版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
備戰(zhàn)中考數(shù)學(xué)(平行四邊形提高練習(xí)題)壓軸題訓(xùn)練含答案解析(1)一、平行四邊形1.在四邊形中,,對(duì)角線平分.(1)如圖1,若,且,試探究邊、與對(duì)角線的數(shù)量關(guān)系并說(shuō)明理由.(2)如圖2,若將(1)中的條件“”去掉,(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由.(3)如圖3,若,探究邊、與對(duì)角線的數(shù)量關(guān)系并說(shuō)明理由.【答案】(1).證明見解析;(2)成立;(3).理由見解析.【解析】試題分析:(1)結(jié)論:AC=AD+AB,只要證明AD=AC,AB=AC即可解決問題;(2)(1)中的結(jié)論成立.以C為頂點(diǎn),AC為一邊作∠ACE=60°,∠ACE的另一邊交AB延長(zhǎng)線于點(diǎn)E,只要證明△DAC≌△BEC即可解決問題;(3)結(jié)論:AD+AB=AC.過點(diǎn)C作CE⊥AC交AB的延長(zhǎng)線于點(diǎn)E,只要證明△ACE是等腰直角三角形,△DAC≌△BEC即可解決問題;試題解析:解:(1)AC=AD+AB.理由如下:如圖1中,在四邊形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=AC,同理AD=AC.∴AC=AD+AB.(2)(1)中的結(jié)論成立,理由如下:以C為頂點(diǎn),AC為一邊作∠ACE=60°,∠ACE的另一邊交AB延長(zhǎng)線于點(diǎn)E,∵∠BAC=60°,∴△AEC為等邊三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)結(jié)論:AD+AB=AC.理由如下:過點(diǎn)C作CE⊥AC交AB的延長(zhǎng)線于點(diǎn)E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴AE=∴.2.如圖,△ABC是等邊三角形,AB=6cm,D為邊AB中點(diǎn).動(dòng)點(diǎn)P、Q在邊AB上同時(shí)從點(diǎn)D出發(fā),點(diǎn)P沿D→A以1cm/s的速度向終點(diǎn)A運(yùn)動(dòng).點(diǎn)Q沿D→B→D以2cm/s的速度運(yùn)動(dòng),回到點(diǎn)D停止.以PQ為邊在AB上方作等邊三角形PQN.將△PQN繞QN的中點(diǎn)旋轉(zhuǎn)180°得到△MNQ.設(shè)四邊形PQMN與△ABC重疊部分圖形的面積為S(cm2),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s)(0<t<3).(1)當(dāng)點(diǎn)N落在邊BC上時(shí),求t的值.(2)當(dāng)點(diǎn)N到點(diǎn)A、B的距離相等時(shí),求t的值.(3)當(dāng)點(diǎn)Q沿D→B運(yùn)動(dòng)時(shí),求S與t之間的函數(shù)表達(dá)式.(4)設(shè)四邊形PQMN的邊MN、MQ與邊BC的交點(diǎn)分別是E、F,直接寫出四邊形PEMF與四邊形PQMN的面積比為2:3時(shí)t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】試題分析:(1)由題意知:當(dāng)點(diǎn)N落在邊BC上時(shí),點(diǎn)Q與點(diǎn)B重合,此時(shí)DQ=3;(2)當(dāng)點(diǎn)N到點(diǎn)A、B的距離相等時(shí),點(diǎn)N在邊AB的中線上,此時(shí)PD=DQ;(3)當(dāng)0≤t≤時(shí),四邊形PQMN與△ABC重疊部分圖形為四邊形PQMN;當(dāng)≤t≤時(shí),四邊形PQMN與△ABC重疊部分圖形為五邊形PQFEN.(4)MN、MQ與邊BC的有交點(diǎn)時(shí),此時(shí)<t<,列出四邊形PEMF與四邊形PQMN的面積表達(dá)式后,即可求出t的值.試題解析:(1)∵△PQN與△ABC都是等邊三角形,∴當(dāng)點(diǎn)N落在邊BC上時(shí),點(diǎn)Q與點(diǎn)B重合.∴DQ=3∴2t=3.∴t=;(2)∵當(dāng)點(diǎn)N到點(diǎn)A、B的距離相等時(shí),點(diǎn)N在邊AB的中線上,∴PD=DQ,當(dāng)0<t<時(shí),此時(shí),PD=t,DQ=2t∴t=2t∴t=0(不合題意,舍去),當(dāng)≤t<3時(shí),此時(shí),PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;綜上所述,當(dāng)點(diǎn)N到點(diǎn)A、B的距離相等時(shí),t=2;(3)由題意知:此時(shí),PD=t,DQ=2t當(dāng)點(diǎn)M在BC邊上時(shí),∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如圖①,當(dāng)0≤t≤時(shí),S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如圖②,當(dāng)≤t≤時(shí),設(shè)MN、MQ與邊BC的交點(diǎn)分別是E、F,∵M(jìn)N=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等邊三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ與邊BC的交點(diǎn)分別是E、F,此時(shí)<t<,t=1或.考點(diǎn):幾何變換綜合題3.操作:如圖,邊長(zhǎng)為2的正方形ABCD,點(diǎn)P在射線BC上,將△ABP沿AP向右翻折,得到△AEP,DE所在直線與AP所在直線交于點(diǎn)F.探究:(1)如圖1,當(dāng)點(diǎn)P在線段BC上時(shí),①若∠BAP=30°,求∠AFE的度數(shù);②若點(diǎn)E恰為線段DF的中點(diǎn)時(shí),請(qǐng)通過運(yùn)算說(shuō)明點(diǎn)P會(huì)在線段BC的什么位置?并求出此時(shí)∠AFD的度數(shù).歸納:(2)若點(diǎn)P是線段BC上任意一點(diǎn)時(shí)(不與B,C重合),∠AFD的度數(shù)是否會(huì)發(fā)生變化?試證明你的結(jié)論;猜想:(3)如圖2,若點(diǎn)P在BC邊的延長(zhǎng)線上時(shí),∠AFD的度數(shù)是否會(huì)發(fā)生變化?試在圖中畫出圖形,并直接寫出結(jié)論.【答案】(1)①45°;②BC的中點(diǎn),45°;(2)不會(huì)發(fā)生變化,證明參見解析;(3)不會(huì)發(fā)生變化,作圖參見解析.【解析】試題分析:(1)當(dāng)點(diǎn)P在線段BC上時(shí),①由折疊得到一對(duì)角相等,再利用正方形性質(zhì)求出∠DAE度數(shù),在三角形AFD中,利用內(nèi)角和定理求出所求角度數(shù)即可;②由E為DF中點(diǎn),得到P為BC中點(diǎn),如圖1,連接BE交AF于點(diǎn)O,作EG∥AD,得EG∥BC,得到AF垂直平分BE,進(jìn)而得到三角形BOP與三角形EOG全等,利用全等三角形對(duì)應(yīng)邊相等得到BP=EG=1,得到P為BC中點(diǎn),進(jìn)而求出所求角度數(shù)即可;(2)若點(diǎn)P是線段BC上任意一點(diǎn)時(shí)(不與B,C重合),∠AFD的度數(shù)不會(huì)發(fā)生變化,作AG⊥DF于點(diǎn)G,如圖1(a)所示,利用折疊的性質(zhì)及三線合一性質(zhì),根據(jù)等式的性質(zhì)求出∠1+∠2的度數(shù),即為∠FAG度數(shù),即可求出∠F度數(shù);(3)作出相應(yīng)圖形,如圖2所示,若點(diǎn)P在BC邊的延長(zhǎng)線上時(shí),∠AFD的度數(shù)不會(huì)發(fā)生變化,理由為:作AG⊥DE于G,得∠DAG=∠EAG,設(shè)∠DAG=∠EAG=α,根據(jù)∠FAE為∠BAE一半求出所求角度數(shù)即可.試題解析:(1)①當(dāng)點(diǎn)P在線段BC上時(shí),∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②點(diǎn)E為DF的中點(diǎn)時(shí),P也為BC的中點(diǎn),理由如下:如圖1,連接BE交AF于點(diǎn)O,作EG∥AD,得EG∥BC,∵EG∥AD,DE=EF,∴EG=AD=1,∵AB=AE,∴點(diǎn)A在線段BE的垂直平分線上,同理可得點(diǎn)P在線段BE的垂直平分線上,∴AF垂直平分線段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P為BC的中點(diǎn),∴∠DAF=90°﹣∠BAF,∠ADF=45°+∠BAF,∴∠AFD=180°﹣∠DAF﹣∠ADF=45°;(2)∠AFD的度數(shù)不會(huì)發(fā)生變化,作AG⊥DF于點(diǎn)G,如圖1(a)所示,在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且∠1=∠BAP,∴∠1+∠2=×90°=45°,即∠FAG=45°,則∠AFD=90°﹣45°=45°;(3)如圖2所示,∠AFE的大小不會(huì)發(fā)生變化,∠AFE=45°,作AG⊥DE于G,得∠DAG=∠EAG,設(shè)∠DAG=∠EAG=α,∴∠BAE=90°+2α,∴∠FAE=∠BAE=45°+α,∴∠FAG=∠FAE﹣∠EAG=45°,在Rt△AFG中,∠AFE=90°﹣45°=45°.考點(diǎn):1.正方形的性質(zhì);2.折疊性質(zhì);3.全等三角形的判定與性質(zhì).4.如圖,矩形ABCD中,AB=6,BC=4,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).(1)求證:四邊形BEDF是平行四邊形;(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).【答案】(1)證明見解析;(2).【解析】分析:(1)根據(jù)平行四邊形ABCD的性質(zhì),判定△BOE≌△DOF(ASA),得出四邊形BEDF的對(duì)角線互相平分,進(jìn)而得出結(jié)論;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的長(zhǎng).詳解:(1)證明:∵四邊形ABCD是矩形,O是BD的中點(diǎn),∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,∴△BOE≌△DOF(ASA),∴EO=FO,∴四邊形BEDF是平行四邊形;(2)當(dāng)四邊形BEDF是菱形時(shí),BD⊥EF,設(shè)BE=x,則
DE=x,AE=6-x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6-x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.點(diǎn)睛:本題主要考查了矩形的性質(zhì),菱形的性質(zhì)、勾股定理、全等三角形的判定與性質(zhì),熟練掌握矩形的性質(zhì)和勾股定理,證明三角形全等是解決問的關(guān)鍵5.如圖,ABCD是正方形,點(diǎn)G是BC上的任意一點(diǎn),DE⊥AG于E,BF∥DE,交AG于F.求證:AF=BF+EF.【答案】詳見解析.【解析】【分析】由四邊形ABCD為正方形,可得出∠BAD為90°,AB=AD,進(jìn)而得到∠BAG與∠EAD互余,又DE垂直于AG,得到∠EAD與∠ADE互余,根據(jù)同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出△ABF≌△DAE;利用全等三角的對(duì)應(yīng)邊相等可得出BF=AE,由AF-AE=EF,等量代換可得證.【詳解】∵ABCD是正方形,∴AD=AB,∠BAD=90°∵DE⊥AG,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=∠BAF.∵BF∥DE,∴∠AFB=∠DEG=∠AED.在△ABF與△DAE中,,∴△ABF≌△DAE(AAS).∴BF=AE.∵AF=AE+EF,∴AF=BF+EF.點(diǎn)睛:此題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),矩形的判定與性質(zhì),熟練掌握判定與性質(zhì)是解本題的關(guān)鍵.6.(1)(問題發(fā)現(xiàn))如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為(2)(拓展研究)在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;(3)(問題發(fā)現(xiàn))當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長(zhǎng).【答案】(1)BE=AF;(2)無(wú)變化;(3)AF的長(zhǎng)為﹣1或+1.【解析】試題分析:(1)先利用等腰直角三角形的性質(zhì)得出AD=,再得出BE=AB=2,即可得出結(jié)論;(2)先利用三角函數(shù)得出,同理得出,夾角相等即可得出△ACF∽△BCE,進(jìn)而得出結(jié)論;(3)分兩種情況計(jì)算,當(dāng)點(diǎn)E在線段BF上時(shí),如圖2,先利用勾股定理求出EF=CF=AD=,BF=,即可得出BE=﹣,借助(2)得出的結(jié)論,當(dāng)點(diǎn)E在線段BF的延長(zhǎng)線上,同前一種情況一樣即可得出結(jié)論.試題解析:(1)在Rt△ABC中,AB=AC=2,根據(jù)勾股定理得,BC=AB=2,點(diǎn)D為BC的中點(diǎn),∴AD=BC=,∵四邊形CDEF是正方形,∴AF=EF=AD=,∵BE=AB=2,∴BE=AF,故答案為BE=AF;(2)無(wú)變化;如圖2,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴=,∴BE=AF,∴線段BE與AF的數(shù)量關(guān)系無(wú)變化;(3)當(dāng)點(diǎn)E在線段AF上時(shí),如圖2,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根據(jù)勾股定理得,BF=,∴BE=BF﹣EF=﹣,由(2)知,BE=AF,∴AF=﹣1,當(dāng)點(diǎn)E在線段BF的延長(zhǎng)線上時(shí),如圖3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴=,∴BE=AF,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根據(jù)勾股定理得,BF=,∴BE=BF+EF=+,由(2)知,BE=AF,∴AF=+1.即:當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,線段AF的長(zhǎng)為﹣1或+1.7.(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長(zhǎng).【答案】(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】分析:(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.詳解:(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.點(diǎn)睛:本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.8.已知:在矩形ABCD中,AB=10,BC=12,四邊形EFGH的三個(gè)頂點(diǎn)E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.(1)如圖①,當(dāng)四邊形EFGH為正方形時(shí),求△GFC的面積;(2)如圖②,當(dāng)四邊形EFGH為菱形,且BF=a時(shí),求△GFC的面積(用a表示);(3)在(2)的條件下,△GFC的面積能否等于2?請(qǐng)說(shuō)明理由.【答案】(1)10;(2)12-a;(3)不能【解析】解:(1)過點(diǎn)G作GM⊥BC于M.在正方形EFGH中,∠HEF=90°,EH=EF,∴∠AEH+∠BEF=90°.∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF.又∵∠A=∠B=90°,∴△AHE≌△BEF.同理可證△MFG≌△BEF.∴GM=BF=AE=2.∴FC=BC-BF=10.∴.(2)過點(diǎn)G作GM⊥BC交BC的延長(zhǎng)線于M,連接HF.∵AD∥BC,∴∠AHF=∠MFH.∵EH∥FG,∴∠EHF=∠GFH.∴∠AHE=∠MFG.又∵∠A=∠GMF=90°,EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴.(3)△GFC的面積不能等于2.說(shuō)明一:∵若S△GFC=2,則12-a=2,∴a=10.此時(shí),在△BEF中,.在△AHE中,,∴AH>AD,即點(diǎn)H已經(jīng)不在邊AD上,故不可能有S△GFC=2.說(shuō)明二:△GFC的面積不能等于2.∵點(diǎn)H在AD上,∴菱形邊EH的最大值為,∴BF的最大值為.又∵函數(shù)S△GFC=12-a的值隨著a的增大而減小,∴S△GFC的最小值為.又∵,∴△GFC的面積不能等于2.9.如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC的頂點(diǎn)A在x軸的正半軸上,OA=4,OC=2,點(diǎn)D、E、F、G分別為邊OA、AB、BC、CO的中點(diǎn),連結(jié)DE、EF、FG、GD.(1)若點(diǎn)C在y軸的正半軸上,當(dāng)點(diǎn)B的坐標(biāo)為(2,4)時(shí),判斷四邊形DEFG的形狀,并說(shuō)明理由.(2)若點(diǎn)C在第二象限運(yùn)動(dòng),且四邊形DEFG為菱形時(shí),求點(diǎn)四邊形OABC對(duì)角線OB長(zhǎng)度的取值范圍.(3)若在點(diǎn)C的運(yùn)動(dòng)過程中,四邊形DEFG始終為正方形,當(dāng)點(diǎn)C從X軸負(fù)半軸經(jīng)過Y軸正半軸,運(yùn)動(dòng)至X軸正半軸時(shí),直接寫出點(diǎn)B的運(yùn)動(dòng)路徑長(zhǎng).【答案】(1)正方形(2)(3)2π【解析】分析:(1)連接OB,AC,說(shuō)明OB⊥AC,OB=AC,可得四邊形DEFG是正方形.(2)由四邊形DEFG是菱形,可得OB=AC,當(dāng)點(diǎn)C在y軸上時(shí),AC=,當(dāng)點(diǎn)C在x軸上時(shí),AC=6,故可得結(jié)論;(3)根據(jù)題意計(jì)算弧長(zhǎng)即可.詳解:(1)正方形,如圖1,證明連接OB,AC,說(shuō)明OB⊥AC,OB=AC,可得四邊形DEFG是正方形.(2)如圖2,由四邊形DEFG是菱形,可得OB=AC,當(dāng)點(diǎn)C在y軸上時(shí),AC=,當(dāng)點(diǎn)C在x軸上時(shí),AC=6,∴;(3)2π.如圖3,當(dāng)四邊形DEFG是正方形時(shí),OB⊥AC,且OB=AC,構(gòu)造△OBE≌△ACO,可得B點(diǎn)在以E(0,4)為圓心,2為半徑的圓上運(yùn)動(dòng).所以當(dāng)C點(diǎn)從x軸負(fù)半軸到正半軸運(yùn)動(dòng)時(shí),B點(diǎn)的運(yùn)動(dòng)路徑為2.圖1圖2圖3點(diǎn)睛:本題主要考查了正方形的判定,菱形的性質(zhì)以及弧長(zhǎng)的計(jì)算.靈活運(yùn)用正方形的判定定理和菱形的性質(zhì)運(yùn)用是解題的關(guān)鍵.10.如圖,點(diǎn)E是正方形ABCD的邊AB上一點(diǎn),連結(jié)CE,過頂點(diǎn)C作CF⊥CE,交AD延長(zhǎng)線于F.求證:BE=DF.【答案】證明見解析.【解析】分析:根據(jù)正方形的性質(zhì),證出BC=CD,∠B=∠CDF,∠BCD=90°,再由垂直的性質(zhì)得到∠BCE=∠DCF,然后根據(jù)“ASA”證明△BCE≌△BCE即可得到BE=DF詳解:證明:∵CF⊥CE,∴∠ECF=90°,又∵∠BCG=90°,∴∠BCE+∠ECD=∠DCF+∠ECD∴∠BCE=∠DCF,在△BCE與△DCF中,∵∠BCE=∠DCF,BC=CD,∠CDF=∠EBC,∴△BCE≌△BCE(ASA),∴BE=DF.點(diǎn)睛:本題考查的是正方形的性質(zhì),熟知正方形的性質(zhì)及全等三角形的判定與性質(zhì)是解答此題的關(guān)鍵.11.在正方形ABCD中,動(dòng)點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).(1)如圖①,當(dāng)點(diǎn)E自D向C,點(diǎn)F自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫出AE與DF的位置關(guān)系,并說(shuō)明理由;(2)如圖②,當(dāng)E,F(xiàn)分別移動(dòng)到邊DC,CB的延長(zhǎng)線上時(shí),連接AE和DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不須證明)(3)如圖③,當(dāng)E,F(xiàn)分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由;(4)如圖④,當(dāng)E,F(xiàn)分別在邊DC,CB上移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F(xiàn)的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫出點(diǎn)P運(yùn)動(dòng)路徑的草圖.若AD=2,試求出線段CP的最小值.【答案】(1)AE=DF,AE⊥DF;(2)是;(3)成立,理由見解析;(4)CP=QC﹣QP=.【解析】試題分析:(1)AE=DF,AE⊥DF.先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四邊形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因?yàn)椤螩DF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可證AE=DF,∠DAE=∠CDF,延長(zhǎng)FD交AE于點(diǎn)G,再由等角的余角相等可得AE⊥DF;(4)由于點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90°,所以點(diǎn)P的路徑是一段以AD為直徑的弧,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最小,再由勾股定理可得QC的長(zhǎng),再求CP即可.試題解析:(1)AE=DF,AE⊥DF.理由:∵四邊形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.在△ADE和△DCF中,,∴△ADE≌△DCF(SAS).∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可證AE=DF,∠DAE=∠CDF延長(zhǎng)FD交AE于點(diǎn)G,則∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如圖:由于點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90°,∴點(diǎn)P的路徑是一段以AD為直徑的弧,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.考點(diǎn):四邊形的綜合知識(shí).12.?dāng)?shù)學(xué)活動(dòng)課上,老師給出如下問題:如圖,將等腰直角三角形紙片沿斜邊上的高AC剪開,得到等腰直角三角形△ABC與△EFD,將△EFD的直角頂點(diǎn)在直線BC上平移,在平移的過程中,直線AC與直線DE交于點(diǎn)Q,讓同學(xué)們探究線段BQ與AD的數(shù)量關(guān)系和位置關(guān)系.請(qǐng)你閱讀下面交流信息,解決所提出的問題.展示交流:小敏:滿足條件的圖形如圖甲所示圖形,延長(zhǎng)BQ與AD交于點(diǎn)H.我們可以證明△BCQ≌△ACD,從而易得BQ=AD,BQ⊥AD.小慧:根據(jù)圖甲,當(dāng)點(diǎn)F在線段BC上時(shí),我們可以驗(yàn)證小慧的說(shuō)法是正確的.但當(dāng)點(diǎn)F在線段CB的延長(zhǎng)線上(如圖乙)或線段CB的反向延長(zhǎng)線上(如圖丙)時(shí),我對(duì)小慧說(shuō)法的正確性表示懷疑.(1)請(qǐng)你幫助小慧進(jìn)行分析,小敏的結(jié)論在圖乙、圖丙中是否成立?請(qǐng)說(shuō)明理由.(選擇圖乙或圖丙的一種情況說(shuō)明即可).(2)小慧思考問題的方式中,蘊(yùn)含的數(shù)學(xué)思想是.拓展延伸:根據(jù)你上面選擇的圖形,分別取AB、BD、DQ、AQ的中點(diǎn)M、N、P、T.則四邊形MNPT是什么樣的特殊四邊形?請(qǐng)說(shuō)明理由.【答案】成立;分類討論思想;正方形.【解析】試題分析:利用等腰直角三角形的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)得出BQ=AD,BQ⊥AD;利用已知條件分類得出,體現(xiàn)數(shù)學(xué)中的分類討論思想,拓展延伸:利用三角形中位線定理結(jié)合正方形的判定方法,首先得出四邊形MNPT是平行四邊形進(jìn)而得出它是菱形,再求出一個(gè)內(nèi)角是90°,即可得出答案.試題解析:(1)、成立,理由:如圖乙:由題意可得:∠FDE=∠QDC=∠ABC=∠BAC=45°,則DC=QC,AC=BC,在△ADC和△BQC中∵,∴△ADC≌△BQC(SAS),∴AD=BQ,∠DAC=∠QBC,延長(zhǎng)AD交BQ于點(diǎn)F,則∠ADC=∠BDF,∴∠BFD=∠ACD=90°,∴AD⊥BQ;(2)、小慧思考問題的方式中,蘊(yùn)含的數(shù)學(xué)思想是:分類討論思想;拓展延伸:四邊形MNPT是正方形,理由:∵取AB、BD、DQ、AQ的中點(diǎn)M、N、P、T,∴MNAD,TPAD,∴MNTP,∴四邊形MNPT是平行四邊形,∵NPBQ,BQ=AD,∴NP=MN,∴平行四邊形MNPT是菱形,又∵AD⊥BQ,NP∥BQ,MN∥AD,∴∠MNP=90°,∴四邊形MNPT是正方形.考點(diǎn):幾何變換綜合題13.已知:如圖,四邊形ABCD和四邊形AECF都是矩形,AE與BC交于點(diǎn)M,CF與AD交于點(diǎn)N.(1)求證:△ABM≌△CDN;(2)矩形ABCD和矩形AECF滿足何種關(guān)系時(shí),四邊形AMCN是菱形,證明你的結(jié)論.【答案】(1)證明見解析;(2)當(dāng)AB=AF時(shí),四邊形AMCN是菱形.證明見解析;【解析】試題分析:(1)由已知條件可得四邊形AMCN是平行四邊形,從而可得AM=CN,再由AB=CD,∠B=∠D=90°,利用HL即可證明;(2)若四邊形AMCN為菱形,則有AM=AN,從已知可得∠BAM=∠FAN,又∠B=∠F=90°,所以有△ABM≌△AFN,從而得AB=AF,因此當(dāng)AB=AF時(shí),四邊形AMCN是菱形.試題解析:(1)∵四邊形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD∥BC.∵四邊形AECF是矩形,∴AE∥CF.∴四邊形AMCN是平行四邊形.∴AM=CN.在Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN.(2)當(dāng)AB=AF時(shí),四邊形AMCN是菱形.∵四邊形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90°.∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN.又∵AB=AF,∴△ABM≌△AFN.∴AM=AN.由(1)知四邊形AMCN是平行四邊形,∴平行四邊形AMCN是菱形.考點(diǎn):1.矩形的性質(zhì);2.三角形全等的判定與性質(zhì);3.菱形的判定.14.如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(3,3).將正方形ABCO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形ADEF,ED交線段OC于點(diǎn)G,ED的延長(zhǎng)線交線段BC于點(diǎn)P,連AP、AG.(1)求證:△AOG≌△ADG;(2)求∠PAG的度數(shù);并判斷線段OG、PG、BP之間的數(shù)量關(guān)系,說(shuō)明理由;(3)當(dāng)∠1=∠2時(shí),求直線PE的解析式;(4)在(3)的條件下,直線PE上是否存在點(diǎn)M,使以M、A、G為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1)見解析(2)∠PAG=45°,PG=OG+BP.理由見解析(3)y=x﹣3.(4)、.【解析】試題分析:(1)由AO=AD,AG=AG,根據(jù)斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等,判斷出△AOG≌△ADG即可.(2)首先根據(jù)三角形全等的判定方法,判斷出△ADP≌△ABP,再結(jié)合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根據(jù)∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度數(shù);最后判斷出線段OG、PG、BP之間的數(shù)量關(guān)系即可.(3)首先根據(jù)△AOG≌△ADG,判斷出∠AGO=∠AGD;然后根據(jù)∠1+∠AGO=90°,∠2+∠PGC=90°,判斷出當(dāng)∠1=∠2時(shí),∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后確定出P、G兩點(diǎn)坐標(biāo),即可判斷出直線PE的解析式.(4)根據(jù)題意,分兩種情況:①當(dāng)點(diǎn)M在x軸的負(fù)半軸上時(shí);②當(dāng)點(diǎn)M在EP的延長(zhǎng)線上時(shí);根據(jù)以M、A、G為頂點(diǎn)的三角形是等腰三角形,求出M點(diǎn)坐標(biāo)是多少即可.試題解析:(1)在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,則∠DAP=∠BAP;∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,∴G點(diǎn)坐標(biāo)為(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣1),∴P點(diǎn)坐標(biāo)為:(3,3﹣3),設(shè)直線PE的解析式為:y=kx+b,則,解得:,∴直線PE的解析式為y=x﹣3.(4)①如圖1,當(dāng)點(diǎn)M在x軸的負(fù)半軸上時(shí),,∵AG=MG,點(diǎn)A坐標(biāo)為(0,3),∴點(diǎn)M坐標(biāo)為(0,﹣3).②如圖2,當(dāng)點(diǎn)M在EP的延長(zhǎng)線上時(shí),,由(3),可得∠AGO=∠PGC=60°,∴EP與AB的交點(diǎn)M,滿足AG=MG,∵A點(diǎn)的橫坐標(biāo)是0,G點(diǎn)橫坐標(biāo)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 會(huì)議接待服務(wù)師安全演練強(qiáng)化考核試卷含答案
- 硬質(zhì)合金混合料鑒定下料工崗前班組考核考核試卷含答案
- 2025年?yáng)|源縣選聘縣直事業(yè)單位工作人員歷年真題附答案
- 2024年象州縣輔警招聘考試真題匯編附答案
- 工程監(jiān)理工作手冊(cè)(標(biāo)準(zhǔn)版)
- 2025年農(nóng)業(yè)資源保護(hù)與利用技術(shù)手冊(cè)
- 2025年義縣選聘縣直事業(yè)單位工作人員歷年真題附答案
- 2025北京門頭溝區(qū)人民政府東辛房街道辦事處勞動(dòng)保障協(xié)管員和治安巡防員招聘11人備考題庫(kù)附答案
- 2025年云南藝術(shù)學(xué)院輔導(dǎo)員考試筆試真題匯編附答案
- 企業(yè)銷售管理與客戶關(guān)系維護(hù)實(shí)務(wù)手冊(cè)(標(biāo)準(zhǔn)版)
- 夫妻債務(wù)約定協(xié)議書
- 腕關(guān)節(jié)綜合征
- 《貴州省水利水電工程系列概(估)算編制規(guī)定》(2022版 )
- JGJ256-2011 鋼筋錨固板應(yīng)用技術(shù)規(guī)程
- 上海建橋?qū)W院簡(jiǎn)介招生宣傳
- 《智慧教育黑板技術(shù)規(guī)范》
- 《電力建設(shè)安全工作規(guī)程》-第1部分火力發(fā)電廠
- 歌曲《我會(huì)等》歌詞
- 八年級(jí)物理上冊(cè)期末測(cè)試試卷-附帶答案
- 小學(xué)英語(yǔ)五年級(jí)上冊(cè)Unit 5 Part B Let's talk 教學(xué)設(shè)計(jì)
- 學(xué)生校服供應(yīng)服務(wù)實(shí)施方案
評(píng)論
0/150
提交評(píng)論