版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆重慶市渝北區(qū)名校九年級數(shù)學(xué)第一學(xué)期期末預(yù)測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.下列方程中,關(guān)于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.2.如果圓錐的底面半徑為3,母線長為6,那么它的側(cè)面積等于()A.9π B.18π C.24π D.36π3.如圖,△ABC內(nèi)接于⊙O,OD⊥AB于D,OE⊥AC于E,連結(jié)DE.且DE=,則弦BC的長為()A. B.2 C.3 D.4.如圖,,兩條直線與這三條平行線分別交于點、、和、、,若,則的值為()A. B. C. D.5.在Rt△ABC中,∠C=90°,sinA=,則∠A的度數(shù)是()A.30° B.45° C.60° D.90°6.對于反比例函數(shù),下列說法錯誤的是()A.它的圖像在第一、三象限B.它的函數(shù)值y隨x的增大而減小C.點P為圖像上的任意一點,過點P作PA⊥x軸于點A.△POA的面積是D.若點A(-1,)和點B(,)在這個函數(shù)圖像上,則<7.一元二次方程x2-2x=0根的判別式的值為()A.4 B.2 C.0 D.-48.如圖,菱形的邊長是,動點同時從點出發(fā),以的速度分別沿運動,設(shè)運動時間為,四邊形的面積為,則與的函數(shù)關(guān)系圖象大致為()A. B.C. D.9.對于題目“如圖,在中,是邊上一動點,于點,點在點的右側(cè),且,連接,從點出發(fā),沿方向運動,當(dāng)?shù)竭_(dá)點時,停止運動,在整個運動過程中,求陰影部分面積的大小變化的情況"甲的結(jié)果是先增大后減小,乙的結(jié)果是先減小后增大,其中()A.甲的結(jié)果正確 B.乙的結(jié)果正確C.甲、乙的結(jié)果都不正確,應(yīng)是一直增大 D.甲、乙的結(jié)果都不正確,應(yīng)是一直減小10.若(、均不為0),則下列等式成立的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,已知二次函數(shù)的圖象與軸交于兩點(點在點的左側(cè)),與軸交于點為該二次函數(shù)在第一象限內(nèi)的一點,連接,交于點,則的最大值為__________.12.如圖所示,四邊形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,則cos∠ADC=______.13.把一個小球以20米/秒的速度豎直向上彈出,它在空中的高度h(米)與時間t(秒),滿足關(guān)系:h=20t-5t2,當(dāng)小球達(dá)到最高點時,小球的運動時間為第_________秒時.14.已知函數(shù),如果,那么___________.15.如圖,在四邊形ABCD中,,E、F、G分別是AB、CD、AC的中點,若,,則等于______________.16.如圖,點是函數(shù)圖象上的一點,連接,交函數(shù)的圖象于點,點是軸上的一點,且,則的面積為_________.17.如圖(1),在矩形ABCD中,將矩形折疊,使點B落在邊AD上,這時折痕與邊AD和BC分別交于點E、點F.然后再展開鋪平,以B、E、F為頂點的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時,點E的坐標(biāo)為_________________________.18.用一個半徑為10的半圓,圍成一個圓錐的側(cè)面,該圓錐的底面圓的半徑為_____.三、解答題(共66分)19.(10分)如圖,在平面直角坐標(biāo)系中A點的坐標(biāo)為(8,y),AB⊥x軸于點B,sin∠OAB=,反比例函數(shù)y=的圖象的一支經(jīng)過AO的中點C,且與AB交于點D.(1)求反比例函數(shù)解析式;(2)若函數(shù)y=3x與y=的圖象的另一支交于點M,求三角形OMB與四邊形OCDB的面積的比.20.(6分)甲、乙、丙三位同學(xué)在知識競賽問答環(huán)節(jié)中,采用抽簽的方式?jīng)Q定出場順序.求甲比乙先出場的概率.21.(6分)如圖,在△ABC中,CD⊥AB,DE⊥AC,DF⊥BC,垂足分別為D,E,F(xiàn).(1)求證:CE?CA=CF?CB;(2)EF交CD于點O,求證:△COE∽△FOD;22.(8分)平安超市準(zhǔn)備進(jìn)一批書包,每個進(jìn)價為元.經(jīng)市場調(diào)查發(fā)現(xiàn),售價為元時可售出個;售價每增加元,銷售量將減少個.超市若準(zhǔn)備獲得利潤元,并且使進(jìn)貨量較少,則每個應(yīng)定價為多少23.(8分)為早日實現(xiàn)脫貧奔小康的宏偉目標(biāo),我市結(jié)合本地豐富的山水資源,大力發(fā)展旅游業(yè),王家莊在當(dāng)?shù)卣闹С窒拢k起了民宿合作社,專門接待游客,合作社共有80間客房.根據(jù)合作社提供的房間單價x(元)和游客居住房間數(shù)y(間)的信息,樂樂繪制出y與x的函數(shù)圖象如圖所示:(1)求y與x之間的函數(shù)關(guān)系式;(2)合作社規(guī)定每個房間價格不低于60元且不超過150元,對于游客所居住的每個房間,合作社每天需支出20元的各種費用,房價定為多少時,合作社每天獲利最大?最大利潤是多少?24.(8分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于C點,OA=2,OC=6,連接AC和BC.(1)求拋物線的解析式;(2)點D在拋物線的對稱軸上,當(dāng)△ACD的周長最小時,求點D的坐標(biāo);(3)點E是第四象限內(nèi)拋物線上的動點,連接CE和BE.求△BCE面積的最大值及此時點E的坐標(biāo);25.(10分)某中學(xué)舉行“中國夢,我的夢”的演講比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A、B、C、D四個等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整,請你根據(jù)統(tǒng)計圖解答下列問題.(1)參加比賽的學(xué)生共有名,在扇形統(tǒng)計圖中,表示“D等級”的扇形的圓心角為度,圖中m的值為;(2)補全條形統(tǒng)計圖;(3)組委會決定分別從本次比賽中獲利A、B兩個等級的學(xué)生中,各選出1名學(xué)生培訓(xùn)后搭檔去參加市中學(xué)生演講比賽,已知甲的等級為A,乙的等級為B,求同時選中甲和乙的概率.26.(10分)如圖,在平面直角坐標(biāo)系中,拋物線行經(jīng)過點和點,交軸正半軸于點,連接,點是線段上動點(不與點重合),以為邊在軸上方作正方形,接,將線段繞點逆時針旋轉(zhuǎn)90°,得到線段,過點作軸,交拋物線于點,設(shè)點.(1)求拋物線的解析式;(2)若與相似求的值;(3)當(dāng)時,求點的坐標(biāo).
參考答案一、選擇題(每小題3分,共30分)1、C【分析】利用一元二次方程的定義判斷即可.【詳解】A、方程2x﹣3=x為一元一次方程,不符合題意;B、方程2x+3y=5是二元一次方程,不符合題意;C、方程2x﹣x2=1是一元二次方程,符合題意;D、方程x+=7是分式方程,不符合題意,故選:C.本題考查了一元一次方程的問題,掌握一元一次方程的定義是解題的關(guān)鍵.2、B【分析】利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】解:圓錐的側(cè)面積=×2π×3×6=18π.故選:B.本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.3、C【分析】由垂徑定理可得AD=BD,AE=CE,由三角形中位線定理可求解.【詳解】解:∵OD⊥AB,OE⊥AC,∴AD=BD,AE=CE,∴BC=2DE=2×=3故選:C.本題考查了三角形的外接圓與外心,三角形的中位線定理,垂徑定理等知識,靈活運用這些性質(zhì)進(jìn)行推理是本題的關(guān)鍵.4、C【分析】直接利用平行線分線段成比例定理即可得出結(jié)論.【詳解】∵l1∥l2∥l3,∴,∵,∴.故選:C.本題考查了平行線分線段成比例定理,得出是解答本題的關(guān)鍵.5、C【解析】試題分析:根據(jù)特殊角的三角函數(shù)值可得:∠A=60°.6、B【分析】根據(jù)反比例函數(shù)圖象與系數(shù)的關(guān)系解答.【詳解】解:A、反比例函數(shù)中的>0,則該函數(shù)圖象分布在第一、三象限,故本選項說法正確.
B、反比例函數(shù)中的>0,則該函數(shù)圖象在每一象限內(nèi)y隨x的增大而減小,故本選項說法錯誤.
C、點P為圖像上的任意一點,過點P作PA⊥x軸于點A.,∴△POA的面積=,故本選項正確.D、∵反比例函數(shù),點A(-1,)和點B(,)在這個函數(shù)圖像上,則y1<y2,故本選項正確.
故選:B.本題考查了反比例函數(shù)的性質(zhì):反比例函數(shù)y=(k≠0)的圖象是雙曲線;當(dāng)k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減??;當(dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大;還考查了k的幾何意義.7、A【解析】根據(jù)一元二次方程判別式的公式進(jìn)行計算即可.【詳解】解:在這個方程中,a=1,b=-2,c=0,∴,故選:A.本題考查一元二次方程判別式,熟記公式正確計算是本題的解題關(guān)鍵.8、C【分析】根據(jù)題意可以求出各段對應(yīng)的函數(shù)解析式,再根據(jù)函數(shù)解析式即可判斷哪個選項是符合題意的,本題得以解決.【詳解】解:∵菱形ABCD的邊長為4cm,∠A=60°,動點P,Q同時從點A出發(fā),都以1cms的速度分別沿A→B→C和A→D→C的路徑向點C運動,
∴△ABD是等邊三角形,
∴當(dāng)0<x≤4時,
y=×4×4×sin60°?x?sin60°x=4?x2=x2+4;
當(dāng)4<x≤8時,
y=×4×4×sin60°?×(8?x)×(8?x)×sin60°=?x2+4x?12=?(x?8)2+4;∴選項C中函數(shù)圖像符合題意,故選:C.本題考查動點問題的函數(shù)圖象,解答本題的關(guān)鍵是明確題意,求出各段對應(yīng)的函數(shù)解析式,利用數(shù)形結(jié)合的思想解答.9、B【分析】設(shè)PD=x,AB邊上的高為h,求出AD、h,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題即可.【詳解】解:在中,∵,∴,設(shè),邊上的高為,則.∵,∴,∴,∴,∴,∴當(dāng)時,的值隨的增大而減小,當(dāng)時,的值隨的增大而增大,∴乙的結(jié)果正確.故選B.本題考查相似三角形的判定和性質(zhì),動點問題的函數(shù)圖象,三角形面積,勾股定理等知識,解題的關(guān)鍵是構(gòu)建二次函數(shù),學(xué)會利用二次函數(shù)的增減性解決問題,屬于中考??碱}型.10、D【分析】直接利用比例的性質(zhì)分別判斷得出答案.【詳解】解:A、,則xy=21,故此選項錯誤;
B、,則xy=21,故此選項錯誤;
C、,則3y=7x,故此選項錯誤;
D、,則3x=7y,故此選項正確.
故選:D.此題主要考查了比例的性質(zhì),正確將比例式變形是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】由拋物線的解析式易求出點A、B、C的坐標(biāo),然后利用待定系數(shù)法求出直線BC的解析式,過點P作PQ∥x軸交直線BC于點Q,則△PQK∽△ABK,可得,而AB易求,這樣將求的最大值轉(zhuǎn)化為求PQ的最大值,可設(shè)點P的橫坐標(biāo)為m,注意到P、Q的縱坐標(biāo)相等,則可用含m的代數(shù)式表示出點Q的橫坐標(biāo),于是PQ可用含m的代數(shù)式表示,然后利用二次函數(shù)的性質(zhì)即可求解.【詳解】解:對二次函數(shù),令x=0,則y=3,令y=0,則,解得:,∴C(0,3),A(-1,0),B(4,0),設(shè)直線BC的解析式為:,把B、C兩點代入得:,解得:,∴直線BC的解析式為:,過點P作PQ∥x軸交直線BC于點Q,如圖,則△PQK∽△ABK,∴,設(shè)P(m,),∵P、Q的縱坐標(biāo)相等,∴當(dāng)時,,解得:,∴,又∵AB=5,∴.∴當(dāng)m=2時,的最大值為.故答案為:.本題考查了二次函數(shù)與坐標(biāo)軸的交點、二次函數(shù)的性質(zhì)和二次函數(shù)圖象上點的坐標(biāo)特征、待定系數(shù)法求函數(shù)的解析式、相似三角形的判定和性質(zhì)等知識,難度較大,屬于填空題中的壓軸題,解題的關(guān)鍵是利用相似三角形的判定和性質(zhì)將所求的最大值轉(zhuǎn)化為求PQ的最大值、熟練掌握二次函數(shù)的性質(zhì).12、【分析】首先在△ABC中,根據(jù)三角函數(shù)值計算出AC的長,再利用勾股定理計算出AD的長,然后根據(jù)余弦定義可算出cos∠ADC.【詳解】解:∵∠B=90°,sin∠ACB=,∴=,∵AB=2,∴AC=6,∵AC⊥CD,∴∠ACD=90°,∴AD===10,∴cos∠ADC==.故答案為:.本題考查了解直角三角形,以及勾股定理的應(yīng)用,關(guān)鍵是利用三角函數(shù)值計算出AC的長,再利用勾股定理計算出AD的長.13、1【解析】h=10t-5t1=-5(t-1)1+10,∵-5<0,∴函數(shù)有最大值,則當(dāng)t=1時,球的高度最高.故答案為1.14、1【分析】把x=2代入函數(shù)關(guān)系式即可求得.【詳解】f(2)=3×22-2×2-1=1,
故答案為1.此題考查二次函數(shù)圖象上點的坐標(biāo)特征,解題關(guān)鍵在于掌握函數(shù)圖象上點的坐標(biāo)適合解析式.15、36°【分析】根據(jù)三角形中位線定理得到FG∥AD,F(xiàn)G=AD,GE∥BC,GE=BC,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算即可.【詳解】解:∵F、G分別是CD、AC的中點,∴FG∥AD,F(xiàn)G=AD,∴∠FGC=∠DAC=15°,∵E、G分別是AB、AC的中點,∴GE∥BC,GE=BC,∴∠EGC=180°-∠ACB=93°,∴∠EGF=108°,∵AD=BC,∴GF=GE,∴∠FEG=×(180°-108°)=36°;故答案為:36°.本題考查的是三角形中位線定理、等腰三角形的性質(zhì),三角形的中位線平行于第三邊,且等于第三邊的一半.16、4【分析】作AE⊥x軸于點E,BD⊥x軸于點D得出△OBD∽△OAE,根據(jù)面積比等于相似比的平方結(jié)合反比例函數(shù)的幾何意義求出,再利用條件“AO=AC”得出,進(jìn)而分別求出和相減即可得出答案.【詳解】作AE⊥x軸于點E,BD⊥x軸于點D∴△OBD∽△OAE∴根據(jù)反比例函數(shù)的幾何意義可得:,∴∵AO=AC∴OE=EC∴∴,∴故答案為4.本題考查的是反比例函數(shù)與幾何的綜合,難度系數(shù)較大,需要熟練掌握反比例函數(shù)的幾何意義.17、(,2).【詳解】解:如圖,當(dāng)點B與點D重合時,△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點E坐標(biāo)(,2).故答案為:(,2).本題考查翻折變換(折疊問題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.18、5【解析】試題解析:∵半徑為10的半圓的弧長為:×2π×10=10π∴圍成的圓錐的底面圓的周長為10π設(shè)圓錐的底面圓的半徑為r,則2πr=10π解得r=5三、解答題(共66分)19、y=;【解析】試題分析:(1)先根據(jù)銳角三角函數(shù)的定義,求出OA的值,然后根據(jù)勾股定理求出AB的值,然后由C點是OA的中點,求出C點的坐標(biāo),然后將C的坐標(biāo)代入反比例函數(shù)y=中,即可確定反比例函數(shù)解析式;(2)先將y=3x與y=聯(lián)立成方程組,求出點M的坐標(biāo),然后求出點D的坐標(biāo),然后連接BC,分別求出△OMB的面積,△OBC的面積,△BCD的面積,進(jìn)而確定四邊形OCDB的面積,進(jìn)而可求三角形OMB與四邊形OCDB的面積的比.試題解析:(1)∵A點的坐標(biāo)為(8,y),∴OB=8,∵AB⊥x軸于點B,sin∠OAB=,∴,∴OA=10,由勾股定理得:AB=,∵點C是OA的中點,且在第一象限內(nèi),∴C(4,3),∵點C在反比例函數(shù)y=的圖象上,∴k=12,∴反比例函數(shù)解析式為:y=;(2)將y=3x與y=聯(lián)立成方程組,得:,解得:,,∵M(jìn)是直線與雙曲線另一支的交點,∴M(﹣2,﹣6),∵點D在AB上,∴點D的橫坐標(biāo)為8,∵點D在反比例函數(shù)y=的圖象上,∴點D的縱坐標(biāo)為,∴D(8,),∴BD=,連接BC,如圖所示,∵S△MOB=?8?|﹣6|=24,S四邊形OCDB=S△OBC+S△BCD=?8?3+=15,∴.考點:反比例函數(shù)與一次函數(shù)的交點問題.20、【分析】首先根據(jù)題意用列舉法列出所有等可能的結(jié)果與甲比乙先出場的情況,再利用概率公式求解即可求得答案.【詳解】解:甲、乙、丙三位同學(xué)采用抽簽的方式?jīng)Q定出場順序,所有可能出現(xiàn)的結(jié)果有:(甲,乙,丙)、(甲、丙、乙)(乙,甲,丙)、(乙,丙,甲)(丙,甲,乙)、(丙,乙,甲)共有6種,它們出現(xiàn)的可能性相同.所有的結(jié)果中,滿足“甲比乙先出場”(記為事件)的結(jié)果有3中,所以本題考查了列舉法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)證明見解析;(2)證明見解析【分析】(1)本題首先根據(jù)垂直性質(zhì)以及公共角分別求證△CED∽△CDA,△CDF∽△CBD,繼而以為中間變量進(jìn)行等量替換證明本題.(2)本題以第一問結(jié)論為前提證明△CEF∽△CBA,繼而根據(jù)垂直性質(zhì)證明∠OFD=∠ECO,最后利用“角角”判定證明相似.【詳解】(1)由已知得:∠CED=∠CDA=90°,∠ECD=∠DCA,∴△CED∽△CDA,∴,即CD2=CE?CA,又∵∠CFD=∠CDB=90°,∠FCD=∠DCB,∴△CDF∽△CBD,∴,即CD2=CB?CF,則CA?CE=CB?CF;(2)∵CA?CE=CB?CF,∴,又∵∠ECF=∠BCA,∴△CEF∽△CBA,∴∠CFE=∠A,∵∠CFE+∠OFD=∠A+∠ECO=90°,∴∠OFD=∠ECO,又∵∠COE=∠FOD,∴△COE∽△FOD.本題考查相似的判定與性質(zhì)綜合,相似判定難點首先在于確定哪兩個三角形相似,其次是判定定理的選擇,相似判定常用“角角”定理,另外需注意相似圖形其潛在信息點是邊的比例關(guān)系以及角等.22、60元【分析】設(shè)定價為x元,則利用單個利潤×能賣出的書包個數(shù)即為利潤6000元,列寫方程并求解即可.【詳解】解:設(shè)定價為x元,根據(jù)題意得(x-40)[400-10(x-50)]=6000-130x+4200=0解得:=60,=70根據(jù)題意,進(jìn)貨量要少,所以=60不合題意,舍去.答:售價應(yīng)定為70元.本題考查一元二次方程中利潤問題的應(yīng)用,注意最后的結(jié)果有兩解,但根據(jù)題意需要舍去一個答案.23、(1)y=﹣0.5x+110;(2)房價定為120元時,合作社每天獲利最大,最大利潤是5000元.【解析】(1)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得相應(yīng)的函數(shù)解析式;(2)根據(jù)題意可以得到利潤與x之間的函數(shù)解析式,從而可以求得最大利潤.【詳解】(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,,解得:,即y與x之間的函數(shù)關(guān)系式是y=﹣0.5x+110;(2)設(shè)合作社每天獲得的利潤為w元,w=x(﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x2+120x﹣2200=﹣0.5(x﹣120)2+5000,∵60≤x≤150,∴當(dāng)x=120時,w取得最大值,此時w=5000,答:房價定為120元時,合作社每天獲利最大,最大利潤是5000元.【點睛】本題考查了一次函數(shù)的應(yīng)用、二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用二次函數(shù)的性質(zhì)解答.24、(1)y=x2﹣x﹣6;(2)點D的坐標(biāo)為(,﹣5);(3)△BCE的面積有最大值,點E坐標(biāo)為(,﹣).【分析】(1)先求出點A,C的坐標(biāo),再將其代入y=x2+bx+c即可;(2)先確定BC交對稱軸于點D,由兩點之間線段最短可知,此時AD+CD有最小值,而AC的長度是定值,故此時△ACD的周長取最小值,求出直線BC的解析式,再求出其與對稱軸的交點即可;(3)如圖2,連接OE,設(shè)點E(a,a2﹣a﹣6),由式子S△BCE=S△OCE+S△OBE﹣S△OBC即可求出△BCE的面積S與a的函數(shù)關(guān)系式,由二次函數(shù)的圖象及性質(zhì)可求出△BCE的面積最大值,并可寫出此時點E坐標(biāo).【詳解】解:(1)∵OA=2,OC=6,∴A(﹣2,0),C(0,﹣6),將A(﹣2,0),C(0,﹣6)代入y=x2+bx+c,得,解得,b=﹣1,c=﹣6,∴拋物線的解析式為:y=x2﹣x﹣6;(2)在y=x2﹣x﹣6中,對稱軸為直線x=,∵點A與點B關(guān)于對稱軸x=對稱,∴如圖1,可設(shè)BC交對稱軸于點D,由兩點之間線段最短可知,此時AD+CD有最小值,而AC的長度是定值,故此時△ACD的周長取最小值,在y=x2﹣x﹣6中,當(dāng)y=0時,x1=﹣2,x2=3,∴點B的坐標(biāo)為(3,0),設(shè)直線BC的解析式為y=kx﹣6,將點B(3,0)代入,得,k=2,∴直線BC的解析式為y=2x﹣6,當(dāng)x=時,y=﹣5,∴點D的坐標(biāo)為(,﹣5);(3)如圖2,連接OE,設(shè)點E(a,a2﹣a﹣6),S△BCE=S△OCE+S△OBE﹣S△OBC=×6a+×3(﹣a2+a+6)﹣×3×6=﹣a2+a=﹣(a﹣)2+,根據(jù)二次函數(shù)的圖象及性質(zhì)可知,當(dāng)a=時,△BCE的面積有最大值,當(dāng)a=時,∴此時點E坐標(biāo)為(,﹣).本題考查的是二次函數(shù)的綜合,難度適中,第三問解題關(guān)鍵是找出面積與a的關(guān)系式,再利用二次函數(shù)的圖像與性質(zhì)求最值.25、(1)20,72,1;(2)見解析;(3)【分析】(1)根據(jù)等級為A的人數(shù)除以所占的百分比求出總?cè)藬?shù),用360°乘以D等級對應(yīng)比例可得其圓心角度數(shù),根據(jù)百分比的概念可得m的值;
(2)求出等級B的人數(shù),補全條形統(tǒng)計圖即可;
(3)列表得出所有等可能的情況數(shù),找出符合條件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東檢疫局協(xié)議書
- 客戶活動合同范本
- 工程擋墻合同范本
- 工程物探合同范本
- 工裝付款合同范本
- 安裝地板合同范本
- 變頻器合同范本
- 家用保姆合同范本
- 廣告墻體合同范本
- 店面防火合同范本
- 數(shù)字化轉(zhuǎn)型賦能高校課程思政的實施進(jìn)路與評價創(chuàng)新
- 捷盟-03-京唐港組織設(shè)計與崗位管理方案0528-定稿
- 基于SystemView的數(shù)字通信仿真課程設(shè)計
- 物業(yè)二次裝修管理規(guī)定
- GB 10133-2014食品安全國家標(biāo)準(zhǔn)水產(chǎn)調(diào)味品
- FZ/T 92023-2017棉紡環(huán)錠細(xì)紗錠子
- 采氣工程課件
- 非洲豬瘟實驗室診斷電子教案課件
- 工時的記錄表
- 金屬材料與熱處理全套ppt課件完整版教程
- 熱拌瀝青混合料路面施工機(jī)械配置計算(含表格)
評論
0/150
提交評論