版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2026屆廣西南寧市防城港市數(shù)學九上期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,且AC=6,BD=8,P是對角線BD上任意一點,過點P作EF∥AC,與平行四邊形的兩條邊分別交于點E、F.設BP=x,EF=y(tǒng),則能大致表示y與x之間關系的圖象為()A. B.C. D.2.一個盒子裝有紅、黃、白球分別為2、3、5個,這些球除顏色外都相同,從袋中任抽一個球,則抽到黃球的概率是()A. B. C. D.3.已知,則銳角的取值范圍是()A. B. C. D.4.如圖,P(x,y)是反比例函數(shù)的圖象在第一象限分支上的一個動點,PA⊥x軸于點A,PB⊥y軸于點B,隨著自變量x的逐漸增大,矩形OAPB的面積()A.保持不變 B.逐漸增大 C.逐漸減小 D.無法確定5.下列圖形:(1)等邊三角形,(2)矩形,(3)平行四邊形,(4)菱形,是中心對稱圖形的有()個A.4 B.3 C.2 D.16.如圖,二次函數(shù)y=ax1+bx+c的圖象與x軸交于點A(﹣1,0),B(3,0).下列結(jié)論:①1a﹣b=0;②(a+c)1<b1;③當﹣1<x<3時,y<0;④當a=1時,將拋物線先向上平移1個單位,再向右平移1個單位,得到拋物線y=(x﹣1)1﹣1.其中正確的是()A.①③ B.②③ C.②④ D.③④7.如圖,等腰直角△ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BC于D,則陰影部分面積為(結(jié)果保留π)()A.24﹣4π B.32﹣4π C.32﹣8π D.168.已知如圖,中,,點在邊上,且,則的度數(shù)是().A. B. C. D.9.﹣2019的倒數(shù)的相反數(shù)是()A.﹣2019 B. C. D.201910.如圖,∠AOB是放置在正方形網(wǎng)格中的一個角,則tan∠AOB()A. B. C.1 D.二、填空題(每小題3分,共24分)11.如圖,點M是反比例函數(shù)()圖象上任意一點,AB⊥y軸于B,點C是x軸上的動點,則△ABC的面積為______.12.如圖,Rt△OAB的頂點A(﹣2,4)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標為_____.13.如圖,在平面直角坐標系中,已知函數(shù)和,點為軸正半軸上一點,為軸上一點,過作軸的垂線分別交,的圖象于,兩點,連接,,則的面積為_________.14.在矩形中,點是邊上的一個動點,連接,過點作與點,交射線于點,連接,則的最小值是_____________15.cos30°+sin45°+tan60°=_____.16.觀察下列各式:;;;則_______________________.17.如圖,點為等邊三角形的外心,連接.①___________.②弧以為圓心,為半徑,則圖中陰影部分的面積等于__________.18.如圖,已知AB是半圓O的直徑,∠BAC=20°,D是弧AC上任意一點,則∠D的度數(shù)是_________.三、解答題(共66分)19.(10分)如圖,是一個銳角三角形,分別以、向外作等邊三角形、,連接、交于點,連接.(1)求證:(2)求證:20.(6分)如圖①,矩形中,,,將繞點從處開始按順時針方向旋轉(zhuǎn),交邊(或)于點,交邊(或)于點.當旋轉(zhuǎn)至處時,的旋轉(zhuǎn)隨即停止.(1)特殊情形:如圖②,發(fā)現(xiàn)當過點時,也恰好過點,此時是否與相似?并說明理由;(2)類比探究:如圖③,在旋轉(zhuǎn)過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由;(3)拓展延伸:設時,的面積為,試用含的代數(shù)式表示;①在旋轉(zhuǎn)過程中,若時,求對應的的面積;②在旋轉(zhuǎn)過程中,當?shù)拿娣e為4.2時,求對應的的值.21.(6分)某商店準備進一批季節(jié)性小家電,單價40元.經(jīng)市場預測,銷售定價為52元時,可售出180個;定價每增加1元,銷售量將減少10個.商店若準備獲利2000元,則售價應定為多少?這時應進貨多少個?22.(8分)如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點O,使OB=OC,以O為圓心,OB為半徑作圓,過C作CD∥AB交⊙O于點D,連接BD.(1)猜想AC與⊙O的位置關系,并證明你的猜想;(2)已知AC=6,求扇形OBC圍成的圓錐的底面圓半徑.23.(8分)小明、小亮兩人用如圖所示的兩個分隔均勻的轉(zhuǎn)盤做游戲:分別轉(zhuǎn)動兩個轉(zhuǎn)盤,轉(zhuǎn)盤停止后,將兩個指針所指數(shù)字相加(若指針恰好停在分割線上,則重轉(zhuǎn)一次).如果這兩個數(shù)字之和小于8(不包括8),則小明獲勝;否則小亮獲勝。(1)利用列表法或畫樹狀圖的方法表示游戲所有可能出現(xiàn)的結(jié)果;(2)這個游戲?qū)﹄p方公平嗎?請說明理由.24.(8分)(1)用配方法解方程:x2﹣4x+2=0;(2)如圖,在平面直角坐標系中,△ABC的頂點均在格點上,將△ABC繞原點O逆時針方向旋轉(zhuǎn)90°得到△A1B1C1.請作出△A1B1C1,寫出各頂點的坐標,并計算△A1B1C1的面積.25.(10分)如圖,正方形中,,點在上運動(不與重臺),過點作,交于點,求運動到多長時,有最大值,并求出最大值.26.(10分)已知是上一點,.(Ⅰ)如圖①,過點作的切線,與的延長線交于點,求的大小及的長;(Ⅱ)如圖②,為上一點,延長線與交于點,若,求的大小及的長.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)圖形先利用平行線的性質(zhì)求出△BEF∽△BAC,再利用相似三角形的性質(zhì)得出x的取值范圍和函數(shù)解析式即可解答【詳解】當0≤x≤4時,∵BO為△ABC的中線,EF∥AC,∴BP為△BEF的中線,△BEF∽△BAC,∴,即,解得y,同理可得,當4<x≤8時,.故選A.此題考查動點問題的函數(shù)圖象,解題關鍵在于利用三角形的相似2、D【分析】用黃球的個數(shù)除以球的總數(shù)即為摸到黃球的概率.【詳解】∵布袋中裝有紅、黃、白球分別為2、3、5個,共10個球,從袋中任意摸出一個球共有10種結(jié)果,其中出現(xiàn)黃球的情況有3種可能,∴得到黃球的概率是:.故選:D.本題考查隨機事件概率的求法:如果一個事件有m種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)n種結(jié)果,那么事件A的概率P(A)=.3、B【分析】根據(jù)銳角余弦函數(shù)值在0°到90°中,隨角度的增大而減小進行對比即可;【詳解】銳角余弦函數(shù)值隨角度的增大而減小,∵cos30°=,cos45°=,∴若銳角的余弦值為,且則30°<α<45°;故選B.本題主要考查了銳角三角函數(shù)的增減性,掌握銳角三角函數(shù)的增減性是解題的關鍵.4、A【分析】因為過雙曲線上任意一點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S是個定值,即S=|k|,所以隨著x的逐漸增大,矩形OAPB的面積將不變.【詳解】解:依題意有矩形OAPB的面積=2×|k|=3,所以隨著x的逐漸增大,矩形OAPB的面積將不變.
故選:A.本題考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,解題的關鍵是掌握圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.5、B【解析】根據(jù)中心對稱圖形的概念判斷即可.【詳解】矩形,平行四邊形,菱形是中心對稱圖形,等邊三角形不是中心對稱圖形.故選B.本題考查了中心對稱圖形的概念,判斷中心對稱圖形的關鍵是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.6、D【解析】分析:根據(jù)二次函數(shù)圖象與系數(shù)之間的關系即可求出答案.詳解:①圖象與x軸交于點A(﹣1,0),B(3,0),∴二次函數(shù)的圖象的對稱軸為x==1,∴=1,∴1a+b=0,故①錯誤;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)1=b1,故②錯誤;③由圖可知:當﹣1<x<3時,y<0,故③正確;④當a=1時,∴y=(x+1)(x﹣3)=(x﹣1)1﹣4將拋物線先向上平移1個單位,再向右平移1個單位,得到拋物線y=(x﹣1﹣1)1﹣4+1=(x﹣1)1﹣1,故④正確;故選:D.點睛:本題考查二次函數(shù)圖象的性質(zhì),解題的關鍵是熟知二次函數(shù)的圖象與系數(shù)之間的關系,本題屬于中等題型.7、A【解析】試題分析:連接AD,OD,∵等腰直角△ABC中,∴∠ABD=45°.∵AB是圓的直徑,∴∠ADB=90°,∴△ABD也是等腰直角三角形,∴.∵AB=8,∴AD=BD=4,∴S陰影=S△ABC-S△ABD-S弓形AD=S△ABC-S△ABD-(S扇形AOD-S△ABD)=×8×8-×4×4-+××4×4=16-4π+8=24-4π.故選A.考點:扇形面積的計算.8、B【分析】根據(jù)等腰三角形性質(zhì)和三角形內(nèi)角和定理可列出方程求解.【詳解】設∠A=x.
∵AD=BD,
∴∠ABD=∠A=x;
∵BD=BC,
∴∠BCD=∠BDC=∠ABD+∠A=2x;
∵AB=AC,
∴∠ABC=∠BCD=2x,
∴∠DBC=x;
∵x+2x+2x=180°,
∴x=36°,
∴∠A=36°故選:B考核知識點:等腰三角形性質(zhì).熟練運用等腰三角形基本性質(zhì)是關鍵.9、C【分析】先求-2019的倒數(shù),再求倒數(shù)的相反數(shù)即可;【詳解】解:﹣2019的倒數(shù)是,的相反數(shù)為,故答案為:C.本題考查倒數(shù)和相反數(shù).熟練掌握倒數(shù)和相反數(shù)的求法是解題的關鍵.10、C【分析】連接AB,分別利用勾股定理求出△AOB的各邊邊長,再利用勾股定理逆定理求得△ABO是直角三角形,再求tan∠AOB的值即可.【詳解】解:連接AB如圖,利用勾股定理得,,∵,,∴∴利用勾股定理逆定理得,△AOB是直角三角形∴tan∠AOB==故選C本題考查了在正方形網(wǎng)格中,勾股定理及勾股定理逆定理的應用.二、填空題(每小題3分,共24分)11、1【解析】解:設A的坐標是(m,n),則mn=2,則AB=m,△ABC的AB邊上的高等于n,則△ABC的面積=mn=1.故答案為1.點睛:本題主要考查了反比例函數(shù)的系數(shù)k的幾何意義,△ABC的面積=|k|,本知識點是中考的重要考點,同學們應高度關注.12、(,2).【解析】由題意得:,即點P的坐標.13、1【分析】根據(jù)題意設點,則,再根據(jù)三角形面積公式求解即可.【詳解】由題意得,設點,則∴故答案為:1.本題考查了反比例函數(shù)的幾何問題,掌握反比例函數(shù)的性質(zhì)、三角形面積公式是解題的關鍵.14、【分析】根據(jù)題意可點G在以AB為直徑的圓上,設圓心為H,當HGC在一條直線上時,CG的值最值,利用勾股定理求出CH的長,CG就能求出了.【詳解】解:點的運動軌跡為以為直徑的為圓心的圓弧。連結(jié)GH,CH,CG≥CH-GH,即CG=CH-GH時,也就是當三點共線時,值最小值.最小值CG=CH-GH∵矩形ABCD,∴∠ABC=90°∴CH=故答案為:本題考查了矩形的性質(zhì)、勾股定理、三角形三邊的關系.CGH三點共線時CG最短是解決問題的關鍵.把動點轉(zhuǎn)化成了定點,問題就迎刃而解了..15、【分析】根據(jù)特殊角的三角函數(shù)值、二次根式的化簡進行計算,在計算時,需要針對每個考點分別進行計算,然后求得計算結(jié)果.【詳解】cos30°+sin45°+tan60°===故填:.解決此類題目的關鍵是熟記特殊角的三角函數(shù)值.16、【分析】由所給式子可知,()()=,根據(jù)此規(guī)律解答即可.【詳解】由題意知()()=,∴.故答案為.本題考查了規(guī)律型---數(shù)字類規(guī)律與探究,要求學生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應用發(fā)現(xiàn)的規(guī)律解決問題.17、120【分析】①連接OC利用等邊三角形的性質(zhì)可得出,可得出的度數(shù)②陰影部分的面積即求扇形AOC的面積,利用面積公式求解即可.【詳解】解:①連接OC,∵O為三角形的外心,∴OA=OB=OC∴∴∴.②∵∴∴陰影部分的面積即求扇形AOC的面積∵∴陰影部分的面積為:.本題考查的知識點有等邊三角形外心的性質(zhì),全等三角形的判定及其性質(zhì)以及扇形的面積公式,利用三角形外心的性質(zhì)得出OA=OB=OC是解題的關鍵.18、110°【解析】試題解析:∵AB是半圓O的直徑故答案為點睛:圓內(nèi)接四邊形的對角互補.三、解答題(共66分)19、(1)見解析;(2)見解析【分析】(1)過A作AM⊥CD于M,AN⊥BE于N,設AB與CD相交于點G.根據(jù)等邊三角形的性質(zhì)得到AD=AB,AC=AE,∠BAD=∠CAE=60°,根據(jù)全等三角形的判定定理即可得△ACD≌△AEB,根據(jù)全等三角形的性質(zhì)可得AM=AN,根據(jù)角平分線的判定定理即可得到∠DFA=∠AFE,再根據(jù)全等三角形的對應角相等和三角形內(nèi)角和等于180°得到∠DFB=∠DAG=60°,即可得到結(jié)論;(2)如圖,延長FB至K,使FK=DF,連DK,根據(jù)等邊三角形的性質(zhì)和全等三角形的判定和性質(zhì)定理即可得到結(jié)論.【詳解】(1)過A作AM⊥CD于M,AN⊥BE于N,設AB與CD相交于點G.∵△ABD和△ACE為等邊三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠DAC=∠BAE=60°+∠BAC.在△ACD和△AEB中,∵,∴△ACD≌△AEB,∴CD=BE,∠ADG=∠ABF,△ADC的面積=△ABE的面積,∴CD?AM=BE?AN,∴AM=AN,∴AF是∠DFE的平分線,∴∠DFA=∠AFE.∵∠ADG=∠ABF,∠AGD=∠BGF,∴∠DFB=∠DAG=60°,∴∠GFE=120°,∴∠BFD=∠DFA=∠AFE.(2)如圖,延長FB至K,使FK=DF,連接DK.∵∠DFB=60°,∴△DFK為等邊三角形,∴DK=DF,∠KDF=∠K=60°,∴∠K=∠DFA=60°.∵∠ADB=60°,∴∠KDB=∠FDA.在△DBK和△DAF中,∵∠K=∠DFA,DK=DF,∠KDB=∠FDA,∴△DBK≌△DAF,∴BK=AF.∵DF=DK=FK=BK+BF,∴DF=AF+BF,又∵CD=DF+CF,∴CD=AF+BF+CF.本題考查了全等三角形的判定和性質(zhì),等邊三角形的判定與性質(zhì),角平分線的判定,正確的作出輔助線是解題的關鍵.20、(1)相似;(2)定值,;(3)①2,②.【分析】(1)根據(jù)“兩角相等的兩個三角形相似”即可得出答案;(2)由得出,又為定值,即可得出答案;(3)先設結(jié)合得出①將t=1代入中求解即可得出答案;②將s=4.2代入中求解即可得出答案.【詳解】(1)相似理由:∵,,∴,又∵,∴;(2)在旋轉(zhuǎn)過程中的值為定值,理由如下:過點作于點,∵,,∴,∴,∵四邊形為矩形,∴四邊形為矩形,∴∴即在旋轉(zhuǎn)過程中,的值為定值,;(3)由(2)知:,∴,又∵,∴,,∴即:;①當時,的面積,②當時,∴解得:,(舍去)∴當?shù)拿娣e為4.2時,;本題考查的是幾何綜合,難度系數(shù)較高,涉及到了相似以及矩形等相關知識點,第三問解題關鍵在于求出面積與AE的函數(shù)關系式.21、當該商品每個單價定為50元時,進貨200個;每個單價為60元時,進貨100個.【解析】試題分析:利用銷售利潤=售價-進價,根據(jù)題中條件可以列出利潤與的關系式,求出即可.試題解析:設每個商品的定價是元.由題意,得整理,得解得都符合題意.答:當該商品每個單價定為50元時,進貨200個;每個單價為60元時,進貨100個.22、(1)見解析;(2).【解析】(1)根據(jù)等腰三角形的性質(zhì)得∠ABC=∠A=30°,再由OB=OC和∠CBO=∠BCO=30°,所以∠OCA=120°﹣30°=90°,然后根據(jù)切線的判定定理即可得到,AC是⊙O的切線;(2)在Rt△AOC中,根據(jù)含30度的直角三角形三邊的關系得到CO=,所以弧BC的弧長=,然后根據(jù)圓錐的計算求圓錐的底面圓半徑.【詳解】(1)AC與⊙O相切,理由:∵AC=BC,∠ACB=120°,∴∠ABC=∠A=30°.∵OB=OC,∠CBO=∠BCO=30°,∴∠OCA=120°﹣30°=90°,∴AC⊥OC,又∵OC是⊙O的半徑,∴AC與⊙O相切;(2)在Rt△AOC中,∠A=30°,AC=6,則tan30°===,∠COA=60°,解得:CO=2,∴弧BC的弧長為:=,設底面圓半徑為:r,則2πr=,解得:r=.本題考查了等腰三角形的性質(zhì)、圓錐的計算和切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.23、(1)12種情況;(2)不公平,小亮獲勝概率大【分析】(1)依據(jù)題意先用列表法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率.
(2)游戲是否公平,求出游戲雙方獲勝的概率,比較是否相等即可【詳解】解:(1)利用列表法的方法表示游戲所有可能出現(xiàn)的結(jié)果如下表:∴共有12種情況;(2)游戲不公平P(小明獲勝)=,P(小亮獲勝)=,∴不公平,小亮獲勝概率大.本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.游戲雙方獲勝的概率相同,游戲就公平,否則游戲不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、(1)x1=2+,x2=2﹣;(2)A1(﹣1,﹣1),B1(﹣4,0),C1(﹣4,2),△A1B1C1的面積=×2×2=2.【分析】(1)利用配方法得到(x﹣2)2=2,然后利用直接開平方法解方程;(2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出A、B、C的對應點A1、B1、C1;然后寫出△A1B1C1各頂點的坐標,利用三角形面積公式計算△A1B1C1的面積.【詳解】解:(1)移項,得x2﹣4x=﹣2,配方,得x2﹣4x+4=﹣2+4,即(x﹣2)2=2,所以x﹣2=±所以原方程的解為x1=2+,x2=2﹣;(2)如圖,△A1B1C1為所作;A1(﹣1,﹣1),B1(﹣4,0),C1(﹣4,2),△A1B1C1的面積=×2×2=2.本題主要考察作圖-旋轉(zhuǎn)變換、三角形的面積公式和解方程,解題關鍵是熟練掌握計算法則.25、當BP=6時,CQ最大,且最大值為1.【分析】根據(jù)正方形的性質(zhì)和余角的性質(zhì)可得∠BEP=∠CPQ,進而可證△BPE∽△CQP,設CQ=y(tǒng),BP=x,根據(jù)相似三角形的性質(zhì)可得y與x的函數(shù)關系式,然后利用二次函數(shù)的性質(zhì)即可求出結(jié)果.【詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年都昌縣選聘縣直事業(yè)單位工作人員真題匯編附答案
- 2025年上海大學輔導員考試筆試真題匯編附答案
- 2025吉林省長春市公務員考試常識判斷專項練習題(易錯題)
- 2025年企業(yè)內(nèi)部保密制度建立與執(zhí)行手冊
- 2026年全球數(shù)字經(jīng)濟合作協(xié)議
- 2024年湖南涉外經(jīng)濟學院輔導員招聘考試真題匯編附答案
- 2024年湖州職業(yè)技術學院輔導員招聘備考題庫附答案
- 2024年蘇州職業(yè)技術大學輔導員考試筆試題庫附答案
- 2024年黃岡職業(yè)技術學院輔導員招聘備考題庫附答案
- 2025中國黃金集團香港有限公司社會招聘備考題庫附答案
- 機器學習課件周志華Chap08集成學習
- 殯儀館鮮花采購投標方案
- TOC基本課程講義學員版-王仕斌
- T-GDWCA 0035-2018 HDMI 連接線標準規(guī)范
- 面板堆石壩面板滑模結(jié)構(gòu)設計
- 初中語文新課程標準與解讀課件
- 無人機裝調(diào)檢修工培訓計劃及大綱
- 中建通風與空調(diào)施工方案
- 春よ、來い(春天來了)高木綾子演奏長笛曲譜鋼琴伴奏
- ARJ21機型理論知識考試題庫(匯總版)
- 2023年婁底市建設系統(tǒng)事業(yè)單位招聘考試筆試模擬試題及答案解析
評論
0/150
提交評論