2026屆河南省洛陽(yáng)市李村一中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁(yè)
2026屆河南省洛陽(yáng)市李村一中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁(yè)
2026屆河南省洛陽(yáng)市李村一中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁(yè)
2026屆河南省洛陽(yáng)市李村一中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁(yè)
2026屆河南省洛陽(yáng)市李村一中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆河南省洛陽(yáng)市李村一中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知點(diǎn)P是線段AB的黃金分割點(diǎn)(AP>PB),AB=4,那么AP的長(zhǎng)是()A. B. C. D.2.如圖,在中,點(diǎn)D,E分別為AB,AC邊上的點(diǎn),且,CD、BE相較于點(diǎn)O,連接AO并延長(zhǎng)交DE于點(diǎn)G,交BC邊于點(diǎn)F,則下列結(jié)論中一定正確的是A. B. C. D.3.如圖,在△ABC中,∠BOC=140°,I是內(nèi)心,O是外心,則∠BIC等于()A.130° B.125° C.120° D.115°4.對(duì)于二次函數(shù)y=2(x+1)(x﹣3),下列說法正確的是()A.圖象過點(diǎn)(0,﹣3) B.圖象與x軸的交點(diǎn)為(1,0),(﹣3,0)C.此函數(shù)有最小值為﹣6 D.當(dāng)x<1時(shí),y隨x的增大而減小5.一元二次方程的解是()A. B. C. D.6.已知扇形的圓心角為45°,半徑長(zhǎng)為12,則該扇形的弧長(zhǎng)為()A. B.2π C.3π D.12π7.如圖,已知,是的中點(diǎn),且矩形與矩形相似,則長(zhǎng)為()A.5 B. C. D.68.如圖所示,在矩形ABCD中,點(diǎn)F是BC的中點(diǎn),DF的延長(zhǎng)線與AB的延長(zhǎng)線相交于點(diǎn)E,DE與AC相交于點(diǎn)O,若,則()A.4 B.6 C.8 D.109.下列圖形中既是中心對(duì)稱圖形又是軸對(duì)稱圖形的是()A. B. C. D.10.如圖所示是濱河公園中的兩個(gè)物體一天中四個(gè)不同時(shí)刻在太陽(yáng)光的照射下落在地面上的影子,按照時(shí)間的先后順序排列正確的是()A.(3)(4)(1)(2) B.(4)(3)(1)(2)C.(4)(3)(2)(1) D.(2)(4)(3)(1)二、填空題(每小題3分,共24分)11.某廠一月份的總產(chǎn)量為500噸,通過技術(shù)更新,產(chǎn)量逐月提高,三月份的總產(chǎn)量達(dá)到720噸.若平均每月增長(zhǎng)率是,則可列方程為__.12.如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E,F(xiàn)分別在AB,AD上,若CE=,且∠ECF=45°,則CF的長(zhǎng)為__________.13.10件外觀相同的產(chǎn)品中有1件不合格,現(xiàn)從中任意抽取1件進(jìn)行檢測(cè),抽到不合格產(chǎn)品的概率是______.14.若一個(gè)扇形的圓心角是120°,且它的半徑是18cm,則此扇形的弧長(zhǎng)是_______cm15.如圖,已知點(diǎn)是函數(shù)圖象上的一個(gè)動(dòng)點(diǎn).若,則的取值范圍是__________.16.菱形ABCD中,若周長(zhǎng)是20cm,對(duì)角線AC=6cm,則對(duì)角線BD=_____cm.17.在實(shí)數(shù)范圍內(nèi)分解因式:-1+9a4=____________________。18.若反比例函數(shù)的圖像在二、四象限,其圖像上有兩點(diǎn),,則______(填“”或“”或“”).三、解答題(共66分)19.(10分)如圖,已知四邊形ABCD內(nèi)接于⊙O,A是的中點(diǎn),AE⊥AC于A,與⊙O及CB的延長(zhǎng)線交于點(diǎn)F,E,且.(1)求證:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.20.(6分)在平行四邊形ABCD中,點(diǎn)E是AD邊上的點(diǎn),連接BE.(1)如圖1,若BE平分∠ABC,BC=8,ED=3,求平行四邊形ABCD的周長(zhǎng);(2)如圖2,點(diǎn)F是平行四邊形外一點(diǎn),F(xiàn)B=CD.連接BF、CF,CF與BE相交于點(diǎn)G,若∠FBE+∠ABC=180°,點(diǎn)G是CF的中點(diǎn),求證:2BG+ED=BC.21.(6分)已知關(guān)于x的方程x2+(2m+1)x+m(m+1)=1.(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)已知方程的一個(gè)根為x=1,求代數(shù)式m2+m﹣5的值.22.(8分)如圖,在菱形ABCD中,對(duì)角線AC與BD交于點(diǎn)O.過點(diǎn)C作BD的平行線,過點(diǎn)D作AC的平行線,兩直線相交于點(diǎn)E.(1)求證:四邊形OCED是矩形;(2)若CE=1,DE=2,ABCD的面積是.23.(8分)已知拋物線與軸交于A,B兩點(diǎn)(A在B左邊),與軸交于C點(diǎn),頂點(diǎn)為P,OC=2AO.(1)求與滿足的關(guān)系式;(2)直線AD//BC,與拋物線交于另一點(diǎn)D,△ADP的面積為,求的值;(3)在(2)的條件下,過(1,-1)的直線與拋物線交于M、N兩點(diǎn),分別過M、N且與拋物線僅有一個(gè)公共點(diǎn)的兩條直線交于點(diǎn)G,求OG長(zhǎng)的最小值.24.(8分)小明家飲水機(jī)中原有水的溫度為20℃,通電開機(jī)后,飲水機(jī)自動(dòng)開始加熱(此過程中水溫y(℃)與開機(jī)時(shí)間x(分)滿足一次函數(shù)關(guān)系),當(dāng)加熱到100℃時(shí)自動(dòng)停止加熱,隨后水溫開始下降,此過程中水溫y(℃)與開機(jī)時(shí)間x(分)成反比例關(guān)系,當(dāng)水溫降至20C時(shí),飲水機(jī)又自動(dòng)開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:(1)當(dāng)0≤x≤8時(shí),求水溫y(℃)與開機(jī)時(shí)間x(分)的函數(shù)關(guān)系式;(2)求圖中t的值;(3)若小明上午八點(diǎn)將飲水機(jī)在通電開機(jī)(此時(shí)飲水機(jī)中原有水的溫度為20℃后即外出散步,預(yù)計(jì)上午八點(diǎn)半散步回到家中,回到家時(shí),他能喝到飲水機(jī)內(nèi)不低于30℃的水嗎?請(qǐng)說明你的理由.25.(10分)已知:△ABC中∠ACB=90°,E在AB上,以AE為直徑的⊙O與BC相切于D,與AC相交于F,連接AD.(1)求證:AD平分∠BAC;(2)若DF∥AB,則BD與CD有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.26.(10分)若x1、x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1、x2和系數(shù)a、b、c有如下關(guān)系:,.我們把它們稱為根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:AB=====請(qǐng)你參考以上定理和結(jié)論,解答下列問題:設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.(1)當(dāng)△ABC為等腰直角三角形時(shí),直接寫出b2-4ac的值;(2)當(dāng)△ABC為等腰三角形,且∠ACB=120°時(shí),直接寫出b2-4ac的值;(3)設(shè)拋物線y=x2+mx+5與x軸的兩個(gè)交點(diǎn)為A、B,頂點(diǎn)為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=120°.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】根據(jù)黃金比的定義得:,得.故選A.2、C【分析】由可得到∽,依據(jù)平行線分線段成比例定理和相似三角形的性質(zhì)進(jìn)行判斷即可.【詳解】解:A.∵,∴,故不正確;B.∵,∴,故不正確;C.∵,∴∽,∽,,.,故正確;D.∵,∴,故不正確;故選C.本題主要考查的是相似三角形的判定和性質(zhì),熟練掌握相似三角形的性質(zhì)和判定定理是解題的關(guān)鍵.3、B【分析】根據(jù)圓周角定理求出∠BOC=2∠A,求出∠A度數(shù),根據(jù)三角形內(nèi)角和定理求出∠ABC+∠ACB,根據(jù)三角形的內(nèi)心得出∠IBC=∠ABC,∠ICB=∠ACB,求出∠IBC+∠ICB的度數(shù),再求出答案即可.【詳解】∵在△ABC中,∠BOC=140°,O是外心,∴∠BOC=2∠A,∴∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵I為△ABC的內(nèi)心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB==55°,∴∠BIC=180°﹣(∠IBC+∠ICB)=125°,故選:B.此題主要考查三角形內(nèi)心和外心以及圓周角定理的性質(zhì),熟練掌握,即可解題.4、D【分析】通過計(jì)算自變量x對(duì)應(yīng)的函數(shù)值可對(duì)A進(jìn)行判斷;利用拋物線與x軸的交點(diǎn)問題,通過解方程2(x+1)(x﹣3)=0可對(duì)B進(jìn)行判斷;把拋物線的解析式配成頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)對(duì)C、D進(jìn)行判斷.【詳解】解:A、當(dāng)x=0時(shí),y=2(x+1)(x﹣3)=﹣6,則函數(shù)圖象經(jīng)過點(diǎn)(0,﹣6),所以A選項(xiàng)錯(cuò)誤;B、當(dāng)y=0時(shí),2(x+1)(x﹣3)=0,解得x1=﹣1,x2=3,則拋物線與x軸的交點(diǎn)為(﹣1,0),(3,0),所以B選項(xiàng)錯(cuò)誤;C、y=2(x+1)(x﹣3)=2(x﹣1)2﹣8,則函數(shù)有最小值為﹣8,所以D選項(xiàng)錯(cuò)誤;D、拋物線的對(duì)稱軸為直線x=1,開口向上,則當(dāng)x<1時(shí),y隨x的增大而減小,所以D選項(xiàng)正確.故選:D.本題考查了二次函數(shù)的圖像和性質(zhì),函數(shù)的最值,增減性,與坐標(biāo)軸交點(diǎn)坐標(biāo)熟練掌握是解題的關(guān)鍵5、D【分析】這個(gè)式子先移項(xiàng),變成x2=4,從而把問題轉(zhuǎn)化為求4的平方根.【詳解】移項(xiàng)得,x2=4開方得,x=±2,故選D.(1)用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號(hào)且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號(hào)且a≠0).法則:要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開平方取正負(fù),分開求得方程解”.(2)用直接開方法求一元二次方程的解,要仔細(xì)觀察方程的特點(diǎn).6、C【解析】試題分析:根據(jù)弧長(zhǎng)公式:l==3π,故選C.考點(diǎn):弧長(zhǎng)的計(jì)算.7、B【分析】根據(jù)相似多邊形的性質(zhì)列出比例式,計(jì)算即可.【詳解】解:∵矩形ABDC與矩形ACFE相似,∴,∵,是的中點(diǎn),∴AE=5∴,解得,AC=5,故選B.本題考查的是相似多邊形的性質(zhì),掌握相似多邊形的對(duì)應(yīng)邊的比相等是解題的關(guān)鍵.8、C【解析】由矩形的性質(zhì)得出AB=CD,AB∥CD,∠ABC=∠BCD=90°,由ASA證明△BEF≌△CDF,得出BE=CD=AB,則AE=2AB=2CD,再根據(jù)AOECOD,面積比等于相似比的平方即可?!驹斀狻俊咚倪呅蜛BCD是矩形,

∴AB=CD,AB∥CD,∠ABC=∠BCD=90°,

∴∠EBF=90°,

∵F為BC的中點(diǎn),

∴BF=CF,

在△BEF和△CDF中,,

∴△BEF≌△CDF(ASA),

∴BE=CD=AB,

∴AE=2AB=2CD,

∵AB∥CD,∴AOECOD,∴=4:1∵∴=8故選:C.本題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì);熟練掌握有關(guān)的性質(zhì)與判定是解決問題的關(guān)鍵.9、C【解析】根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的概念,對(duì)各個(gè)選項(xiàng)進(jìn)行判斷,即可得到答案.【詳解】解:A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故A錯(cuò)誤;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故B錯(cuò)誤;C、既是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故C正確;D、既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故D錯(cuò)誤;故選:C.本題考查了軸對(duì)稱圖形和中心對(duì)稱圖形的概念,解題的關(guān)鍵是熟練掌握概念進(jìn)行分析判斷.10、C【解析】試題分析:根據(jù)平行投影的特點(diǎn)和規(guī)律可知,(3),(4)是上午,(1),(2)是下午,根據(jù)影子的長(zhǎng)度可知先后為(4)(3)(2)(1).故選C.考點(diǎn):平行投影.二、填空題(每小題3分,共24分)11、【分析】根據(jù)增長(zhǎng)率的定義列方程即可,二月份的產(chǎn)量為:,三月份的產(chǎn)量為:.【詳解】二月份的產(chǎn)量為:,三月份的產(chǎn)量為:.本題考查了一元二次方程的增長(zhǎng)率問題,解題關(guān)鍵是熟練理解增長(zhǎng)率的表示方法,一般用增長(zhǎng)后的量=增長(zhǎng)前的量×(1+增長(zhǎng)率).12、【解析】如圖,延長(zhǎng)FD到G,使DG=BE;連接CG、EF;∵四邊形ABCD為正方形,在△BCE與△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF與△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE=,∴AE=3,設(shè)AF=x,則DF=6?x,GF=3+(6?x)=9?x,∴EF=,∴(9?x)2=9+x2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF==,故答案為:.點(diǎn)睛:本題考查了全等三角形的判定與性質(zhì),勾股定理的知識(shí)點(diǎn),構(gòu)建三角形,利用方程思想是解答本題的關(guān)鍵.13、【解析】試題分析:P(抽到不合規(guī)產(chǎn)品)=.14、12π【分析】根據(jù)弧長(zhǎng)公式代入可得結(jié)論.【詳解】解:根據(jù)題意,扇形的弧長(zhǎng)為,故答案為:12π.本題主要考查弧長(zhǎng)的計(jì)算,解決本題的關(guān)鍵是要熟練掌握弧長(zhǎng)公式.15、【分析】根據(jù)得-1<a<1,再根據(jù)二次函數(shù)的解析式求出對(duì)稱軸,再根據(jù)函數(shù)的圖像與性質(zhì)即可求解.【詳解】∵∴-1<a<1,∵函數(shù)對(duì)稱軸x=∴當(dāng)a=,y有最大值當(dāng)a=-1時(shí),∴則的取值范圍是故填:.此題主要考查二次函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是根據(jù)題意函數(shù)圖像進(jìn)行求解.16、1【分析】先根據(jù)周長(zhǎng)求出菱形的邊長(zhǎng),再根據(jù)菱形的對(duì)角線互相垂直平分,利用勾股定理求出BD的一半,然后即可得解.【詳解】解:如圖,∵菱形ABCD的周長(zhǎng)是20cm,對(duì)角線AC=6cm,∴AB=20÷4=5cm,AO=AC=3cm,又∵AC⊥BD,∴BO==4cm,∴BD=2BO=1cm.故答案為:1.本題考查了菱形的性質(zhì),屬于簡(jiǎn)單題,熟悉菱形對(duì)角線互相垂直且平分是解題關(guān)鍵.17、【分析】連續(xù)利用2次平方差公式分解即可.【詳解】解:.此題考查了實(shí)數(shù)范圍內(nèi)分解因式,熟練掌握因式分解的方法是解本題的基礎(chǔ),注意檢查分解要徹底.18、<【解析】分析:根據(jù)反比例函數(shù)的增減性即可得出答案.詳解:∵圖像在二、四象限,∴在每一個(gè)象限內(nèi),y隨著x的增大而增大,∵1<2,∴.點(diǎn)睛:本題主要考查的是反比例函數(shù)的增減性,屬于基礎(chǔ)題型.對(duì)于反比例函數(shù),當(dāng)k>0時(shí),在每一個(gè)象限內(nèi),y隨著x的增大而減??;當(dāng)k<0時(shí),在每一個(gè)象限內(nèi),y隨著x的增大而增大.三、解答題(共66分)19、(1)詳見解析;(2).【分析】(1)欲證△ADC∽△EBA,只要證明兩個(gè)角對(duì)應(yīng)相等就可以.可以轉(zhuǎn)化為證明且就可以;(2)A是的中點(diǎn),的中點(diǎn),則AC=AB=8,根據(jù)△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根據(jù)正切三角函數(shù)的定義就可以求出結(jié)論.【詳解】(1)證明:∵四邊形ABCD內(nèi)接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE,∴△ADC∽△EBA;(2)解:∵A是的中點(diǎn),∴,∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.考點(diǎn):相似三角形的判定與性質(zhì);圓周角定理.20、(1)26;(2)見解析【分析】(1)由平行四邊形的性質(zhì)得出AD=BC=8,AB=CD,AD∥BC,由平行線的性質(zhì)得出∠AEB=∠CBE,由BE平分∠ABC,得出∠ABE=∠CBE,推出∠ABE=∠AEB,則AB=AE,AE=AD﹣ED=BC﹣ED=5,得出AB=5,即可得出結(jié)果;(2)連接CE,過點(diǎn)C作CK∥BF交BE于K,則∠FBG=∠CKG,由點(diǎn)G是CF的中點(diǎn),得出FG=CG,由AAS證得△FBG≌△CKG,得出BG=KG,CK=BF=CD,由平行四邊形的性質(zhì)得出∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,由平行線的性質(zhì)得出∠DEC=∠BCE,∠AEB=∠KBC,易證∠EKC=∠D,∠CKB=∠BAE,由AAS證得△AEB≌△KBC,得出BC=BE,則∠KEC=∠BCE,推出∠KEC=∠DEC,由AAS證得△KEC≌△DEC,得出KE=ED,即可得出結(jié)論.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AD=BC=8,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE=AD﹣ED=BC﹣ED=8﹣3=5,∴AB=5,∴平行四邊形ABCD的周長(zhǎng)=2AB+2BC=2×5+2×8=26;(2)連接CE,過點(diǎn)C作CK∥BF交BE于K,如圖2所示:則∠FBG=∠CKG,∵點(diǎn)G是CF的中點(diǎn),∴FG=CG,在△FBG和△CKG中,∵,∴△FBG≌△CKG(AAS),∴BG=KG,CK=BF=CD,∵四邊形ABCD是平行四邊形,∴∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,∴∠DEC=∠BCE,∠AEB=∠KBC,∵∠FBE+∠ABC=180°,∴∠FBE+∠D=180°,∴∠CKB+∠D=180°,∴∠EKC=∠D,∵∠BAE+∠D=180°,∴∠CKB=∠BAE,在△AEB和△KBC中,∵,∴△AEB≌△KBC(AAS),∴BC=EB,∴∠KEC=∠BCE,∴∠KEC=∠DEC,在△KEC和△DEC中,∵,∴△KEC≌△DEC(AAS),∴KE=ED,∵BE=BG+KG+KE=2BG+ED,∴2BG+ED=BC.本題主要考查三角形全等的判定和性質(zhì)定理和平行四邊形的性質(zhì)定理的綜合應(yīng)用,添加合適的輔助線,構(gòu)造全等三角形,是解題的關(guān)鍵.21、(1)方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)-2.【分析】(1)根據(jù)一元二次方程的根的判別式即可得出△=1>1,由此即可證出方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)將x=1代入原方程求出m的值,再將m值代入代數(shù)式中求值即可.【詳解】解:(1)∵關(guān)于x的一元二次方程x2+(2m+1)x+m(m+1)=1.∴△=(2m+1)2﹣4m(m+1)=1>1,∴方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)∵x=1是此方程的一個(gè)根,∴把x=1代入方程中得到m(m+1)=1,把m(m+1)=1代入得m2+m﹣2=-2.本題考查了根的判別式及用整體代入法求代數(shù)式的值,熟練掌握“當(dāng)一元二次方程根的判別式△>1時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.”是解題的關(guān)鍵.22、(1)證明見解析;(2)1.【解析】(1)欲證明四邊形OCED是矩形,只需推知四邊形OCED是平行四邊形,且有一內(nèi)角為90度即可;(2)由菱形的對(duì)角線互相垂直平分和菱形的面積公式解答.【詳解】(1)∵四邊形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四邊形OCED是平行四邊形,又∠COD=90°,∴平行四邊形OCED是矩形;(2)由(1)知,平行四邊形OCED是矩形,則CE=OD=1,DE=OC=2.∵四邊形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面積為:AC?BD=×1×2=1,故答案為1.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì),菱形的性質(zhì),熟練掌握矩形的判定及性質(zhì)、菱形的性質(zhì)是解題的關(guān)鍵.23、(1);(2);(3).【分析】(1)將拋物線解析式進(jìn)行因式分解,可求出A點(diǎn)坐標(biāo),得到OA長(zhǎng)度,再由C點(diǎn)坐標(biāo)得到OC長(zhǎng)度,然后利用OC=2AO建立等量關(guān)系即可得到關(guān)系式;(2)利用待定系數(shù)法求出直線BC的k,根據(jù)平行可知AD直線的斜率k與BC相等,可求出直線AD解析式,與拋物線聯(lián)立可求D點(diǎn)坐標(biāo),過P作PE⊥x軸交AD于點(diǎn)E,求出PE即可表示△ADP的面積,從而建立方程求解;(3)為方便書寫,可設(shè)拋物線解析式為:,設(shè),,過點(diǎn)M的切線解析式為,兩拋物線與切線聯(lián)立,由可求k,得到M、N的坐標(biāo)滿足,將(1,-1)代入,推出G為直線上的一點(diǎn),由垂線段最短,求出OG垂直于直線時(shí)的值即為最小值.【詳解】解:(1)令y=0,,解得,令x=0,則∵,A在B左邊∴A點(diǎn)坐標(biāo)為(-m,0),B點(diǎn)坐標(biāo)為(4m,0),C點(diǎn)坐標(biāo)為(0,-4am2)∴AO=m,OC=4am2∵OC=2AO∴4am2=2m∴(2)∵∴C點(diǎn)坐標(biāo)為(0,-2m)設(shè)BC直線為,代入B(4m,0),C(0,-2m)得,解得∵AD∥BC,∴設(shè)直線AD為,代入A(-m,0)得,,∴∴直線AD為直線AD與拋物線聯(lián)立得,,解得或∴D點(diǎn)坐標(biāo)為(5m,3m)又∵∴頂點(diǎn)P坐標(biāo)為如圖,過P作PE⊥x軸交AD于點(diǎn)E,則E點(diǎn)橫坐標(biāo)為,代入直線AD得∴PE=∴S△ADP=解得∵m>0∴∴.(3)在(2)的條件下,可設(shè)拋物線解析式為:,設(shè),,過點(diǎn)M的切線解析式為,將拋物線與切線解析式聯(lián)立得:,整理得,∵,∴方程可整理為∵只有一個(gè)交點(diǎn),∴整理得即解得∴過M的切線為同理可得過N的切線為由此可知M、N的坐標(biāo)滿足將代入整理得將(1,-1)代入得在(2)的條件下,拋物線解析式為,即∴整理得∴G點(diǎn)坐標(biāo)滿足,即G為直線上的一點(diǎn),當(dāng)OG垂直于直線時(shí),OG最小,如圖所示,直線與x軸交點(diǎn)H(5,0),與y軸交點(diǎn)F(0,)∴OH=5,OF=,F(xiàn)H=∵∴∴OG的最小值為.本題考查二次函數(shù)與一次函數(shù)的綜合問題,難度很大,需要掌握二次函數(shù)與一次函數(shù)的圖像與性質(zhì)和較強(qiáng)的數(shù)形結(jié)合能力.24、(1)y=10x+1;(2)t的值為2;(3)不能,理由見解析【分析】(1)根據(jù)一次函數(shù)圖象上兩點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出當(dāng)0≤x≤8時(shí),水溫y(℃)與開機(jī)時(shí)間x(分)的函數(shù)關(guān)系式;(2)由點(diǎn)(8,100),利用待定系數(shù)法即可求出當(dāng)8≤x≤t時(shí),水溫y(℃)與開機(jī)時(shí)間x(分)的函數(shù)關(guān)系式,再將y=1代入該函數(shù)關(guān)系式中求出x值即可;(3)將x=30代入反比例函數(shù)關(guān)系式中求出y值,再與30比較后即可得出結(jié)論.【詳解】(1)當(dāng)0≤x≤8時(shí),設(shè)水溫y(℃)與開機(jī)時(shí)間x(分)的函數(shù)關(guān)系式為y=kx+b(k≠0).將(0,1)、(8,100)代入y=kx+b中,得:,解得:,∴當(dāng)0≤x≤8時(shí),水溫y(℃)與開機(jī)時(shí)間x(分)的函數(shù)關(guān)系式為y=10x+1.(2)當(dāng)8≤x≤t時(shí),設(shè)水溫y(℃)與開機(jī)時(shí)間x(分)的函數(shù)關(guān)系式為y(m≠0),將(8,100)代入y中,得:100,解得:m=800,∴當(dāng)8≤x≤t時(shí),水溫y(℃)與開機(jī)時(shí)間x(分)的函數(shù)關(guān)系式為y.當(dāng)y1時(shí),x=2,∴圖中t的值為2.(3)當(dāng)x=30時(shí),.答:小明上午八點(diǎn)半散步回到家中時(shí),不能喝到飲水機(jī)內(nèi)不低于30°C的水.本題考查了一次函數(shù)的應(yīng)用、待定系數(shù)法求一次(反比例)函數(shù)解析式以及一次(反比例)函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解答本題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出一次函數(shù)關(guān)系式;(2)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出反比例函數(shù)關(guān)系式;(3)將x=30代入反比例函數(shù)關(guān)系式中,求出y值.25、(1)見解析;(2)BD=2CD證明見解析【分析】(1)連

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論