingmorethanUS$1billion,and34%morethanUS$10billion.
CONTENTS
MITTechnologyReviewInsights3
01Executivesummary 4
02Partneringforsuccess 6
Selectingavendor 7
Finance-friendlyAI 7
03Countingthecost 8
Spendingexpectations 9
Measuringreturnoninvestment 10
04Buildingadatacore 11
Datamanagement:Tipsandtactics 11
Reckoningwithlegacyinfrastructure 13
Datalineageandliquidity 13
Metadata 13
05Accelerationversuscaution 14
Hallucinations,errors,andbias 14
Cyberrisk 14
Dataprivacyandprotection 14
Risingregulatorytide 15
Compliancechallenges 16
06Conclusion 17
4MITTechnologyReviewInsights
Executivesummary
G
iddypredictionsaboutAI,fromits
contributionstoeconomicgrowthtotheonsetofmassautomation,arenowasfrequentasthereleaseofpowerfulnewgenerativeAImodels.Theconsultancy
PwC,forexample,predictsthatAIcouldboostglobal
grossdomesticproduct(GDP)14%by2030,generatingUS$15.7trillion1
Fortypercentofourmundanetaskscouldbeautomatedbythen,claimresearchersattheUniversityofOxford,
whileGoldmanSachsforecastsUS$200billioninAIinvestmentby2025.2,3“Nojob,nofunctionwillremainuntouchedbyAI,”saysSPSingh,seniorvicepresidentandglobalhead,enterpriseapplicationintegrationandservices,attechnologycompanyInfosys.
Whiletheseprognosticationsmayprovetrue,today’sbusinessesarefindingmajorhurdleswhentheyseektograduatefrompilotsandexperimentstoenterprise-wideAIdeployment.Just5.4%ofUSbusinesses,for
example,wereusingAItoproduceaproductorservicein2024.4
MovingfrominitialforaysintoAIuse,suchascode
generationandcustomerservice,tofirm-wide
integrationdependsonstrategicandorganizational
transitionsininfrastructure,datagovernance,and
supplierecosystems.Aswell,organizationsmustweighuncertaintiesaboutdevelopmentsinAIperformance
andhowtomeasurereturnoninvestment.
IforganizationsseektoscaleAIacrossthebusinessincomingyears,however,nowisthetimetoact.
Thisreportexploresthecurrentstateofenterprise
“Nojob,nofunctionwillremainuntouchedbyAI.”
SPSingh,SeniorVicePresidentandGlobalHead,EnterpriseApplicationIntegrationandServices,Infosys
AIadoptionandoffersaplaybookforcraftinganAI
strategy,helpingbusinessleadersbridgethechasmbetweenambitionandexecution.Keyfindingsincludethefollowing:
AIambitionsaresubstantial,butfewhavescaled
beyondpilots.Fully95%ofcompaniessurveyed
arealreadyusingAIand99%expecttointhefuture.Butfeworganizationshavegraduatedbeyondpilot
projects:76%havedeployedAIinjustonetothree
usecases.ButbecausehalfofcompaniesexpecttofullydeployAIacrossallbusinessfunctionswithintwoyears,thisyeariskeytoestablishingfoundationsforenterprise-wideAI.
AIreadinessspendingisslatedtorisesignificantly.Overall,AIspendingin2022and2023wasmodest
orflatformostcompanies,withonlyoneinfour
increasingtheirspendingbymorethanaquarter.Thatissettochangein2024,withnineintenrespondentsexpectingtoincreaseAIspendingondatareadiness(includingplatformmodernization,cloudmigration,
anddataquality)andinadjacentareaslikestrategy,culturalchange,andbusinessmodels.Fourinten
expecttoincreasespendingby10to24%,andone-thirdexpecttoincreasespendingby25to49%.
MITTechnologyReviewInsights5
DataliquidityisoneofthemostimportantattributesforAIdeployment.Theabilitytoseamlesslyaccess,combine,andanalyzedatafromvarioussources
enablesfirmstoextractrelevantinformationandapplyiteffectivelytospecificbusinessscenarios.
Italsoeliminatestheneedtosiftthroughvastdata
repositories,asthedataisalreadycuratedandtailoredtothetaskathand.
DataqualityisamajorlimitationforAIdeployment.Halfofrespondentscitedataqualityasthemost
limitingdataissueindeployment.Thisisespecially
trueforlargerfirmswithmoredataandsubstantial
investmentsinlegacyITinfrastructure.Companies
withrevenuesofoverUS$10billionarethemostlikelytocitebothdataqualityanddatainfrastructureas
limiters,suggestingthatorganizationspresidingoverlargerdatarepositoriesfindtheproblemsubstantiallyharder.
Governance,security,andprivacyarethebiggest
brakeonthespeedofAIdeployment,citedby45%ofrespondents.
CompaniesarenotrushingintoAI.Nearlyall
organizations(98%)saytheyarewillingtoforgobeingthefirsttouseAIifthatensurestheydeliveritsafely
andsecurely.Governance,security,andprivacyarethebiggestbrakeonthespeedofAIdeployment,citedby45%ofrespondents(andafull65%ofrespondents
fromthelargestcompanies).
6MITTechnologyReviewInsights
Partneringforsuccess
F
ewcompaniesareflyingsolointheAIage.Thecostandcomplexityofcreatinglargelanguagemodels(LLMs)andgenerativemodelsfrom
scratchisprohibitiveandanabundanceof
platformsandtoolsarealreadyonthemarket.
“Formostorganizations,buildingtheirownlargelanguagemodelsisveryexpensiveandthevalueistime-limited,”
saysKevinCollins,founderandCEOofCharliAI,anAI
solutionsprovider.“Ifyoudon’thavethenecessary
expertiseandresourcestomakeasignificantinvestment,it’sbettertofine-tuneandoptimizeoff-the-shelfmodels.”
AIisalsoincreasinglybeingintegratedintoexistingsoftwareplatforms,includingthosefromgiant
technologyproviderssuchasMicrosoftandAdobe.
“WeareinfusingAIintoeverythingwedowithinour
organizationandsimilarlytakingthatsamemindsettoourclients,”saysSPSinghofInfosys.Companies,ofcourse,canalsopaytouseproprietarymodelsfromproviderssuchasOpenAIorfine-tunethosemodelsasneeded.TheycanalsobuildtheirowngenerativeAItoolsusingopen-sourcemodels.
Figure1:CompaniesseekAIusecasestailoredtoindustryneeds
IsyourorganizationdevelopingthefollowingtypesofAIusecases?
(OrganizationsthataredevelopingAIusecases.)
Usecasesthatarecommonacrossindustries(e.g.,generativeAIfortextgenerationorchatbots)
Usecasesthatarespeci?ctoourindustry(e.g.,AIfordrugdiscovery)
Usecasesthatareuniquetoourbusiness
OverallCompanieswithannualrevenueof$500millionto$1billion
57%
77%
38%
Companieswithannualrevenueof$1billionto$10billionCompanieswithannualrevenuemorethan$10billion
48%
75%
77%
Source:MITTechnologyReviewInsightssurvey,2024
84%
63%
53%
52%
79%
61%
MITTechnologyReviewInsights7
MattMcLarty,CTOatthesoftwarecompanyBoomi,
concursthatbuildingLLMswillnotbethepathforwardformostcompanies.“Mostorganizationsarenotgoingtobuildlargelanguagemodels,whichareexpensive
andrequireamassiveamountofinfrastructure,”
hesays.“Instead,theyneedtobecomeexpertsinapplyingthenewtechnologiesintheirownbusinesscontext.Thecompaniesthatdon’tputtheAIcart
beforethebusinessproblemhorsearegoingtobebetterpositioned.”
Oursurveyresultssuggestthatbusinessesaretakingthatadvice,seekingAIusecasesthataddresstheir
uniquebusinessproblems.Whilemanyfirmsare
deployinggeneral-purposeusesofAI(generativeAI–poweredchatbotsforcustomerservice,forexample),alargersharesaytheyaredevelopingindustry-specificusecases,orevenusecasesuniquetotheirparticularbusiness(seeFigure1).
Sectoralnuances—includingdifferingdataformats,
regulatoryrequirements,andusages—supportthecaseforindustry-tailoredapproachestoAI.FromAItools
designedtodocumentpatient-doctorconversationstothoseleveragedtooptimizedrywallfinishing,offeringstailoredtotheneedsofspecificindustriesorbusinessesaremostlikelytooffergame-changingresults.5,6
Selectingavendor
CompanieshaveplentyofAIvendorstochoosefrom;ifanything,thechoicecanbedauntingforexecutiveswhomustbalancecost,security,anddiversification.
“Itfeelsoverwhelmingforcompanies—thereisalotofnoiseandquestionsaroundwhototrust,”saysAmyMachado,seniorresearchmanageratIDC,amarketintelligencefirm.
Forprivacyreasons,manyarewaryofrelyingon
publiclyavailableAItoolsthatmayretainandreuse
thedatausersenter,withsomecompaniesrestrictingemployeeuseofcertainLLMs.7,8“Ifyou’reshuffling
yourdataofftoageneral-purposeAI,youhavetodoyourduediligenceonhowthey’retreatingyourdata
andwhatthey’redoingwithitbehindthescenes,”saysCollins.MorespecializedLLM-basedtoolsaremore
likelytoprotectorganizations’proprietarydata,comewithsupport,andbeconsistentlyupdatedtoaddressvulnerabilities.
Ultimately,executivesmayfindthatstitchingtogethera“multi-AI”environmentbestmeetstheirbusiness
needsandcapturesthedistinctivevaluepropositionsofdifferentproviders.
Financialservicesfirmsoperateinahighlyregulated“NewAIhastheabilitytounderstand‘locked-up’
Finance-friendlyAI
environmentwithhighstandardsfordataprivacy,contentfarbetterthaneverbefore,sowe’reunlocking
compliance,andsecurity.“Inthefinancialservicesagoldmine,”saysCollins.“Ourcustomersrefertous
sector,trustandsecurityareparamount,”says
KevinCollinsatCharliAI.“Ourcustomersaremajor
astheautomatedanalystsforWallStreet—wecandoin30minuteswhatitmaytakeananalyst80hours
ofporingovera500SECfilingtodo.”
investmentbanks,hedgefunds,andbigbanksthatareanalyzingS&P500companies.Everythingwedoneedstobetrustedandfact-checked.”
Infinancialservices,valuableinformationisoftenlockedawayincontracts,legaldocuments,PDF
files,spreadsheets,andPowerPointpresentations.
Whilecompaniesareawareofthepotentialvalueoftheirdata,manystruggletoleverageiteffectively.“They’reverydataliterate,buttheyalsounderstandhowchallengingitistogetthatdataintoaformatthat’ssuitableforanalyticsandAI,”saysCollins.
Extractingandintegratingthisdataforanalysiscan
beadauntingtask.SpecializedserviceslikeCharliOursurveyfoundthatfinancialservicesrespondents
AIhaveopenednewpossibilitiesforunlockingthiswereleastlikelytobecurrentlydevelopingAIfor
trappeddata:thecompany’stoolsmineandcurateindustry-specificusecases,butcompanieslike
arangeoffinancialdata,freeinguptimeforanalystsCharliareaimingtochangethis.
toperformhigher-valuetasks.
8MITTechnologyReviewInsights
Countingthecost
F
romtheelectricityrequirementsforbuildingandrunningAImodelstothesoftware,
services,andsalariesneededtomanage
solutionsatscale,costisamajor
considerationforAI.Google’sUS$8billionof
spendinginthethirdquarterof2023alonewas
overwhelminglydrivenbyAI.9TrainingOpenAI’sGPT-4requiredUS$78millionofcompute,whileGoogle’s
GeminiUltrahadacomputecostofUS$191million10
Hardwareisamajorsourceofpriceuncertainty,
includingdemandforgraphicsprocessingunits
(GPUs).“AIisveryexpensive,notjustforthe
developmentandtrainingofmodels,butalsoforthe
operationsandhardwarecosts,particularlyGPUs,”
saysCollins.NewerGPUsaremoreexpensive,hardertoobtain,andhavealimitedlifespanrequiringa
recurringcapitalcost.Headds,“AIisnotcheap.A
lotofourcustomersareshockedwhentheyrealizehowmuchinfrastructuretheyhavetohavetogettheperformancethattheyneed.”
Whiletechcompaniesarelargelyshouldering
hardwareandcomputationspendingintheirracefor
marketsupremacy,firmsinevitablyfacetheirown
costsinareaslikedatamanagementandmonitoring,
whicharerarelybuiltintolower-costgeneral-purposeLLMs.Theymustalsoinvesttoensurecompliancewith
Figure2:ChangesinAIreadinessspendingfrom2022to2023
Howdidyourorganization’sinvestmentinAIreadinesschangeinthelastyear(from2022to2023)?
Data-relatedinvestments
(platformmodernization,cloudmigration,pipelines,quality,etc.)
1%
6%
Increasedby25%一49%
Increasedby10%一24%StayednearlythesameDecreased
34%42%
Source:MITTechnologyReviewInsightssurvey,2024
Investmentsinotherareas
(developingAIstrategy,culturalchange,buildingmodels,etc.)
Increasedbymorethan100%Increasedby50%一100%
40%
20%
34%
18%
6%
1%
MITTechnologyReviewInsights9
Figure3:LargecompaniesboostedAIspendingmoreaggressively
Companieswithrevenuegreaterthan$10billion:Howdidyourorganization’sinvestmentinAIreadinesschangeinthelastyear(from2022to2023)?
Data-relatedinvestments
(platformmodernization,cloudmigration,pipelines,quality,etc.)
1%
11%
Increasedby50%一100%
35%
26%
42%
27%
Source:MITTechnologyReviewInsightssurvey,2024
Investmentsinotherareas
(developingAIstrategy,culturalchange,buildingmodels,etc.)
Increasedby25%一49%
Increasedby10%一24%
StayednearlythesameDecreased
Increasedbymorethan100%
20%
29%
9%
1%
firm-specificregulations,fundmaintenancetoensurethesystemstheybuildremainup-to-dateandrelevanttotheusecase,andpayfortheincreasedenergy
usedbyAI11TalentcostsincludeeitherhiringAI-skilledworkersorupskillingtheexistingworkforce.
Spendingexpectations
Pollsshowthatlargerfirms,byrevenue,aremore
likelytohaveAIinproduction,suggestingthatfinancialconstraintsmaybeslowingsmallerandmedium-sizedcompanies12AnalysisfromCCSInsightssuggestscostwillcontributetoaslowdowningenerativeAIadoptionthroughout202413Asthehypecools,decision-makersmaybecomemorewary,especiallyastheproductivitygainsofgenerativeAImaynotbeapparentforyears14
Suchfindingsarecorroboratedbyoursurvey,whichfoundalinkbetweencompanysizeandspending.
Budgetaryconstraintswerethebiggestobstacleto
speedofAIdeploymentformedium-sizedfirms(annualrevenueofUS$500millionto$1billion),with47%
citingthisissuecomparedtoasurveyaverageof22%.Thisindicatesa“squeezedmiddle”ofcompaniesthatneedtoadoptAItostaycompetitiveintheirmarketsbutforwhomthecostsareprohibitive.
Todate,mostfirmshavekeptAIreadinessspendingflat,withlargercompaniesmorelikelytohaverampedup(seeFigures2and3).
However,nearlyallcompaniesexpecttoboost
spendinginthecomingyear,with9in10expecting
toincreaseinvestmentbyatleast10%andonethird
anticipatingspendingupto49%morebothindataandadjacentareaslikestrategyandculturalchange(seeFigure4).
“AIisnotcheap.Alotofourcustomersareshockedwhentheyrealizehowmuchinfrastructuretheyhavetohavetogettheperformancethattheyneed.”
KevinCollins,FounderandChiefExecutiveOfficer,CharliAI
0
10MITTechnologyReviewInsights
Figure4:AIreadinessspendingsettorisesignificantlyinto2024
Howwillyourorganization’sinvestmentinAIreadinesschangeinthenextyear(from2023to2024)?
Investmentsinotherareas
(developingAIstrategy,culturalchange,buildingmodels,etc.)
Data-relatedinvestments
(platformmodernization,cloudmigration,pipelines,quality,etc.)
1%
1%
Willincreasebymorethan100%
9%
16%
10%11%
35%
37%
Willincreaseby50%一100%Willincreaseby25%一49%Willincreaseby10%一24%Willstaynearlythesame
41%
Willdecrease
40%
Source:MITTechnologyReviewInsightssurvey,2024
AscompaniesdialintheirAIinvestments,AIcost
dynamicswillofcoursealsoevolve.Innovationwill
doubtlessbringdowncoststhroughefficiencygains.
Thecostcurveforcomputationwillalsofallasstartupsandlargecompaniesaddresstheshortcomingsof
existinghardwareandmodels.
Measuringreturnoninvestment
ToweighthefinancialoutlaysofAI,organizations
needtodeveloprobustreturnoninvestment(ROI)
methodologiescapturingnotjusttheefficiencygainsofautomating“businessasusual”tasks,butalsothenewvalueAIcancreate.
CompaniesarealreadyquantifyingAI’scostsavings.
MotorolahasdevelopedaframeworkthattrackshourstakentocompleteataskwithandwithoutgenerativeAI15SwedishfintechcompanyKlarnahasalready
calculatedgenerativeAI’soutputasequivalentto700customerserviceagents16But“themindsetisshiftingtousingAIasanenablerforrevenuegrowth,notjustcostsavings,”saysMachado.
Asemployeesbecomemoreproductive,new
opportunitiesemergethatmaybehardtoquantify.Forexample,AIallowsdatascientiststoexplorenewideasandexpandintonewproducts.Theautomationof
routinetasksbycopilotscanalleviateworkloadsand
“ThemindsetisshiftingtousingAIasanenablerforrevenuegrowth,notjustcostsavings.”
AmyMachado,SeniorResearchManager,IDC
reduceburnout,allowingemployeestodedicatemoretimetomorecreativeandinnovativeprojects.
AsenterpriseuseofAIspreads,employeeexpectationswillshiftandAI-enhancedworkplaceexperienceswill
becomenecessarytoattracttalent.AIprofessionals
alreadyhavedifferentexpectationsthantraditionaljobseekers,rankinginterestingjobcontentandworkon
cutting-edgeprojectshigheramongtheirjobpriorities17
TheconsultancyPwCcompares“hardROI,”suchastimesavedandproductivityboosts,with“softROI,”
includingimprovedemployeeexperienceandability
torespondflexiblytonewopportunities18AccuratelyassessingAI’sROIrequiresmetricsbeyondtraditionalfinancialmeasures.Forinstance,Collinspointsout
thattoolslikeCharliAI’sunlockhugevaluebyhelpingcompaniesmakesenseoftheirdatamoreefficiently.
MITTechnologyReviewInsights11
Buildingadatacore
D
?Trackandmanagethelineageofyour
organization’sdatatomaintaindataqualityandintegrityasitmovesfromoneanalyticalmodel
ataquality,infrastructure,andgovernanceareallessentialtodeliverAIworkloads
efficientlyandatscale.WhileAI
technologycanbetransformative,withoutthedatafoundationsinplace,
organizationswillstruggletobothcollecttherightdataandderiveinsightfromit.“Peoplestillhavethe
perceptionthatAItodayismagicorsuperintelligent,
andthat’sfarfromthetruth,”saysCollins.“AIisa
scienceandatool.Youstillhavetodoallofthehard
workarounddatagovernanceandfiguringouttherightapplicationofthesetools.”
Organizationsthatoverlookthesesupporting
dimensionsmaystruggletodeployAIsuccessfully.
Dataqualityproblems,citedbyhalfofrespondentsastheirmostlimitingdataissue,canseverelyhinderAIperformance.“Goingforward,theconversation
willbearoundgettingdataAI-readyandintherightformattoactuallyutilizeiteffectively,”saysMachado.Datainfrastructureorpipelines,dataintegration
tools,andcloudmigrationwerealsomentionedby
manyrespondentsasmajorbarrierstodeployment,indicatingtheimportanceofarobustITarchitecture.
TheseissuesareparticularlyprominentforcompanieswithrevenuesofoverUS$10billion,whichare
themostlikelytocitebothdataquality(52%)and
datainfrastructure(55%)asobstacles,compared
withoverallsurveyaveragesof49%and44%(see
Figure5).Organizationspresidingoverlargerdata
repositoriesandlegacyITinfrastructuremaybe
findinggreatercomplexityandcostsintransitioningtoanAI-readyarchitecture.
Datamanagement:Tipsandtactics
orapplicationtothenext.
?Optimizecommunicationacrossthe
organizationonAI,andondataaggregationandrequirements,ensuringcross-functionalteamscollaborateonbusinesscases.
?Insteadoffocusingondatacentralization,adoptastrategythatprioritizesdatacontextualization,suchasextractingmetadataandstoringitinanappropriatemetadatalanguage.
?Identifyyourorganization’scorecapabilities
andcompetencies,ensuringyouareabletoadapttorapidchangesandarenotoverly
reliantonlegacyinfrastructure.
“AIisascienceandatool.Youstillhavetodoallofthehardworkarounddata
governanceandfiguringouttherightapplicationof
thesetools.”
KevinCollins,FounderandChiefExecutiveOfficer,CharliAI
12MITTechnologyReviewInsights
Figure5:DatabottlenecksinAIdeployment
Whichaspectsofyourorganization,sdataaremostlimitingthespeedtodeployAI?
Overall
Companieswithannualrevenueof$500millionto$1billion
Companieswithannualrevenueof$1billionto$10billion
Companieswithannualrevenuemorethan$10billion
Dataquality
49%
38%
38%
52%
Datainfrastructureorpipelines
44%
26%
49%
55%
Dataintegrationtools
40%
27%
41%
50%
Incompletecloudmigrationstatus
36%
26%
41%
40%
Organizationalcultureorapproachtodata
26%
25%
34%
18%
Dataarchitectureorplatform
24%
38%
17%
18%
Regulatoryconstraintsondatahandling/use
21%
38%
10%
18%
Source:MITTechnologyReviewInsightssurvey,2024
MITTechnologyReviewInsights13
Reckoningwithlegacyinfrastructure
TransitioningawayfromlegacyITinfrastructurecanbedauntingfororganizationsofallsizes.“Legacy
systemsandsunkcostsaredefinitelyaninhibitor
forallkindsofdatamanagementinitiatives,”says
Machado.“Manyorganizationsdon’twanttotouchcertainlegacysystemsbecause‘it’skindofworking’andonlyonepersonknowshowtomaintainthat
oldertechnology.”Theselegacysystemsareoftenbasedonfragmented,outdatedarchitecturesandprogramminglanguagesthatarehardtointegratewithmodernAIsolutions.
ToreapthebenefitsofAI,organizationsmustdevelopanITarchitecturecapableofaccommodatingboth
structuredandunstructureddataacrosstheentire
lifecycle,fromthesourcetoprocessing,analytics,
andstorage.UnstructureddatacanyieldconsiderableinsightforAIsystems,butitsrawinformationcanbe
difficulttoassimilateintoexistingsystems.Thatcanbeproblematicsince,accordingtoMachado,90%ofthedatainanenterprisecontentmanagementsystemis
unstructured.
Acentralizedrepositorysolutionintheformofadatalakecanbeuseful,butitmustbewellorganizedandstructuredtopreventitbecomingfilledwithirrelevantandunusabledata.“It’snotenoughtojusthaveabigdatalake,becausethat’sgoingtobecomeadata
swamp;youhavetohavegoodgovernanceoverthedatalineageandhowitflowsfromonemodeltothenext,”saysCollins.
Nearlyhalf(46%)ofsurveyrespondentsalsocite
manual,non-digitized,ornon-automatedprocesses
fordatahandlingandmanagementasalimitingfactorforAIdeployment.Withoutstrategiestofullydigitizeprocessesacrossthebusiness,organizationswill
leavevaluabledatasourcesuntappedandlimitAI’sautomationpotential.
Datalineageandliquidity
Decidingwhichdatatoleveragerequiresittobe
recombinedandcontextualized.Implementingdatalineagetrackingandquality-assurancemeasurescansupportthiscontextualizationprocess,preserving
theintegrityofdataasitundergoesprocessingandanalysis.
AccordingtoMcLarty,dataliquidity,ortheabilitytoseamlesslyaccess,combine,andanalyzedatafromvarioussources,isoneofanorganization’smostimportantAIassets.Dataliquidityempowersorganizationstounderstandtherelationships,
dependencies,andnuanceswithintheirdata,
enablingthemtoextractrelevantinformationandapplyiteffectivelytospecificbusinessscenarios.
“Organizationswithhighdataliquidity
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年教師職稱考試(特殊教育)歷年參考題庫(kù)含答案詳解
- 2025康復(fù)醫(yī)學(xué)科三基考試題庫(kù)及答案
- 2025年安全生產(chǎn)事故案例分析及事故處理流程培訓(xùn)試卷及答案
- 消防安全工作自查報(bào)告
- 2025年安全生產(chǎn)月電氣測(cè)試試題及答案
- 工業(yè)機(jī)器人系統(tǒng)操作員(三級(jí))職業(yè)鑒定理論考試題及答案(新版)
- 2025年人工智能應(yīng)用技術(shù)考試試卷及答案
- 建設(shè)工程施工合同糾紛要素式起訴狀模板要素清晰無(wú)混淆
- 2026年動(dòng)物園管理提升
- 2026 年無(wú)子女離婚協(xié)議書正規(guī)模板
- 上海建橋?qū)W院簡(jiǎn)介招生宣傳
- 《智慧教育黑板技術(shù)規(guī)范》
- 《電力建設(shè)安全工作規(guī)程》-第1部分火力發(fā)電廠
- 歌曲《我會(huì)等》歌詞
- 八年級(jí)物理上冊(cè)期末測(cè)試試卷-附帶答案
- 小學(xué)英語(yǔ)五年級(jí)上冊(cè)Unit 5 Part B Let's talk 教學(xué)設(shè)計(jì)
- 老年癡呆科普課件整理
- 學(xué)生校服供應(yīng)服務(wù)實(shí)施方案
- GB/T 22900-2022科學(xué)技術(shù)研究項(xiàng)目評(píng)價(jià)通則
- 自動(dòng)控制系統(tǒng)的類型和組成
- GB/T 15171-1994軟包裝件密封性能試驗(yàn)方法
評(píng)論
0/150
提交評(píng)論