版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題4.10函數(shù)與導(dǎo)數(shù)真題訓(xùn)練第一部分:函數(shù)1.(2023年新課標(biāo)全國Ⅱ卷數(shù)學(xué)真題)若為偶函數(shù),則(
).A. B.0 C. D.1【答案】B【分析】根據(jù)偶函數(shù)性質(zhì),利用特殊值法求出值,再檢驗(yàn)即可.【詳解】因?yàn)闉榕己瘮?shù),則,解得,當(dāng)時(shí),,,解得或,則其定義域?yàn)榛颍P(guān)于原點(diǎn)對稱.,故此時(shí)為偶函數(shù).故選:B.2.(2023年高考全國乙卷數(shù)學(xué)(理)真題)已知是偶函數(shù),則(
)A. B. C.1 D.2【答案】D【分析】根據(jù)偶函數(shù)的定義運(yùn)算求解.【詳解】因?yàn)闉榕己瘮?shù),則,又因?yàn)椴缓銥?,可得,即,則,即,解得.故選:D.3.(2023年高考全國甲卷數(shù)學(xué)(文)真題)已知函數(shù).記,則(
)A. B. C. D.【答案】A【分析】利用作差法比較自變量的大小,再根據(jù)指數(shù)函數(shù)的單調(diào)性及二次函數(shù)的性質(zhì)判斷即可.【詳解】令,則開口向下,對稱軸為,因?yàn)?,而,所以,即由二次函?shù)性質(zhì)知,因?yàn)椋?,即,所以,綜上,,又為增函數(shù),故,即.故選:A.4.(2022年高考全國乙卷數(shù)學(xué)(理)真題)已知函數(shù)的定義域均為R,且.若的圖像關(guān)于直線對稱,,則(
)A. B. C. D.【答案】D【分析】根據(jù)對稱性和已知條件得到,從而得到,,然后根據(jù)條件得到的值,再由題意得到從而得到的值即可求解.【詳解】因?yàn)榈膱D像關(guān)于直線對稱,所以,因?yàn)?,所以,即,因?yàn)椋?,代入得,即,所以?因?yàn)椋?,即,所?因?yàn)椋裕忠驗(yàn)?,?lián)立得,,所以的圖像關(guān)于點(diǎn)中心對稱,因?yàn)楹瘮?shù)的定義域?yàn)镽,所以因?yàn)椋?所以.故選:D【點(diǎn)睛】含有對稱軸或?qū)ΨQ中心的問題往往條件比較隱蔽,考生需要根據(jù)已知條件進(jìn)行恰當(dāng)?shù)霓D(zhuǎn)化,然后得到所需的一些數(shù)值或關(guān)系式從而解題.5.(2023年新高考天津數(shù)學(xué)高考真題)若,則的大小關(guān)系為(
)A. B.C. D.【答案】D【分析】根據(jù)對應(yīng)冪、指數(shù)函數(shù)的單調(diào)性判斷大小關(guān)系即可.【詳解】由在R上遞增,則,由在上遞增,則.所以.故選:D6.(2023年新課標(biāo)全國Ⅰ卷數(shù)學(xué)真題)設(shè)函數(shù)在區(qū)間上單調(diào)遞減,則的取值范圍是(
)A. B.C. D.【答案】D【分析】利用指數(shù)型復(fù)合函數(shù)單調(diào)性,判斷列式計(jì)算作答.【詳解】函數(shù)在R上單調(diào)遞增,而函數(shù)在區(qū)間上單調(diào)遞減,則有函數(shù)在區(qū)間上單調(diào)遞減,因此,解得,所以的取值范圍是.故選:D7.(2022年新高考全國II卷數(shù)學(xué)真題)已知函數(shù)的定義域?yàn)镽,且,則(
)A. B. C.0 D.1【答案】A【分析】法一:根據(jù)題意賦值即可知函數(shù)的一個(gè)周期為,求出函數(shù)一個(gè)周期中的的值,即可解出.【詳解】[方法一]:賦值加性質(zhì)因?yàn)椋羁傻?,,所以,令可得,,即,所以函?shù)為偶函數(shù),令得,,即有,從而可知,,故,即,所以函數(shù)的一個(gè)周期為.因?yàn)?,,,,,所以一個(gè)周期內(nèi)的.由于22除以6余4,所以.故選:A.[方法二]:【最優(yōu)解】構(gòu)造特殊函數(shù)由,聯(lián)想到余弦函數(shù)和差化積公式,可設(shè),則由方法一中知,解得,取,所以,則,所以符合條件,因此的周期,,且,所以,由于22除以6余4,所以.故選:A.【整體點(diǎn)評】法一:利用賦值法求出函數(shù)的周期,即可解出,是該題的通性通法;法二:作為選擇題,利用熟悉的函數(shù)使抽象問題具體化,簡化推理過程,直接使用具體函數(shù)的性質(zhì)解題,簡單明了,是該題的最優(yōu)解.8.(2022年新高考北京數(shù)學(xué)高考真題)已知函數(shù),則對任意實(shí)數(shù)x,有(
)A. B.C. D.【答案】C【分析】直接代入計(jì)算,注意通分不要計(jì)算錯(cuò)誤.【詳解】,故A錯(cuò)誤,C正確;,不是常數(shù),故BD錯(cuò)誤;故選:C.9.(2022年高考全國甲卷數(shù)學(xué)(文)真題)已知,則(
)A. B. C. D.【答案】A【分析】法一:根據(jù)指對互化以及對數(shù)函數(shù)的單調(diào)性即可知,再利用基本不等式,換底公式可得,,然后由指數(shù)函數(shù)的單調(diào)性即可解出.【詳解】[方法一]:(指對數(shù)函數(shù)性質(zhì))由可得,而,所以,即,所以.又,所以,即,所以.綜上,.[方法二]:【最優(yōu)解】(構(gòu)造函數(shù))由,可得.根據(jù)的形式構(gòu)造函數(shù),則,令,解得,由知.在上單調(diào)遞增,所以,即,又因?yàn)?,所?故選:A.【點(diǎn)評】法一:通過基本不等式和換底公式以及對數(shù)函數(shù)的單調(diào)性比較,方法直接常用,屬于通性通法;法二:利用的形式構(gòu)造函數(shù),根據(jù)函數(shù)的單調(diào)性得出大小關(guān)系,簡單明了,是該題的最優(yōu)解.10.(2022年新高考北京數(shù)學(xué)高考真題)在北京冬奧會(huì)上,國家速滑館“冰絲帶”使用高效環(huán)保的二氧化碳跨臨界直冷制冰技術(shù),為實(shí)現(xiàn)綠色冬奧作出了貢獻(xiàn).如圖描述了一定條件下二氧化碳所處的狀態(tài)與T和的關(guān)系,其中T表示溫度,單位是K;P表示壓強(qiáng),單位是.下列結(jié)論中正確的是(
)A.當(dāng),時(shí),二氧化碳處于液態(tài)B.當(dāng),時(shí),二氧化碳處于氣態(tài)C.當(dāng),時(shí),二氧化碳處于超臨界狀態(tài)D.當(dāng),時(shí),二氧化碳處于超臨界狀態(tài)【答案】D【分析】根據(jù)與的關(guān)系圖可得正確的選項(xiàng).【詳解】當(dāng),時(shí),,此時(shí)二氧化碳處于固態(tài),故A錯(cuò)誤.當(dāng),時(shí),,此時(shí)二氧化碳處于液態(tài),故B錯(cuò)誤.當(dāng),時(shí),與4非常接近,故此時(shí)二氧化碳處于固態(tài),對應(yīng)的是非超臨界狀態(tài),故C錯(cuò)誤.當(dāng),時(shí),因,故此時(shí)二氧化碳處于超臨界狀態(tài),故D正確.故選:D11.(2021年全國新高考II卷數(shù)學(xué)試題)已知,,,則下列判斷正確的是(
)A. B. C. D.【答案】C【分析】對數(shù)函數(shù)的單調(diào)性可比較、與的大小關(guān)系,由此可得出結(jié)論.【詳解】,即.故選:C.12.(2021年全國高考甲卷數(shù)學(xué)(文)試題)下列函數(shù)中是增函數(shù)的為(
)A. B. C. D.【答案】D【分析】根據(jù)基本初等函數(shù)的性質(zhì)逐項(xiàng)判斷后可得正確的選項(xiàng).【詳解】對于A,為上的減函數(shù),不合題意,舍.對于B,為上的減函數(shù),不合題意,舍.對于C,在為減函數(shù),不合題意,舍.對于D,為上的增函數(shù),符合題意,故選:D.13.(2021年全國新高考II卷數(shù)學(xué)試題)已知函數(shù)的定義域?yàn)?,為偶函?shù),為奇函數(shù),則(
)A. B. C. D.【答案】B【分析】推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由已知條件得出,結(jié)合已知條件可得出結(jié)論.【詳解】因?yàn)楹瘮?shù)為偶函數(shù),則,可得,因?yàn)楹瘮?shù)為奇函數(shù),則,所以,,所以,,即,故函數(shù)是以為周期的周期函數(shù),因?yàn)楹瘮?shù)為奇函數(shù),則,故,其它三個(gè)選項(xiàng)未知.故選:B.14.(2021年全國高考甲卷數(shù)學(xué)(理)試題)設(shè)函數(shù)的定義域?yàn)镽,為奇函數(shù),為偶函數(shù),當(dāng)時(shí),.若,則(
)A. B. C. D.【答案】D【分析】通過是奇函數(shù)和是偶函數(shù)條件,可以確定出函數(shù)解析式,進(jìn)而利用定義或周期性結(jié)論,即可得到答案.【詳解】[方法一]:因?yàn)槭瞧婧瘮?shù),所以①;因?yàn)槭桥己瘮?shù),所以②.令,由①得:,由②得:,因?yàn)?,所以,令,由①得:,所以.思路一:從定義入手.所以.[方法二]:因?yàn)槭瞧婧瘮?shù),所以①;因?yàn)槭桥己瘮?shù),所以②.令,由①得:,由②得:,因?yàn)?,所以,令,由①得:,所以.思路二:從周期性入手由兩個(gè)對稱性可知,函數(shù)的周期.所以.故選:D.【點(diǎn)睛】在解決函數(shù)性質(zhì)類問題的時(shí)候,我們通常可以借助一些二級結(jié)論,求出其周期性進(jìn)而達(dá)到簡便計(jì)算的效果.15.(2021年全國高考乙卷數(shù)學(xué)(理)試題)設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是(
)A. B. C. D.【答案】B【分析】分別求出選項(xiàng)的函數(shù)解析式,再利用奇函數(shù)的定義即可.【詳解】由題意可得,對于A,不是奇函數(shù);對于B,是奇函數(shù);對于C,,定義域不關(guān)于原點(diǎn)對稱,不是奇函數(shù);對于D,,定義域不關(guān)于原點(diǎn)對稱,不是奇函數(shù).故選:B【點(diǎn)睛】本題主要考查奇函數(shù)定義,考查學(xué)生對概念的理解,是一道容易題.16.(2021年全國高考甲卷數(shù)學(xué)(文)試題)青少年視力是社會(huì)普遍關(guān)注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),五分記錄法的數(shù)據(jù)L和小數(shù)記錄表的數(shù)據(jù)V的滿足.已知某同學(xué)視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)為(
)()A.1.5 B.1.2 C.0.8 D.0.6【答案】C【分析】根據(jù)關(guān)系,當(dāng)時(shí),求出,再用指數(shù)表示,即可求解.【詳解】由,當(dāng)時(shí),,則.故選:C.17.(2021年全國高考甲卷數(shù)學(xué)(文)試題)設(shè)是定義域?yàn)镽的奇函數(shù),且.若,則(
)A. B. C. D.【答案】C【分析】由題意利用函數(shù)的奇偶性和函數(shù)的遞推關(guān)系即可求得的值.【詳解】由題意可得:,而,故.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題主要考查了函數(shù)的奇偶性和函數(shù)的遞推關(guān)系式,靈活利用所給的條件進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.18.(2021年全國高考乙卷數(shù)學(xué)(文)試題)下列函數(shù)中最小值為4的是(
)A. B.C. D.【答案】C【分析】根據(jù)二次函數(shù)的性質(zhì)可判斷選項(xiàng)不符合題意,再根據(jù)基本不等式“一正二定三相等”,即可得出不符合題意,符合題意.【詳解】對于A,,當(dāng)且僅當(dāng)時(shí)取等號,所以其最小值為,A不符合題意;對于B,因?yàn)椋?,?dāng)且僅當(dāng)時(shí)取等號,等號取不到,所以其最小值不為,B不符合題意;對于C,因?yàn)楹瘮?shù)定義域?yàn)椋?,,?dāng)且僅當(dāng),即時(shí)取等號,所以其最小值為,C符合題意;對于D,,函數(shù)定義域?yàn)椋?,如?dāng),,D不符合題意.故選:C.【點(diǎn)睛】本題解題關(guān)鍵是理解基本不等式的使用條件,明確“一正二定三相等”的意義,再結(jié)合有關(guān)函數(shù)的性質(zhì)即可解出.19.(2021年全國新高考I卷數(shù)學(xué)試題)已知函數(shù)是偶函數(shù),則______.【答案】1【分析】利用偶函數(shù)的定義可求參數(shù)的值.【詳解】因?yàn)?,故,因?yàn)闉榕己瘮?shù),故,時(shí),整理得到,故,故答案為:120.(2023年高考全國甲卷數(shù)學(xué)(理)真題)若為偶函數(shù),則________.【答案】2【分析】利用偶函數(shù)的性質(zhì)得到,從而求得,再檢驗(yàn)即可得解.【詳解】因?yàn)闉榕己瘮?shù),定義域?yàn)?,所以,即,則,故,此時(shí),所以,又定義域?yàn)?,故為偶函?shù),所以.故答案為:2.21.(2022年高考全國乙卷數(shù)學(xué)(文)真題)若是奇函數(shù),則_____,______.【答案】;.【分析】根據(jù)奇函數(shù)的定義即可求出.【詳解】[方法一]:奇函數(shù)定義域的對稱性若,則的定義域?yàn)?,不關(guān)于原點(diǎn)對稱若奇函數(shù)的有意義,則且且,函數(shù)為奇函數(shù),定義域關(guān)于原點(diǎn)對稱,,解得,由得,,,故答案為:;.[方法二]:函數(shù)的奇偶性求參函數(shù)為奇函數(shù)[方法三]:因?yàn)楹瘮?shù)為奇函數(shù),所以其定義域關(guān)于原點(diǎn)對稱.由可得,,所以,解得:,即函數(shù)的定義域?yàn)椋儆煽傻?,.即,在定義域內(nèi)滿足,符合題意.故答案為:;.第二部分:導(dǎo)數(shù)22.(2023年新課標(biāo)全國Ⅱ卷數(shù)學(xué)真題)已知函數(shù)在區(qū)間上單調(diào)遞增,則a的最小值為(
).A. B.e C. D.【答案】C【分析】根據(jù)在上恒成立,再根據(jù)分參求最值即可求出.【詳解】依題可知,在上恒成立,顯然,所以,設(shè),所以,所以在上單調(diào)遞增,,故,即,即a的最小值為.故選:C.23.(2023年高考全國乙卷數(shù)學(xué)(文)真題)函數(shù)存在3個(gè)零點(diǎn),則的取值范圍是(
)A. B. C. D.【答案】B【分析】寫出,并求出極值點(diǎn),轉(zhuǎn)化為極大值大于0且極小值小于0即可.【詳解】,則,若要存在3個(gè)零點(diǎn),則要存在極大值和極小值,則,令,解得或,且當(dāng)時(shí),,當(dāng),,故的極大值為,極小值為,若要存在3個(gè)零點(diǎn),則,即,解得,故選:B.24.(2023年高考全國甲卷數(shù)學(xué)(文)真題)曲線在點(diǎn)處的切線方程為(
)A. B. C. D.【答案】C【分析】先由切點(diǎn)設(shè)切線方程,再求函數(shù)的導(dǎo)數(shù),把切點(diǎn)的橫坐標(biāo)代入導(dǎo)數(shù)得到切線的斜率,代入所設(shè)方程即可求解.【詳解】設(shè)曲線在點(diǎn)處的切線方程為,因?yàn)?,所以,所以所以所以曲線在點(diǎn)處的切線方程為.故選:C25.(2022年高考全國乙卷數(shù)學(xué)(文)真題)函數(shù)在區(qū)間的最小值、最大值分別為(
)A. B. C. D.【答案】D【分析】利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,從而判斷出在區(qū)間上的最小值和最大值.【詳解】,所以在區(qū)間和上,即單調(diào)遞增;在區(qū)間上,即單調(diào)遞減,又,,,所以在區(qū)間上的最小值為,最大值為.故選:D26.(2022年高考全國甲卷數(shù)學(xué)(理)真題)已知,則(
)A. B. C. D.【答案】A【分析】由結(jié)合三角函數(shù)的性質(zhì)可得;構(gòu)造函數(shù),利用導(dǎo)數(shù)可得,即可得解.【詳解】[方法一]:構(gòu)造函數(shù)因?yàn)楫?dāng)故,故,所以;設(shè),,所以在單調(diào)遞增,故,所以,所以,所以,故選A[方法二]:不等式放縮因?yàn)楫?dāng),取得:,故,其中,且當(dāng)時(shí),,及此時(shí),故,故所以,所以,故選A[方法三]:泰勒展開設(shè),則,,,計(jì)算得,故選A.[方法四]:構(gòu)造函數(shù)因?yàn)?,因?yàn)楫?dāng),所以,即,所以;設(shè),,所以在單調(diào)遞增,則,所以,所以,所以,故選:A.[方法五]:【最優(yōu)解】不等式放縮因?yàn)?,因?yàn)楫?dāng),所以,即,所以;因?yàn)楫?dāng),取得,故,所以.故選:A.【整體點(diǎn)評】方法4:利用函數(shù)的單調(diào)性比較大小,是常見思路,難點(diǎn)在于構(gòu)造合適的函數(shù),屬于通性通法;方法5:利用二倍角公式以及不等式放縮,即可得出大小關(guān)系,屬于最優(yōu)解.27.(2022年高考全國甲卷數(shù)學(xué)(理)真題)當(dāng)時(shí),函數(shù)取得最大值,則(
)A. B. C. D.1【答案】B【分析】根據(jù)題意可知,即可解得,再根據(jù)即可解出.【詳解】因?yàn)楹瘮?shù)定義域?yàn)?,所以依題可知,,,而,所以,即,所以,因此函數(shù)在上遞增,在上遞減,時(shí)取最大值,滿足題意,即有.故選:B.28.(2022年新高考全國I卷數(shù)學(xué)真題)A. B. C. D.【答案】C【分析】構(gòu)造函數(shù),導(dǎo)數(shù)判斷其單調(diào)性,由此確定的大小.【詳解】方法一:構(gòu)造法設(shè),因?yàn)?,?dāng)時(shí),,當(dāng)時(shí),所以函數(shù)在單調(diào)遞減,在上單調(diào)遞增,所以,所以,故,即,所以,所以,故,所以,故,設(shè),則,令,,當(dāng)時(shí),,函數(shù)單調(diào)遞減,當(dāng)時(shí),,函數(shù)單調(diào)遞增,又,所以當(dāng)時(shí),,所以當(dāng)時(shí),,函數(shù)單調(diào)遞增,所以,即,所以故選:C.方法二:比較法解:,,,①,令則,故在上單調(diào)遞減,可得,即,所以;②,令則,令,所以,所以在上單調(diào)遞增,可得,即,所以在上單調(diào)遞增,可得,即,所以故29.(2021年全國高考乙卷數(shù)學(xué)(理)試題)設(shè),,.則(
)A. B. C. D.【答案】B【分析】利用對數(shù)的運(yùn)算和對數(shù)函數(shù)的單調(diào)性不難對a,b的大小作出判定,對于a與c,b與c的大小關(guān)系,將0.01換成x,分別構(gòu)造函數(shù),,利用導(dǎo)數(shù)分析其在0的右側(cè)包括0.01的較小范圍內(nèi)的單調(diào)性,結(jié)合f(0)=0,g(0)=0即可得出a與c,b與c的大小關(guān)系.【詳解】[方法一]:,所以;下面比較與的大小關(guān)系.記,則,,由于所以當(dāng)0<x<2時(shí),,即,,所以在上單調(diào)遞增,所以,即,即;令,則,,由于,在x>0時(shí),,所以,即函數(shù)在[0,+∞)上單調(diào)遞減,所以,即,即b<c;綜上,,故選:B.[方法二]:令,即函數(shù)在(1,+∞)上單調(diào)遞減令,即函數(shù)在(1,3)上單調(diào)遞增綜上,,故選:B.【點(diǎn)睛】本題考查比較大小問題,難度較大,關(guān)鍵難點(diǎn)是將各個(gè)值中的共同的量用變量替換,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究相應(yīng)函數(shù)的單調(diào)性,進(jìn)而比較大小,這樣的問題,憑借近似估計(jì)計(jì)算往往是無法解決的.30.(2021年全國高考乙卷數(shù)學(xué)(理)試題)設(shè),若為函數(shù)的極大值點(diǎn),則(
)A. B. C. D.【答案】D【分析】先考慮函數(shù)的零點(diǎn)情況,注意零點(diǎn)左右附近函數(shù)值是否變號,結(jié)合極大值點(diǎn)的性質(zhì),對進(jìn)行分類討論,畫出圖象,即可得到所滿足的關(guān)系,由此確定正確選項(xiàng).【詳解】若,則為單調(diào)函數(shù),無極值點(diǎn),不符合題意,故.有和兩個(gè)不同零點(diǎn),且在左右附近是不變號,在左右附近是變號的.依題意,為函數(shù)的極大值點(diǎn),在左右附近都是小于零的.當(dāng)時(shí),由,,畫出的圖象如下圖所示:
由圖可知,,故.當(dāng)時(shí),由時(shí),,畫出的圖象如下圖所示:
由圖可知,,故.綜上所述,成立.故選:D【點(diǎn)睛】本小題主要考查三次函數(shù)的圖象與性質(zhì),利用數(shù)形結(jié)合的數(shù)學(xué)思想方法可以快速解答.31.(2021年全國新高考I卷數(shù)學(xué)試題)若過點(diǎn)可以作曲線的兩條切線,則(
)A. B.C. D.【答案】D【分析】解法一:根據(jù)導(dǎo)數(shù)幾何意義求得切線方程,再構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)圖象,結(jié)合圖形確定結(jié)果;解法二:畫出曲線的圖象,根據(jù)直觀即可判定點(diǎn)在曲線下方和軸上方時(shí)才可以作出兩條切線.【詳解】在曲線上任取一點(diǎn),對函數(shù)求導(dǎo)得,所以,曲線在點(diǎn)處的切線方程為,即,由題意可知,點(diǎn)在直線上,可得,令,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,所以,,由題意可知,直線與曲線的圖象有兩個(gè)交點(diǎn),則,當(dāng)時(shí),,當(dāng)時(shí),,作出函數(shù)的圖象如下圖所示:
由圖可知,當(dāng)時(shí),直線與曲線的圖象有兩個(gè)交點(diǎn).故選:D.解法二:畫出函數(shù)曲線的圖象如圖所示,根據(jù)直觀即可判定點(diǎn)在曲線下方和軸上方時(shí)才可以作出兩條切線.由此可知.
故選:D.【點(diǎn)睛】解法一是嚴(yán)格的證明求解方法,其中的極限處理在中學(xué)知識范圍內(nèi)需要用到指數(shù)函數(shù)的增長特性進(jìn)行估計(jì),解法二是根據(jù)基于對指數(shù)函數(shù)的圖象的清晰的理解與認(rèn)識的基礎(chǔ)上,直觀解決問題的有效方法.32.(2023年高考全國乙卷數(shù)學(xué)(理)真題)設(shè),若函數(shù)在上單調(diào)遞增,則a的取值范圍是______.【答案】【分析】原問題等價(jià)于恒成立,據(jù)此將所得的不等式進(jìn)行恒等變形,可得,由右側(cè)函數(shù)的單調(diào)性可得實(shí)數(shù)的二次不等式,求解二次不等式后可確定實(shí)數(shù)的取值范圍.【詳解】由函數(shù)的解析式可得在區(qū)間上恒成立,則,即在區(qū)間上恒成立,故,而,故,故即,故,結(jié)合題意可得實(shí)數(shù)的取值范圍是.故答案為:.33.(2022年新高考全國I卷數(shù)學(xué)真題)若曲線有兩條過坐標(biāo)原點(diǎn)的切線,則a的取值范圍是________________.【答案】【分析】設(shè)出切點(diǎn)橫坐標(biāo),利用導(dǎo)數(shù)的幾何意義求得切線方程,根據(jù)切線經(jīng)過原點(diǎn)得到關(guān)于的方程,根據(jù)此方程應(yīng)有兩個(gè)不同的實(shí)數(shù)根,求得的取值范圍.【詳解】∵,∴,設(shè)切點(diǎn)為,則,切線斜率,切線方程為:,∵切線過原點(diǎn),∴,整理得:,∵切線有兩條,∴,解得或,∴的取值范圍是,故答案為:34.(2022年高考全國乙卷數(shù)學(xué)(理)真題)已知和分別是函數(shù)(且)的極小值點(diǎn)和極大值點(diǎn).若,則a的取值范圍是____________.【答案】【分析】法一:依題可知,方程的兩個(gè)根為,即函數(shù)與函數(shù)的圖象有兩個(gè)不同的交點(diǎn),構(gòu)造函數(shù),利用指數(shù)函數(shù)的圖象和圖象變換得到的圖象,利用導(dǎo)數(shù)的幾何意義求得過原點(diǎn)的切線的斜率,根據(jù)幾何意義可得出答案.【詳解】[方法一]:【最優(yōu)解】轉(zhuǎn)化法,零點(diǎn)的問題轉(zhuǎn)為函數(shù)圖象的交點(diǎn)因?yàn)?,所以方程的兩個(gè)根為,即方程的兩個(gè)根為,即函數(shù)與函數(shù)的圖象有兩個(gè)不同的交點(diǎn),因?yàn)榉謩e是函數(shù)的極小值點(diǎn)和極大值點(diǎn),所以函數(shù)在和上遞減,在上遞增,所以當(dāng)時(shí),,即圖象在上方當(dāng)時(shí),,即圖象在下方,圖象顯然不符合題意,所以.令,則,設(shè)過原點(diǎn)且與函數(shù)的圖象相切的直線的切點(diǎn)為,則切線的斜率為,故切線方程為,則有,解得,則切線的斜率為,因?yàn)楹瘮?shù)與函數(shù)的圖象有兩個(gè)不同的交點(diǎn),所以,解得,又,所以,綜上所述,的取值范圍為.[方法二]:【通性通法】構(gòu)造新函數(shù),二次求導(dǎo)=0的兩個(gè)根為因?yàn)榉謩e是函數(shù)的極小值點(diǎn)和極大值點(diǎn),所以函數(shù)在和上遞減,在上遞增,設(shè)函數(shù),則,若,則在上單調(diào)遞增,此時(shí)若,則在上單調(diào)遞減,在上單調(diào)遞增,此時(shí)若有和分別是函數(shù)且的極小值點(diǎn)和極大值點(diǎn),則,不符合題意;若,則在上單調(diào)遞減,此時(shí)若,則在上單調(diào)遞增,在上單調(diào)遞減,令,則,此時(shí)若有和分別是函數(shù)且的極小值點(diǎn)和極大值點(diǎn),且,則需滿足,,即故,所以.【整體點(diǎn)評】法一:利用函數(shù)的零點(diǎn)與兩函數(shù)圖象交點(diǎn)的關(guān)系,由數(shù)形結(jié)合解出,突出“小題小做”,是該題的最優(yōu)解;法二:通過構(gòu)造新函數(shù),多次求導(dǎo)判斷單調(diào)性,根據(jù)極值點(diǎn)的大小關(guān)系得出不等式,解出即可,該法屬于通性通法.35.(2021年全國新高考II卷數(shù)學(xué)試題)已知函數(shù),函數(shù)的圖象在點(diǎn)和點(diǎn)的兩條切線互相垂直,且分別交y軸于M,N兩點(diǎn),則取值范圍是_______.【答案】【分析】結(jié)合導(dǎo)數(shù)的幾何意義可得,結(jié)合直線方程及兩點(diǎn)間距離公式可得,,化簡即可得解.【詳解】由題意,,則,所以點(diǎn)和點(diǎn),,所以,所以,所以,同理,所以.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解決本題的關(guān)鍵是利用導(dǎo)數(shù)的幾何意義轉(zhuǎn)化條件,消去一個(gè)變量后,運(yùn)算即可得解.36.(2023年新課標(biāo)全國Ⅰ卷數(shù)學(xué)真題)已知函數(shù)的定義域?yàn)?,,則(
).A. B.C.是偶函數(shù) D.為的極小值點(diǎn)【答案】ABC【分析】方法一:利用賦值法,結(jié)合函數(shù)奇遇性的判斷方法可判斷選項(xiàng)ABC,舉反例即可排除選項(xiàng)D.方法二:選項(xiàng)ABC的判斷與方法一同,對于D,可構(gòu)造特殊函數(shù)進(jìn)行判斷即可.【詳解】方法一:因?yàn)?,對于A,令,,故正確.對于B,令,,則,故B正確.對于C,令,,則,令,又函數(shù)的定義域?yàn)椋詾榕己瘮?shù),故正確,對于D,不妨令,顯然符合題設(shè)條件,此時(shí)無極值,故錯(cuò)誤.方法二:因?yàn)?,對于A,令,,故正確.對于B,令,,則,故B正確.對于C,令,,則,令,又函數(shù)的定義域?yàn)?,所以為偶函?shù),故正確,對于D,當(dāng)時(shí),對兩邊同時(shí)除以,得到,故可以設(shè),則,當(dāng)肘,,則,令,得;令,得;故在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)闉榕己瘮?shù),所以在上單調(diào)遞增,在上單調(diào)遞減,顯然,此時(shí)是的極大值,故D錯(cuò)誤.故選:.37.(2021年全國新高考II卷數(shù)學(xué)試題)寫出一個(gè)同時(shí)具有下列性質(zhì)①②③的函數(shù)_______.①;②當(dāng)時(shí),;③是奇函數(shù).【答案】(答案不唯一,均滿足)【分析】根據(jù)冪函數(shù)的性質(zhì)可得所求的.【詳解】取,則,滿足①,,時(shí)有,滿足②,的定義域?yàn)?,又,故是奇函?shù),滿足③.故答案為:(答案不唯一,均滿足)38.(2021年全國高考甲卷數(shù)學(xué)(理)試題)曲線在點(diǎn)處的切線方程為__________.【答案】【分析】先驗(yàn)證點(diǎn)在曲線上,再求導(dǎo),代入切線方程公式即可.【詳解】由題,當(dāng)時(shí),,故點(diǎn)在曲線上.求導(dǎo)得:,所以.故切線方程為.故答案為:.39.(2021年全國新高考I卷數(shù)學(xué)試題)函數(shù)的最小值為______.【答案】1【分析】由解析式知定義域?yàn)?,討論、、,并結(jié)合導(dǎo)數(shù)研究的單調(diào)性,即可求最小值.【詳解】由題設(shè)知:定義域?yàn)?,∴?dāng)時(shí),,此時(shí)單調(diào)遞減;當(dāng)時(shí),,有,此時(shí)單調(diào)遞減;當(dāng)時(shí),,有,此時(shí)單調(diào)遞增;又在各分段的界點(diǎn)處連續(xù),∴綜上有:時(shí),單調(diào)遞減,時(shí),單調(diào)遞增;∴故答案為:1.40.(2022年新高考全國II卷數(shù)學(xué)真題)曲線過坐標(biāo)原點(diǎn)的兩條切線的方程為____________,____________.【答案】【分析】分和兩種情況,當(dāng)時(shí)設(shè)切點(diǎn)為,求出函數(shù)的導(dǎo)函數(shù),即可求出切線的斜率,從而表示出切線方程,再根據(jù)切線過坐標(biāo)原點(diǎn)求出,即可求出切線方程,當(dāng)時(shí)同理可得;【詳解】[方法一]:化為分段函數(shù),分段求分和兩種情況,當(dāng)時(shí)設(shè)切點(diǎn)為,求出函數(shù)導(dǎo)函數(shù),即可求出切線的斜率,從而表示出切線方程,再根據(jù)切線過坐標(biāo)原點(diǎn)求出,即可求出切線方程,當(dāng)時(shí)同理可得;解:因?yàn)椋?dāng)時(shí),設(shè)切點(diǎn)為,由,所以,所以切線方程為,又切線過坐標(biāo)原點(diǎn),所以,解得,所以切線方程為,即;當(dāng)時(shí),設(shè)切點(diǎn)為,由,所以,所以切線方程為,又切線過坐標(biāo)原點(diǎn),所以,解得,所以切線方程為,即;故答案為:;[方法二]:根據(jù)函數(shù)的對稱性,數(shù)形結(jié)合當(dāng)時(shí),設(shè)切點(diǎn)為,由,所以,所以切線方程為,又切線過坐標(biāo)原點(diǎn),所以,解得,所以切線方程為,即;因?yàn)槭桥己瘮?shù),圖象為:所以當(dāng)時(shí)的切線,只需找到關(guān)于y軸的對稱直線即可.[方法三]:因?yàn)?,?dāng)時(shí),設(shè)切點(diǎn)為,由,所以,所以切線方程為,又切線過坐標(biāo)原點(diǎn),所以,解得,所以切線方程為,即;當(dāng)時(shí),設(shè)切點(diǎn)為,由,所以,所以切線方程為,又切線過坐標(biāo)原點(diǎn),所以,解得,所以切線方程為,即;故答案為:;.41.(2022年新高考全國I卷數(shù)學(xué)真題)已知函數(shù),則(
)A.有兩個(gè)極值點(diǎn) B.有三個(gè)零點(diǎn)C.點(diǎn)是曲線的對稱中心 D.直線是曲線的切線【答案】AC【分析】利用極值點(diǎn)的定義可判斷A,結(jié)合的單調(diào)性、極值可判斷B,利用平移可判斷C;利用導(dǎo)數(shù)的幾何意義判斷D.【詳解】由題,,令得或,令得,所以在,上單調(diào)遞增,上單調(diào)遞減,所以是極值點(diǎn),故A正確;因,,,所以,函數(shù)在上有一個(gè)零點(diǎn),當(dāng)時(shí),,即函數(shù)在上無零點(diǎn),綜上所述,函數(shù)有一個(gè)零點(diǎn),故B錯(cuò)誤;令,該函數(shù)的定義域?yàn)?,,則是奇函數(shù),是的對稱中心,將的圖象向上移動(dòng)一個(gè)單位得到的圖象,所以點(diǎn)是曲線的對稱中心,故C正確;令,可得,又,當(dāng)切點(diǎn)為時(shí),切線方程為,當(dāng)切點(diǎn)為時(shí),切線方程為,故D錯(cuò)誤.故選:AC.42.(2023年新課標(biāo)全國Ⅱ卷數(shù)學(xué)真題)若函數(shù)既有極大值也有極小值,則(
).A. B. C. D.【答案】BCD【分析】求出函數(shù)的導(dǎo)數(shù),由已知可得在上有兩個(gè)變號零點(diǎn),轉(zhuǎn)化為一元二次方程有兩個(gè)不等的正根判斷作答.【詳解】函數(shù)的定義域?yàn)?,求?dǎo)得,因?yàn)楹瘮?shù)既有極大值也有極小值,則函數(shù)在上有兩個(gè)變號零點(diǎn),而,因此方程有兩個(gè)不等的正根,于是,即有,,,顯然,即,A錯(cuò)誤,BCD正確.故選:BCD43.(2022年新高考全國I卷數(shù)學(xué)真題)已知函數(shù)及其導(dǎo)函數(shù)的定義域均為,記,若,均為偶函數(shù),則(
)A. B. C. D.【答案】BC【分析】方法一:轉(zhuǎn)化題設(shè)條件為函數(shù)的對稱性,結(jié)合原函數(shù)與導(dǎo)函數(shù)圖象的關(guān)系,根據(jù)函數(shù)的性質(zhì)逐項(xiàng)判斷即可得解.【詳解】[方法一]:對稱性和周期性的關(guān)系研究對于,因?yàn)闉榕己瘮?shù),所以即①,所以,所以關(guān)于對稱,則,故C正確;對于,因?yàn)闉榕己瘮?shù),,,所以關(guān)于對稱,由①求導(dǎo),和,得,所以,所以關(guān)于對稱,因?yàn)槠涠x域?yàn)镽,所以,結(jié)合關(guān)于對稱,從而周期,所以,,故B正確,D錯(cuò)誤;若函數(shù)滿足題設(shè)條件,則函數(shù)(C為常數(shù))也滿足題設(shè)條件,所以無法確定的函數(shù)值,故A錯(cuò)誤.故選:BC.[方法二]:【最優(yōu)解】特殊值,構(gòu)造函數(shù)法.由方法一知周期為2,關(guān)于對稱,故可設(shè),則,顯然A,D錯(cuò)誤,選BC.故選:BC.[方法三]:因?yàn)?,均為偶函?shù),所以即,,所以,,則,故C正確;函數(shù),的圖象分別關(guān)于直線對稱,又,且函數(shù)可導(dǎo),所以,所以,所以,所以,,故B正確,D錯(cuò)誤;若函數(shù)滿足題設(shè)條件,則函數(shù)(C為常數(shù))也滿足題設(shè)條件,所以無法確定的函數(shù)值,故A錯(cuò)誤.故選:BC.【點(diǎn)評】方法一:根據(jù)題意賦值變換得到函數(shù)的性質(zhì),即可判斷各選項(xiàng)的真假,轉(zhuǎn)化難度較高,是該題的通性通法;方法二:根據(jù)題意得出的性質(zhì)構(gòu)造特殊函數(shù),再驗(yàn)證選項(xiàng),簡單明了,是該題的最優(yōu)解.44.(2022年高考全國甲卷數(shù)學(xué)(文)真題)已知函數(shù),曲線在點(diǎn)處的切線也是曲線的切線.(1)若,求a;(2)求a的取值范圍.【答案】(1)3(2)【分析】(1)先由上的切點(diǎn)求出切線方程,設(shè)出上的切點(diǎn)坐標(biāo),由斜率求出切點(diǎn)坐標(biāo),再由函數(shù)值求出即可;(2)設(shè)出上的切點(diǎn)坐標(biāo),分別由和及切點(diǎn)表示出切線方程,由切線重合表示出,構(gòu)造函數(shù),求導(dǎo)求出函數(shù)值域,即可求得的取值范圍.【詳解】(1)由題意知,,,,則在點(diǎn)處的切線方程為,即,設(shè)該切線與切于點(diǎn),,則,解得,則,解得;(2),則在點(diǎn)處的切線方程為,整理得,設(shè)該切線與切于點(diǎn),,則,則切線方程為,整理得,則,整理得,令,則,令,解得或,令,解得或,則變化時(shí),的變化情況如下表:01000則的值域?yàn)椋实娜≈捣秶鸀?45.(2022年高考全國乙卷數(shù)學(xué)(文)真題)已知函數(shù).(1)當(dāng)時(shí),求的最大值;(2)若恰有一個(gè)零點(diǎn),求a的取值范圍.【答案】(1)(2)【分析】(1)由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可得解;(2)求導(dǎo)得,按照、及結(jié)合導(dǎo)數(shù)討論函數(shù)的單調(diào)性,求得函數(shù)的極值,即可得解.【詳解】(1)當(dāng)時(shí),,則,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;所以;(2),則,當(dāng)時(shí),,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;所以,此時(shí)函數(shù)無零點(diǎn),不合題意;當(dāng)時(shí),,在上,,單調(diào)遞增;在上,,單調(diào)遞減;又,由(1)得,即,所以,當(dāng)時(shí),,則存在,使得,所以僅在有唯一零點(diǎn),符合題意;當(dāng)時(shí),,所以單調(diào)遞增,又,所以有唯一零點(diǎn),符合題意;當(dāng)時(shí),,在上,,單調(diào)遞增;在上,,單調(diào)遞減;此時(shí),由(1)得當(dāng)時(shí),,,所以,此時(shí)存在,使得,所以在有一個(gè)零點(diǎn),在無零點(diǎn),所以有唯一零點(diǎn),符合題意;綜上,a的取值范圍為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解決本題的關(guān)鍵是利用導(dǎo)數(shù)研究函數(shù)的極值與單調(diào)性,把函數(shù)零點(diǎn)問題轉(zhuǎn)化為函數(shù)的單調(diào)性與極值的問題.46.(2023年新課標(biāo)全國Ⅱ卷數(shù)學(xué)真題)(1)證明:當(dāng)時(shí),;(2)已知函數(shù),若是的極大值點(diǎn),求a的取值范圍.【答案】(1)證明見詳解(2)【分析】(1)分別構(gòu)建,,求導(dǎo),利用導(dǎo)數(shù)判斷原函數(shù)的單調(diào)性,進(jìn)而可得結(jié)果;(2)根據(jù)題意結(jié)合偶函數(shù)的性質(zhì)可知只需要研究在上的單調(diào)性,求導(dǎo),分類討論和,結(jié)合(1)中的結(jié)論放縮,根據(jù)極大值的定義分析求解.【詳解】(1)構(gòu)建,則對恒成立,則在上單調(diào)遞增,可得,所以;構(gòu)建,則,構(gòu)建,則對恒成立,則在上單調(diào)遞增,可得,即對恒成立,則在上單調(diào)遞增,可得,所以;綜上所述:.(2)令,解得,即函數(shù)的定義域?yàn)?,若,則,因?yàn)樵诙x域內(nèi)單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,則在上單調(diào)遞減,在上單調(diào)遞增,故是的極小值點(diǎn),不合題意,所以.當(dāng)時(shí),令因?yàn)?,且,所以函?shù)在定義域內(nèi)為偶函數(shù),由題意可得:,(i)當(dāng)時(shí),取,,則,由(1)可得,且,所以,即當(dāng)時(shí),,則在上單調(diào)遞增,結(jié)合偶函數(shù)的對稱性可知:在上單調(diào)遞減,所以是的極小值點(diǎn),不合題意;(ⅱ)當(dāng)時(shí),取,則,由(1)可得,構(gòu)建,則,且,則對恒成立,可知在上單調(diào)遞增,且,所以在內(nèi)存在唯一的零點(diǎn),當(dāng)時(shí),則,且,則,即當(dāng)時(shí),,則在上單調(diào)遞減,結(jié)合偶函數(shù)的對稱性可知:在上單調(diào)遞增,所以是的極大值點(diǎn),符合題意;綜上所述:,即,解得或,故a的取值范圍為.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:1.當(dāng)時(shí),利用,換元放縮;2.當(dāng)時(shí),利用,換元放縮.47.(2023年高考全國甲卷數(shù)學(xué)(理)真題)已知(1)若,討論的單調(diào)性;(2)若恒成立,求a的取值范圍.【答案】(1)答案見解析.(2)【分析】(1)求導(dǎo),然后令,討論導(dǎo)數(shù)的符號即可;(2)構(gòu)造,計(jì)算的最大值,然后與0比較大小,得出的分界點(diǎn),再對討論即可.【詳解】(1)令,則則當(dāng)當(dāng),即.當(dāng),即.所以在上單調(diào)遞增,在上單調(diào)遞減(2)設(shè)設(shè)所以.若,即在上單調(diào)遞減,所以.所以當(dāng),符合題意.若當(dāng),所以..所以,使得,即,使得.當(dāng),即當(dāng)單調(diào)遞增.所以當(dāng),不合題意.綜上,的取值范圍為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題采取了換元,注意復(fù)合函數(shù)的單調(diào)性在定義域內(nèi)是減函數(shù),若,當(dāng),對應(yīng)當(dāng).48.(2022年高考全國甲卷數(shù)學(xué)(理)真題)已知函數(shù).(1)若,求a的取值范圍;(2)證明:若有兩個(gè)零點(diǎn),則.【答案】(1)(2)證明見的解析【分析】(1)由導(dǎo)數(shù)確定函數(shù)單調(diào)性及最值,即可得解;(2)利用分析法,轉(zhuǎn)化要證明條件為,再利用導(dǎo)數(shù)即可得證.【詳解】(1)[方法一]:常規(guī)求導(dǎo)的定義域?yàn)?,則令,得當(dāng)單調(diào)遞減當(dāng)單調(diào)遞增,若,則,即所以的取值范圍為[方法二]:同構(gòu)處理由得:令,則即令,則故在區(qū)間上是增函數(shù)故,即所以的取值范圍為(2)[方法一]:構(gòu)造函數(shù)由題知,一個(gè)零點(diǎn)小于1,一個(gè)零點(diǎn)大于1,不妨設(shè)要證,即證因?yàn)?即證又因?yàn)?故只需證即證即證下面證明時(shí),設(shè),則設(shè)所以,而所以,所以所以在單調(diào)遞增即,所以令所以在單調(diào)遞減即,所以;綜上,,所以.[方法二]:對數(shù)平均不等式由題意得:令,則,所以在上單調(diào)遞增,故只有1個(gè)解又因?yàn)橛袃蓚€(gè)零點(diǎn),故兩邊取對數(shù)得:,即又因?yàn)椋剩聪伦C因?yàn)椴环猎O(shè),則只需證構(gòu)造,則故在上單調(diào)遞減故,即得證【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題是極值點(diǎn)偏移問題,關(guān)鍵點(diǎn)是通過分析法,構(gòu)造函數(shù)證明不等式這個(gè)函數(shù)經(jīng)常出現(xiàn),需要掌握49.(2023年新課標(biāo)全國Ⅰ卷數(shù)學(xué)真題)已知函數(shù).(1)討論的單調(diào)性;(2)證明:當(dāng)時(shí),.【答案】(1)答案見解析(2)證明見解析【分析】(1)先求導(dǎo),再分類討論與兩種情況,結(jié)合導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可得解;(2)方法一:結(jié)合(1)中結(jié)論,將問題轉(zhuǎn)化為的恒成立問題,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得即可.方法二:構(gòu)造函數(shù),證得,從而得到,進(jìn)而將問題轉(zhuǎn)化為的恒成立問題,由此得證.【詳解】(1)因?yàn)?,定義域?yàn)椋?,?dāng)時(shí),由于,則,故恒成立,所以在上單調(diào)遞減;當(dāng)時(shí),令,解得,當(dāng)時(shí),,則在上單調(diào)遞減;當(dāng)時(shí),,則在上單調(diào)遞增;綜上:當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)方法一:由(1)得,,要證,即證,即證恒成立,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時(shí),恒成立,證畢.方法二:令,則,由于在上單調(diào)遞增,所以在上單調(diào)遞增,又,所以當(dāng)時(shí),;當(dāng)時(shí),;所以在上單調(diào)遞減,在上單調(diào)遞增,故,則,當(dāng)且僅當(dāng)時(shí),等號成立,因?yàn)?,?dāng)且僅當(dāng),即時(shí),等號成立,所以要證,即證,即證,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時(shí),恒成立,證畢.50.(2022年高考全國乙卷數(shù)學(xué)(理)真題)已知函數(shù)(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在區(qū)間各恰有一個(gè)零點(diǎn),求a的取值范圍.【答案】(1)(2)【分析】(1)先算出切點(diǎn),再求導(dǎo)算出斜率即可(2)求導(dǎo),對分類討論,對分兩部分研究【詳解】(1)的定義域?yàn)楫?dāng)時(shí),,所以切點(diǎn)為,所以切線斜率為2所以曲線在點(diǎn)處的切線方程為(2)設(shè)若,當(dāng),即所以在上單調(diào)遞增,故在上沒有零點(diǎn),不合題意若,當(dāng),則所以在上單調(diào)遞增所以,即所以在上單調(diào)遞增,故在上沒有零點(diǎn),不合題意若(1)當(dāng),則,所以在上單調(diào)遞增所以存在,使得,即當(dāng)單調(diào)遞減當(dāng)單調(diào)遞增所以當(dāng),令則所以在上單調(diào)遞增,在上單調(diào)遞減,所以,又,,所以在上有唯一零點(diǎn)又沒有零點(diǎn),即在上有唯一零點(diǎn)(2)當(dāng)設(shè)所以在單調(diào)遞增所以存在,使得當(dāng)單調(diào)遞減當(dāng)單調(diào)遞增,又所以存在,使得,即當(dāng)單調(diào)遞增,當(dāng)單調(diào)遞減,當(dāng),,又,而,所以當(dāng)所以在上有唯一零點(diǎn),上無零點(diǎn)即在上有唯一零點(diǎn)所以,符合題意所以若在區(qū)間各恰有一個(gè)零點(diǎn),求的取值范圍為【點(diǎn)睛】方法點(diǎn)睛:本題的關(guān)鍵是對的范圍進(jìn)行合理分類,否定和肯定并用,否定只需要說明一邊不滿足即可,肯定要兩方面都說明.51.(2022年新高考全國I卷數(shù)學(xué)真題)已知函數(shù)和有相同的最小值.(1)求a;(2)證明:存在直線,其與兩條曲線和共有三個(gè)不同的交點(diǎn),并且從左到右的三個(gè)交點(diǎn)的橫坐標(biāo)成等差數(shù)列.【答案】(1)(2)見解析【分析】(1)根據(jù)導(dǎo)數(shù)可得函數(shù)的單調(diào)性,從而可得相應(yīng)的最小值,根據(jù)最小值相等可求a.注意分類討論.(2)根據(jù)(1)可得當(dāng)時(shí),的解的個(gè)數(shù)、的解的個(gè)數(shù)均為2,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得該函數(shù)只有一個(gè)零點(diǎn)且可得的大小關(guān)系,根據(jù)存在直線與曲線、有三個(gè)不同的交點(diǎn)可得的取值,再根據(jù)兩類方程的根的關(guān)系可證明三根成等差數(shù)列.【詳解】(1)的定義域?yàn)?,而,若,則,此時(shí)無最小值,故.的定義域?yàn)椋?當(dāng)時(shí),,故在上為減函數(shù),當(dāng)時(shí),,故在上為增函數(shù),故.當(dāng)時(shí),,故在上為減函數(shù),當(dāng)時(shí),,故在上為增函數(shù),故.因?yàn)楹陀邢嗤淖钚≈?,故,整理得到,其中,設(shè),則,故為上的減函數(shù),而,故的唯一解為,故的解為.綜上,.(2)[方法一]:由(1)可得和的最小值為.當(dāng)時(shí),考慮的解的個(gè)數(shù)、的解的個(gè)數(shù).設(shè),,當(dāng)時(shí),,當(dāng)時(shí),,故在上為減函數(shù),在上為增函數(shù),所以,而,,設(shè),其中,則,故在上為增函數(shù),故,故,故有兩個(gè)不同的零點(diǎn),即的解的個(gè)數(shù)為2.設(shè),,當(dāng)時(shí),,當(dāng)時(shí),,故在上為減函數(shù),在上為增函數(shù),所以,而,,有兩個(gè)不同的零點(diǎn)即的解的個(gè)數(shù)為2.當(dāng),由(1)討論可得、僅有一個(gè)解,當(dāng)時(shí),由(1)討論可得、均無根,故若存在直線與曲線、有三個(gè)不同的交點(diǎn),則.設(shè),其中,故,設(shè),,則,故在上為增函數(shù),故即,所以,所以在上為增函數(shù),而,,故上有且只有一個(gè)零點(diǎn),且:當(dāng)時(shí),即即,當(dāng)時(shí),即即,因此若存在直線與曲線、有三個(gè)不同的交點(diǎn),故,此時(shí)有兩個(gè)不同的根,此時(shí)有兩個(gè)不同的根,故,,,所以即即,故為方程的解,同理也為方程的解又可化為即即,故為方程的解,同理也為方程的解,所以,而,故即.[方法二]:由知,,,且在上單調(diào)遞減,在上單調(diào)遞增;在上單調(diào)遞減,在上單調(diào)遞增,且①時(shí),此時(shí),顯然與兩條曲線和共有0個(gè)交點(diǎn),不符合題意;②時(shí),此時(shí),故與兩條曲線和共有2個(gè)交點(diǎn),交點(diǎn)的橫坐標(biāo)分別為0和1;③時(shí),首先,證明與曲線有2個(gè)交點(diǎn),即證明有2個(gè)零點(diǎn),,所以在上單調(diào)遞減,在上單調(diào)遞增,又因?yàn)?,,,令,則,所以在上存在且只存在1個(gè)零點(diǎn),設(shè)為,在上存在且只存在1個(gè)零點(diǎn),設(shè)為其次,證明與曲線和有2個(gè)交點(diǎn),即證明有2個(gè)零點(diǎn),,所以上單調(diào)遞減,在上單調(diào)遞增,又因?yàn)?,,,令,則,所以在上存在且只存在1個(gè)零點(diǎn),設(shè)為,在上存在且只存在1個(gè)零點(diǎn),設(shè)為再次,證明存在b,使得因?yàn)?,所以,若,則,即,所以只需證明在上有解即可,即在上有零點(diǎn),因?yàn)?,,所以在上存在零點(diǎn),取一零點(diǎn)為,令即可,此時(shí)取則此時(shí)存在直線,其與兩條曲線和共有三個(gè)不同的交點(diǎn),最后證明,即從左到右的三個(gè)交點(diǎn)的橫坐標(biāo)成等差數(shù)列,因?yàn)樗?,又因?yàn)樵谏蠁握{(diào)遞減,,即,所以,同理,因?yàn)椋忠驗(yàn)樵谏蠁握{(diào)遞增,即,,所以,又因?yàn)?,所以,即直線與兩條曲線和從左到右的三個(gè)交點(diǎn)的橫坐標(biāo)成等差數(shù)列.【點(diǎn)睛】思路點(diǎn)睛:函數(shù)的最值問題,往往需要利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,此時(shí)注意對參數(shù)的分類討論,而不同方程的根的性質(zhì),注意利用方程的特征找到兩類根之間的關(guān)系.52.(2021年全國新高考II卷數(shù)學(xué)試題)已知函數(shù).(1)討論的單調(diào)性;(2)從下面兩個(gè)條件中選一個(gè),證明:只有一個(gè)零點(diǎn)①;②.【答案】(1)答案見解析;(2)證明見解析.【分析】(1)首先求得導(dǎo)函數(shù)的解析式,然后分類討論確定函數(shù)的單調(diào)性即可;(2)由題意結(jié)合(1)中函數(shù)的單調(diào)性和函數(shù)零點(diǎn)存在定理即可證得題中的結(jié)論.【詳解】(1)由函數(shù)的解析式可得:,當(dāng)時(shí),若,則單調(diào)遞減,若,則單調(diào)遞增;當(dāng)時(shí),若,則單調(diào)遞增,若,則單調(diào)遞減,若,則單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),若,則單調(diào)遞增,若,則單調(diào)遞減,若,則單調(diào)遞增;(2)若選擇條件①:由于,故,則,而,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個(gè)零點(diǎn).,由于,,故,結(jié)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上沒有零點(diǎn).綜上可得,題中的結(jié)論成立.若選擇條件②:由于,故,則,當(dāng)時(shí),,,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個(gè)零點(diǎn).當(dāng)時(shí),構(gòu)造函數(shù),則,當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,注意到,故恒成立,從而有:,此時(shí):,當(dāng)時(shí),,取,則,即:,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個(gè)零點(diǎn).,由于,,故,結(jié)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上沒有零點(diǎn).綜上可得,題中的結(jié)論成立.【點(diǎn)睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點(diǎn),所以在歷屆高考中,對導(dǎo)數(shù)的應(yīng)用的考查都非常突出,對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用.53.(2021年全國高考乙卷數(shù)學(xué)(理)試題)設(shè)函數(shù),已知是函數(shù)的極值點(diǎn).(1)求a;(2)設(shè)函數(shù).證明:.【答案】(1);(2)證明見詳解【分析】(1)由題意求出,由極值點(diǎn)處導(dǎo)數(shù)為0即可求解出參數(shù);(2)由(1)得,且,分類討論和,可等價(jià)轉(zhuǎn)化為要證,即證在和上恒成立,結(jié)合導(dǎo)數(shù)和換元法即可求解【詳解】(1)由,,又是函數(shù)的極值點(diǎn),所以,解得;(2)[方法一]:轉(zhuǎn)化為有分母的函數(shù)由(Ⅰ)知,,其定義域?yàn)椋C,即證,即證.(?。┊?dāng)時(shí),,,即證.令,因?yàn)?,所以在區(qū)間內(nèi)為增函數(shù),所以.(ⅱ)當(dāng)時(shí),,,即證,由(?。┓治鲋趨^(qū)間內(nèi)為減函數(shù),所以.綜合(?。áⅲ┯校甗方法二]【最優(yōu)解】:轉(zhuǎn)化為無分母函數(shù)由(1)得,,且,當(dāng)時(shí),要證,,,即證,化簡得;同理,當(dāng)時(shí),要證,,,即證,化簡得;令,再令,則,,令,,當(dāng)時(shí),,單減,故;當(dāng)時(shí),,單增,故;綜上所述,在恒成立.[方法三]:利用導(dǎo)數(shù)不等式中的常見結(jié)論證明令,因?yàn)椋栽趨^(qū)間內(nèi)是增函數(shù),在區(qū)間內(nèi)是減函數(shù),所以,即(當(dāng)且僅當(dāng)時(shí)取等號).故當(dāng)且時(shí),且,,即,所以.(?。┊?dāng)時(shí),,所以,即,所以.(ⅱ)當(dāng)時(shí),,同理可證得.綜合(?。áⅲ┑茫?dāng)且時(shí),,即.【整體點(diǎn)評】(2)方法一利用不等式的性質(zhì)分類轉(zhuǎn)化分式不等式:當(dāng)時(shí),轉(zhuǎn)化為證明,當(dāng)時(shí),轉(zhuǎn)化為證明,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,進(jìn)而證得;方法二利用不等式的性質(zhì)分類討論分別轉(zhuǎn)化為整式不等式:當(dāng)時(shí),成立和當(dāng)時(shí),成立,然后換元構(gòu)造,利用導(dǎo)數(shù)研究單調(diào)性進(jìn)而證得,通性通法,運(yùn)算簡潔,為最優(yōu)解;方法三先構(gòu)造函數(shù),利用導(dǎo)數(shù)分析單調(diào)性,證得常見常用結(jié)論(當(dāng)且僅當(dāng)時(shí)取等號).然后換元得到,分類討論,利用不等式的基本性質(zhì)證得要證得不等式,有一定的巧合性.54.(2021年全國高考甲卷數(shù)學(xué)(理)試題)已知且,函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間;(2)若曲線與直線有且僅有兩個(gè)交點(diǎn),求a的取值范圍.【答案】(1)上單調(diào)遞增;上單調(diào)遞減;(2).【分析】(1)求得函數(shù)的導(dǎo)函數(shù),利用導(dǎo)函數(shù)的正負(fù)與函數(shù)的單調(diào)性的關(guān)系即可得到函數(shù)的單調(diào)性;(2)方法一:利用指數(shù)對數(shù)的運(yùn)算法則,可以將曲線與直線有且僅有兩個(gè)交點(diǎn)等價(jià)轉(zhuǎn)化為方程有兩個(gè)不同的實(shí)數(shù)根,即曲線與直線有兩個(gè)交點(diǎn),利用導(dǎo)函數(shù)研究的單調(diào)性,并結(jié)合的正負(fù),零點(diǎn)和極限值分析的圖象,進(jìn)而得到,發(fā)現(xiàn)這正好是,然后根據(jù)的圖象和單調(diào)性得到的取值范圍.【詳解】(1)當(dāng)時(shí),,令得,當(dāng)時(shí),,當(dāng)時(shí),,∴函數(shù)在上單調(diào)遞增;上單調(diào)遞減;(2)[方法一]【最優(yōu)解】:分離參數(shù),設(shè)函數(shù),則,令,得,在內(nèi),單調(diào)遞增;在上,單調(diào)遞減;,又,當(dāng)趨近于時(shí),趨近于0,所以曲線與直線有且僅有兩個(gè)交點(diǎn),即曲線與直線有兩個(gè)交點(diǎn)的充分必要條件是,這即是,所以的取值范圍是.[方法二]:構(gòu)造差函數(shù)由與直線有且僅有兩個(gè)交點(diǎn)知,即在區(qū)間內(nèi)有兩個(gè)解,取對數(shù)得方程在區(qū)間內(nèi)有兩個(gè)解.構(gòu)造函數(shù),求導(dǎo)數(shù)得.當(dāng)時(shí),在區(qū)間內(nèi)單調(diào)遞增,所以,在內(nèi)最多只有一個(gè)零點(diǎn),不符合題意;當(dāng)時(shí),,令得,當(dāng)時(shí),;當(dāng)時(shí),;所以,函數(shù)的遞增區(qū)間為,遞減區(qū)間為.由于,當(dāng)時(shí),有,即,由函數(shù)在內(nèi)有兩個(gè)零點(diǎn)知,所以,即.構(gòu)造函數(shù),則,所以的遞減區(qū)間為,遞增區(qū)間為,所以,當(dāng)且僅當(dāng)時(shí)取等號,故的解為且.所以,實(shí)數(shù)a的取值范圍為.[方法三]分離法:一曲一直曲線與有且僅有兩個(gè)交點(diǎn)等價(jià)為在區(qū)間內(nèi)有兩個(gè)不相同的解.因?yàn)?,所以兩邊取對?shù)得,即,問題等價(jià)為與有且僅有兩個(gè)交點(diǎn).①當(dāng)時(shí),與只有一個(gè)交點(diǎn),不符合題意.②當(dāng)時(shí),取上一點(diǎn)在點(diǎn)的切線方程為,即.當(dāng)與為同一直線時(shí)有得直線的斜率滿足:時(shí),與有且僅有兩個(gè)交點(diǎn).記,令,有.在區(qū)間內(nèi)單調(diào)遞增;在區(qū)間內(nèi)單調(diào)遞減;時(shí),最大值為,所當(dāng)且時(shí)有.綜上所述,實(shí)數(shù)a的取值范圍為.[方法四]:直接法.因?yàn)椋傻茫?dāng)時(shí),在區(qū)間內(nèi)單調(diào)遞減,不滿足題意;當(dāng)時(shí),,由得在區(qū)間內(nèi)單調(diào)遞增,由得在區(qū)間內(nèi)單調(diào)遞減.因?yàn)?,且,所以,即,即,兩邊取對?shù),得,即.令,則,令,則,所以在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減,所以,所以,則的解為,所以,即.故實(shí)數(shù)a的范圍為.]【整體點(diǎn)評】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)曲線和直線的交點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍問題,屬較難試題,方法一:將問題進(jìn)行等價(jià)轉(zhuǎn)化,分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,圖象,利用數(shù)形結(jié)合思想求解.方法二:將問題取對,構(gòu)造差函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值.方法三:將問題取對,分成與兩個(gè)函數(shù),研究對數(shù)函數(shù)過原點(diǎn)的切線問題,將切線斜率與一次函數(shù)的斜率比較得到結(jié)論.方法四:直接求導(dǎo)研究極值,單調(diào)性,最值,得到結(jié)論.55.(2021年全國高考乙卷數(shù)學(xué)(文)試題)已知函數(shù).(1)討論的單調(diào)性;(2)求曲線過坐標(biāo)原點(diǎn)的切線與曲線的公共點(diǎn)的坐標(biāo).【答案】(1)答案見解析;(2)和.【分析】(1)首先求得導(dǎo)函數(shù)的解析式,然后分類討論導(dǎo)函數(shù)的符號即可確定原函數(shù)的單調(diào)性;(2)首先求得導(dǎo)數(shù)過坐標(biāo)原點(diǎn)的切線方程,然后將原問題轉(zhuǎn)化為方程求解的問題,據(jù)此即可求得公共點(diǎn)坐標(biāo).【詳解】(1)由函數(shù)的解析式可得:,導(dǎo)函數(shù)的判別式,當(dāng)時(shí),在R上單調(diào)遞增,當(dāng)時(shí),的解為:,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增;綜上可得:當(dāng)時(shí),在R上單調(diào)遞增,當(dāng)時(shí),在,上單調(diào)遞增,在上單調(diào)遞減.(2)由題意可得:,,則切線方程為:,切線過坐標(biāo)原點(diǎn),則:,整理可得:,即:,解得:,則,切線方程為:,與聯(lián)立得,化簡得,由于切點(diǎn)的橫坐標(biāo)1必然是該方程的一個(gè)根,是的一個(gè)因式,∴該方程可以分解因式為解得,,綜上,曲線過坐標(biāo)原點(diǎn)的切線與曲線的公共點(diǎn)的坐標(biāo)為和.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究含有參數(shù)的函數(shù)的單調(diào)性問題,和過曲線外一點(diǎn)所做曲線的切線問題,注意單調(diào)性研究中對導(dǎo)函數(shù),要依據(jù)其零點(diǎn)的不同情況進(jìn)行分類討論;再求切線與函數(shù)曲線的公共點(diǎn)坐標(biāo)時(shí),要注意除了已經(jīng)求出的切點(diǎn),還可能有另外的公共點(diǎn)(交點(diǎn)),要通過聯(lián)立方程求解,其中得到三次方程求解時(shí)要注意其中有一個(gè)實(shí)數(shù)根是求出的切點(diǎn)的橫坐標(biāo),這樣就容易通過分解因式求另一個(gè)根.三次方程時(shí)高考壓軸題中的常見問題,不必恐懼,一般都能容易找到其中一個(gè)根,然后在通過分解因式的方法求其余的根.56.(2021年全國新高考I卷數(shù)學(xué)試題)已知函數(shù).(1)討論的單調(diào)性;(2)設(shè),為兩個(gè)不相等的正數(shù),且,證明:.【答案】(1)的遞增區(qū)間為,遞減區(qū)間為;(2)證明見解析.【分析】(1)首先確定函數(shù)的定義域,然后求得導(dǎo)函數(shù)的解析式,由導(dǎo)函數(shù)的符號即可確定原函數(shù)的單調(diào)性.(2)方法二:將題中的等式進(jìn)行恒等變換,令,命題轉(zhuǎn)換為證明:,然后構(gòu)造對稱差函數(shù),結(jié)合函數(shù)零點(diǎn)的特征和函數(shù)的單調(diào)性即可證得題中的結(jié)論.【詳解】(1)的定義域?yàn)椋傻?,,?dāng)時(shí),;當(dāng)時(shí);當(dāng)時(shí),.故在區(qū)間內(nèi)為增函數(shù),在區(qū)間內(nèi)為減函數(shù),(2)[方法一]:等價(jià)轉(zhuǎn)化由得,即.由,得.由(1)不妨設(shè),則,從而,得,①令,則,當(dāng)時(shí),,在區(qū)間內(nèi)為減函數(shù),,從而,所以,由(1)得即.①令,則,當(dāng)時(shí),,在區(qū)間內(nèi)為增函數(shù),,從而,所以.又由,可得,所以.②由①②得.[方法二]【最優(yōu)解】:變形為,所以.令.則上式變?yōu)?,于是命題轉(zhuǎn)換為證明:.令,則有,不妨設(shè).由(1)知,先證.要證:.令,則,在區(qū)間內(nèi)單調(diào)遞增,所以,即.再證.因?yàn)?,所以需證.令,所以,故在區(qū)間內(nèi)單調(diào)遞增.所以.故,即.綜合可知.[方法三]:比值代換證明同證法2.以下證明.不妨設(shè),則,由得,,要證,只需證,兩邊取對數(shù)得,即,即證.記,則.記,則,所以,在區(qū)間內(nèi)單調(diào)遞減.,則,所以在區(qū)間內(nèi)單調(diào)遞減.由得,所以,即.[方法四]:構(gòu)造函數(shù)法由已知得,令,不妨設(shè),所以.由(Ⅰ)知,,只需證.證明同證法2.再證明.令.令,則.所以,在區(qū)間內(nèi)單調(diào)遞增.因?yàn)?,所以,即又因?yàn)?,所以,即.因?yàn)?,所以,即.綜上,有結(jié)論得證.【整體點(diǎn)評】(2)方法一:等價(jià)轉(zhuǎn)化是處理導(dǎo)數(shù)問題的常見方法,其中利用的對稱差函數(shù),構(gòu)造函數(shù)的思想,這些都是導(dǎo)數(shù)問題必備的知識和技能.方法二:等價(jià)轉(zhuǎn)化是常見的數(shù)學(xué)思想,構(gòu)造對稱差函數(shù)是最基本的極值點(diǎn)偏移問題的處理策略.方法三:比值代換是一種將雙變量問題化為單變量問題的有效途徑,然后構(gòu)造函數(shù)利用函數(shù)的單調(diào)性證明題中的不等式即可.方法四:構(gòu)造函數(shù)之后想辦法出現(xiàn)關(guān)于的式子,這是本方法證明不等式的關(guān)鍵思想所在.57.(2022年新高考全國II卷數(shù)學(xué)真題)已知函數(shù).(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),,求a的取值范圍;(3)設(shè),證明:.【答案】(1)的減區(qū)間為,增區(qū)間為.(2)(3)見解析【分析】(1)求出,討論其符號后可得的單調(diào)性.(2)設(shè),求出,先討論時(shí)題設(shè)中的不等式不成立,再就結(jié)合放縮法討論符號,最后就結(jié)合放縮法討論的范圍后可得參數(shù)的取值范圍.(3)由(2)可得對任意的恒成立,從而可得對任意的恒成立,結(jié)合裂項(xiàng)相消法可證題設(shè)中的不等式.【詳解】(1)當(dāng)時(shí),,則,當(dāng)時(shí),,當(dāng)時(shí),,故的減區(qū)間為,增區(qū)間為.(2)設(shè),則,又,設(shè),則,若,則,因?yàn)闉檫B續(xù)不間斷函數(shù),故存在,使得,總有,故在為增函數(shù),故,故在為增函數(shù),故,與題設(shè)矛盾.若,則,下證:對任意,總有成立,證明:設(shè),故,故在上為減函數(shù),故即成立.由上述不等式有,故總成立,即在上為減函數(shù),所以.當(dāng)時(shí),有,
所以在上為減函數(shù),所以.綜上,.(3)取,則,總有成立,令,則,故即對任意的恒成立.所以對任意的,有,整理得到:,故,故不等式成立.【點(diǎn)睛】思路點(diǎn)睛:函數(shù)參數(shù)的不等式的恒成立問題,應(yīng)該利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,注意結(jié)合端點(diǎn)處導(dǎo)數(shù)的符號合理分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025江蘇南京大學(xué)新聞傳播學(xué)院課題組招聘1人備考題庫及完整答案詳解
- 2026國投種業(yè)科創(chuàng)中心有關(guān)崗位社會(huì)招聘備考題庫有完整答案詳解
- 2025河南新鄉(xiāng)市新鼎高級中學(xué)招聘備考題庫有完整答案詳解
- 2026四川自貢市消防救援支隊(duì)第一批次面向社會(huì)招錄政府專職消防員48人備考題庫及參考答案詳解一套
- 2025年山東省地質(zhì)礦產(chǎn)勘查開發(fā)局所屬事業(yè)單位公開招聘人員備考題庫(21名)及一套答案詳解
- 2026新疆昆東經(jīng)濟(jì)技術(shù)開發(fā)區(qū)管委會(huì)招聘19人備考題庫及完整答案詳解
- 2025浙江LT2025122901ZP0000寧波文旅會(huì)展集團(tuán)有限公司招聘9人備考題庫含答案詳解
- 2026中聞?dòng)?wù)投資集團(tuán)有限公司財(cái)務(wù)經(jīng)理招聘1人備考題庫含答案詳解
- 2025湖南衡陽市衡陽縣湘南船山高級技工學(xué)校招聘專業(yè)技術(shù)人員6人備考題庫及答案詳解(易錯(cuò)題)
- 2026年六安皖西中學(xué)公開招聘2026屆應(yīng)屆公費(fèi)師范畢業(yè)生備考題庫及答案詳解(易錯(cuò)題)
- 風(fēng)電項(xiàng)目數(shù)據(jù)采集與監(jiān)控方案
- 人教版(PEP)六年級英語上冊復(fù)習(xí)知識點(diǎn)大全
- 咨詢服務(wù)風(fēng)險(xiǎn)管理策略-洞察及研究
- 涉水人員健康知識培訓(xùn)課件
- 物業(yè)維修工安全培訓(xùn)課件
- 戶外電源技術(shù)講解
- 一年級體育課題申報(bào)書
- 墻面夾芯板安裝施工方案
- 六年級語文閱讀理解之托物言志(知識梳理技法點(diǎn)撥例文分析)(含答案)
- 鈑金供應(yīng)商管理辦法
- 煤礦自救器使用課件
評論
0/150
提交評論