數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸試卷經(jīng)典解析_第1頁(yè)
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸試卷經(jīng)典解析_第2頁(yè)
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸試卷經(jīng)典解析_第3頁(yè)
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸試卷經(jīng)典解析_第4頁(yè)
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸試卷經(jīng)典解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸試卷經(jīng)典解析一、解答題1.如圖,直線,、是、上的兩點(diǎn),直線與、分別交于點(diǎn)、,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),連接、.(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),,,則_____.(2)若點(diǎn)與點(diǎn)、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.2.閱讀下列材料并解答問(wèn)題:在一個(gè)三角形中,如果一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱為“夢(mèng)想三角形”例如:一個(gè)三角形三個(gè)內(nèi)角的度數(shù)分別是120°,40°,20°,這個(gè)三角形就是一個(gè)“夢(mèng)想三角形”.反之,若一個(gè)三角形是“夢(mèng)想三角形”,那么這個(gè)三角形的三個(gè)內(nèi)角中一定有一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍.(1)如果一個(gè)“夢(mèng)想三角形”有一個(gè)角為108°,那么這個(gè)“夢(mèng)想三角形”的最小內(nèi)角的度數(shù)為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點(diǎn)A,過(guò)點(diǎn)A作AB⊥OM交ON于點(diǎn)B,以A為端點(diǎn)作射線AD,交線段OB于點(diǎn)C(點(diǎn)C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢(mèng)想三角形”,為什么?(3)如圖2,點(diǎn)D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點(diǎn)E,在DC上取一點(diǎn)F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢(mèng)想三角形”,求∠B的度數(shù).3.在△ABC中,∠BAC=90°,點(diǎn)D是BC上一點(diǎn),將△ABD沿AD翻折后得到△AED,邊AE交BC于點(diǎn)F.(1)如圖①,當(dāng)AE⊥BC時(shí),寫出圖中所有與∠B相等的角:;所有與∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度數(shù);②是否存在這樣的x的值,使得△DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請(qǐng)說(shuō)明理由.4.如圖1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求證:∠BED=90°;(2)如圖2,延長(zhǎng)BE交CD于點(diǎn)H,點(diǎn)F為線段EH上一動(dòng)點(diǎn),∠EDF=α,∠ABF的角平分線與∠CDF的角平分線DG交于點(diǎn)G,試用含α的式子表示∠BGD的大??;(3)如圖3,延長(zhǎng)BE交CD于點(diǎn)H,點(diǎn)F為線段EH上一動(dòng)點(diǎn),∠EBM的角平分線與∠FDN的角平分線交于點(diǎn)G,探究∠BGD與∠BFD之間的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論:.5.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過(guò)D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說(shuō)明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動(dòng),∠BDC的角平分線交EB的延長(zhǎng)線于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)直接寫出比值.6.如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).(1)試判斷直線AB與直線CD的位置關(guān)系,并說(shuō)明理由;(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF//GH.(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問(wèn)∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值若變化,說(shuō)明理由.7.(概念認(rèn)識(shí))如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問(wèn)題解決)(1)如圖②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分線BD交AC于點(diǎn)D,求∠BDC的度數(shù);(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰BC三分線和∠ACB鄰BC三分線,且∠BPC=140°,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點(diǎn)P.若∠A=m°(),∠B=54°,直接寫出∠BPC的度數(shù).(用含m的代數(shù)式表示)8.如圖,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC邊于點(diǎn)E.(1)如圖1,過(guò)點(diǎn)A作AD⊥BC于D,若已知∠C=50°,則∠EAD的度數(shù)為;(2)如圖2,過(guò)點(diǎn)A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度數(shù);(3)如圖3,CF平分△ABC的外角∠BCG,交AE的延長(zhǎng)線于點(diǎn)F,作FD⊥BC于D,設(shè)∠ACB=n°,試求∠DFE﹣∠AFC的值;(用含有n的代數(shù)式表示)(4)如圖4,在圖3的基礎(chǔ)上分別作∠BAE和∠BCF的角平分線,交于點(diǎn)F1,作F1D1⊥BC于D1,設(shè)∠ACB=n°,試直接寫出∠D1F1A﹣∠AF1C的值.(用含有n的代數(shù)式表示)9.認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問(wèn)題.(探究1):如圖1,在ΔABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過(guò)分析發(fā)現(xiàn)∠BOC=90o+∠A,(請(qǐng)補(bǔ)齊空白處)理由如下:∵BO和CO分別是∠ABC和∠ACB的角平分線,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180o.∴∠1+∠2=(∠ABC+∠ACB)=(180o-∠A)=90o-∠A,∴∠BOC=180o-(∠1+∠2)=180o-(________)=90o+∠A.(探究2):如圖2,已知O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?請(qǐng)說(shuō)明理由.(應(yīng)用):如圖3,在RtΔAOB中,∠AOB=90o,已知AB不平行與CD,AC、BD分別是∠BAO和∠ABO的角平分線,又CE、DE分別是∠ACD和∠BDC的角平分線,則∠E=_______;(拓展):如圖4,直線MN與直線PQ相交于O,∠MOQ=60o,點(diǎn)A在射線OP上運(yùn)動(dòng),點(diǎn)B在射線OM上運(yùn)動(dòng),延長(zhǎng)BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其延長(zhǎng)線交于E、F,在ΔAEF中,如果有一個(gè)角是另一個(gè)角的4倍,則∠ABO=______.10.(1)思考探究:如圖,△ABC的內(nèi)角∠ABC的平分線與外角∠ACD的平分線相交于P點(diǎn),已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度數(shù).(2)類比探究:如圖,△ABC的內(nèi)角∠ABC的平分線與外角∠ACD的平分線相交于P點(diǎn),已知∠P=n°.求∠A的度數(shù)(用含n的式子表示).(3)拓展遷移:已知,在四邊形ABCD中,四邊形ABCD的內(nèi)角∠ABC與外角∠DCE的平分線所在直線相交于點(diǎn)P,∠P=n°,請(qǐng)畫出圖形;并探究出∠A+∠D的度數(shù)(用含n的式子表示).【參考答案】一、解答題1.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計(jì)算∠PFD即可;(2)根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí);②當(dāng)點(diǎn)P在AB上方時(shí);③當(dāng)點(diǎn)P在CD下方時(shí),分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí),過(guò)點(diǎn)P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點(diǎn)P在AB上方時(shí),如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點(diǎn)P在CD下方時(shí),∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點(diǎn)睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問(wèn)題.2.(1)36°或18°;(2)△AOB、△AOC都是“夢(mèng)想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據(jù)三角形內(nèi)角和等于180°,如果一個(gè)“夢(mèng)想三角形”有一個(gè)角為108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“夢(mèng)想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據(jù)三角形內(nèi)角和等于180°,如果一個(gè)“夢(mèng)想三角形”有一個(gè)角為108°,可得另兩個(gè)角的和為72°,由三角形中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的3倍時(shí),可以分別求得最小角為180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比較得出答案即可;(2)根據(jù)垂直的定義、三角形內(nèi)角和定理求出∠ABO、∠OAC的度數(shù),根據(jù)“夢(mèng)想三角形”的定義判斷即可;(3)根據(jù)同角的補(bǔ)角相等得到∠EFC=∠ADC,根據(jù)平行線的性質(zhì)得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根據(jù)角平分線的定義得到∠ADE=∠CDE,求得∠B=∠BCD,根據(jù)“夢(mèng)想三角形”的定義求解即可.【詳解】解:當(dāng)108°的角是另一個(gè)內(nèi)角的3倍時(shí),最小角為180°﹣108°﹣108÷3°=36°,當(dāng)180°﹣108°=72°的角是另一個(gè)內(nèi)角的3倍時(shí),最小角為72°÷(1+3)=18°,因此,這個(gè)“夢(mèng)想三角形”的最小內(nèi)角的度數(shù)為36°或18°.故答案為:18°或36°.(2)△AOB、△AOC都是“夢(mèng)想三角形”證明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB為“夢(mèng)想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“夢(mèng)想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“夢(mèng)想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=.【點(diǎn)睛】本題考查的是三角形內(nèi)角和定理、“夢(mèng)想三角形”的概念,用分類討論的思想解決問(wèn)題是解本題的關(guān)鍵.3.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,再由根據(jù)角的和差計(jì)算即可得∠C的度數(shù),進(jìn)而得∠B的度數(shù).②根據(jù)翻折的性質(zhì)和三角形外角及三角形內(nèi)角和定理,用含x的代數(shù)式表示出∠FDE、∠DFE的度數(shù),分三種情況討論求出符合題意的x值即可.【詳解】(1)由翻折的性質(zhì)可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故與∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故與∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°則,,由翻折可知:∵,,∴,,當(dāng)∠FDE=∠DFE時(shí),,解得:;當(dāng)∠FDE=∠E時(shí),,解得:(因?yàn)?<x≤45,故舍去);當(dāng)∠DFE=∠E時(shí),,解得:(因?yàn)?<x≤45,故舍去);綜上所述,存在這樣的x的值,使得△DEF中有兩個(gè)角相等.且.【點(diǎn)睛】本題考查圖形的翻折、三角形內(nèi)角和定理、平行線的判定及其性質(zhì)、三角形外角的性質(zhì)、等角代換,解題的關(guān)鍵是熟知圖形翻折的性質(zhì)及綜合運(yùn)用所學(xué)知識(shí).4.(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據(jù)角平分線的性質(zhì)求出∠EBD+∠EDB=(∠ABD+∠BDC),根據(jù)平行線的性質(zhì)∠ABD+∠BDC=180°解析:(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據(jù)角平分線的性質(zhì)求出∠EBD+∠EDB=(∠ABD+∠BDC),根據(jù)平行線的性質(zhì)∠ABD+∠BDC=180°,從而根據(jù)∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)過(guò)點(diǎn)G作GP∥AB,根據(jù)AB∥CD,得到GP∥AB∥CD,從而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根據(jù)∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分線的定義求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)過(guò)點(diǎn)F、G分別作FM∥AB、GM∥AB,從而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根據(jù)BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解.【詳解】解:(1)證明:∵BE平分∠ABD,∴∠EBD=∠ABD,∵DE平分∠BDC,∴∠EDB=∠BDC,∴∠EBD+∠EDB=(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如圖2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,過(guò)點(diǎn)G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=;(3)如圖,過(guò)點(diǎn)F、G分別作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+(180°﹣∠3)+(180°﹣∠5),=180°+(∠3+∠5),=180°+∠BFD,整理得:2∠BGD+∠BFD=360°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)與判定,角平分線的性質(zhì)和三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.5.(1)互相平行;(2)35,20;(3)見解析;(4)不變,【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行解析:(1)互相平行;(2)35,20;(3)見解析;(4)不變,【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會(huì)變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點(diǎn)睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線的判定和性質(zhì),角平分線的定義,正確的識(shí)別圖形進(jìn)行推理是解題的關(guān)鍵.6.(1)見詳解;(2)見詳解;(3)∠HPQ的大小不發(fā)生變化,理由見詳解.【分析】(1)根據(jù)同旁內(nèi)角互補(bǔ),兩條直線平行即可判斷直線AB與直線CD平行;(2)先根據(jù)兩條直線平行,同旁內(nèi)角互補(bǔ),再根解析:(1)見詳解;(2)見詳解;(3)∠HPQ的大小不發(fā)生變化,理由見詳解.【分析】(1)根據(jù)同旁內(nèi)角互補(bǔ),兩條直線平行即可判斷直線AB與直線CD平行;(2)先根據(jù)兩條直線平行,同旁內(nèi)角互補(bǔ),再根據(jù)∠BEF與∠EFD的角平分線交于點(diǎn)P,可得∠EPF=90°,進(jìn)而證明PF∥GH;(3)根據(jù)角平分線定義,及角的和差計(jì)算即可求得∠HPQ的度數(shù),進(jìn)而即可得到結(jié)論.【詳解】解:(1)AB∥CD,理由如下:∵∠1與∠2互補(bǔ),∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF與∠EFD的角平分線交于點(diǎn)P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°?∠PKG=90°?2∠HPK.∴∠EPK=180°?∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠HPK.∴∠HPQ=∠QPK?∠HPK=45°.∴∠HPQ的大小不發(fā)生變化.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì)、余角和補(bǔ)角,解決本題的關(guān)鍵是綜合運(yùn)用角平分線的定義、平行線的性質(zhì)、余角和補(bǔ)角.7.(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰解析:(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰三分線,且可得,進(jìn)而可求的度數(shù);(3)根據(jù)的三分線所在的直線與的三分線所在的直線交于點(diǎn).分四種情況畫圖:情況一:如圖①,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況二:如圖②,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況三:如圖③,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況四:如圖④,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),再根據(jù),,根據(jù)三角形外角性質(zhì),即可求出的度數(shù).【詳解】解:(1)如圖,當(dāng)BD是“鄰AB三分線”時(shí),;當(dāng)BD是“鄰BC三分線”時(shí),;(2)在△BPC中,∵,∴,又∵BP、CP分別是鄰BC三分線和鄰BC三分線,∴,∴,∴,在△ABC中,,∴.(3)分4種情況進(jìn)行畫圖計(jì)算:情況一:如圖①,當(dāng)BP和CP分別是“鄰AB三分線”、“鄰AC三分線”時(shí),∴;情況二:如圖②,當(dāng)BP和CP分別是“鄰BC三分線”、“鄰CD三分線”時(shí),∴;情況三:如圖③,當(dāng)BP和CP分別是“鄰BC三分線”、“鄰AC三分線”時(shí),∴;情況四:如圖④,當(dāng)BP和CP分別是“鄰AB三分線”、“鄰CD三分線”時(shí),;綜上所述:的度數(shù)為:或或或.【點(diǎn)睛】本題考查了三角形的外角性質(zhì),解決本題的關(guān)鍵是掌握并靈活運(yùn)用三角形的外角性質(zhì),注意要分情況討論.8.(1)10°;(2)∠C的度數(shù)為70°;(3)∠DFE﹣∠AFC的值為;(4)∠D1F1A﹣∠AF1C的值為.【分析】(1)根據(jù)∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解決問(wèn)題.解析:(1)10°;(2)∠C的度數(shù)為70°;(3)∠DFE﹣∠AFC的值為;(4)∠D1F1A﹣∠AF1C的值為.【分析】(1)根據(jù)∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解決問(wèn)題.(2)設(shè)∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,利用三角形內(nèi)角和定理構(gòu)建方程求出x即可解決問(wèn)題.(3)設(shè)∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,用n,x表示出∠DFE,∠AFC,再結(jié)合三角形內(nèi)角和定理解決問(wèn)題即可.(4)設(shè)∠FAC=∠FAB=y.用n,x表示出∠D1F1A,∠AF1C,再結(jié)合三角形內(nèi)角和定理解決問(wèn)題即可.【詳解】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠CAE=∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-50°=40°,∴∠EAD=∠EAC-∠DAC=50°-40°=10°.(2)設(shè)∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EAD=90°,∠C+∠DAC=90°,∴∠AED=∠C=∠B+∠EAB=30°+2x,在△ABC中,由三角形內(nèi)角和定理可得:30°+30°+2x+4x=180°,解得x=20°,∴∠C=30°+40°=70°.(3)設(shè)∠FAC=∠FAB=x.則有∠AEC=∠DEF=180°-n-x,∵FD⊥BC,∴∠FDE=90°,∴∠DFA=90°-(180°-n-x)=n+x-90°,∵CF平分∠BCG,∴∠FCG=(180°-n),∵∠AFC=∠FCG-∠FAC=(180°-n)-x=90°-n-x=15°,∴∠DFE-∠AFC=n+x-105°,∵2x+30°+n=180°,∴x=75°-n,∴∠DFE-∠AFC=n-30°.(4)設(shè)∠FAC=∠FAB=y.由題意同法可得:∠D1F1A=90°-(180°-n-y)=n+y-90°,∠AF1C=180°-y-n-(180°-n)=135°-y-n,∴∠D1F1A-∠AF1C=n+y-90°-(135°-y-n)=n+3y-225°,∵2y+30°+n=180°,∴y=75°-n,∴∠D1F1A-∠AF1C=n+y-90°-(135°-x-n)=n+225°-n-225°=n.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理,角平分線的定義,三角形的外角的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)解決問(wèn)題,本題有一定的難度.9.【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見解析;【應(yīng)用】22.5°;【拓展】45°或36°.【分析】【探究1】根據(jù)角平分線的定義可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見解析;【應(yīng)用】22.5°;【拓展】45°或36°.【分析】【探究1】根據(jù)角平分線的定義可得∠1=∠ABC,∠2=∠ACB,根據(jù)三角形的內(nèi)角和定理可得∠1+∠2=90o-∠A,再根據(jù)三角形的內(nèi)角和定理即可得出結(jié)論;【探究2】如圖2,由三角形的外角性質(zhì)和角平分線的定義可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根據(jù)三角形的內(nèi)角和定理即可得出結(jié)論;【應(yīng)用】延長(zhǎng)AC與BD,設(shè)交點(diǎn)為G,如圖5,由【探究1】的結(jié)論可得∠G的度數(shù),于是可得∠GCD+∠GDC的度數(shù),然后根據(jù)角平分線的定義和角的和差可得∠1+∠2的度數(shù),再根據(jù)三角形的內(nèi)角和定理即可求出結(jié)果;【拓展】根據(jù)角平分線的定義和平角的定義可得∠EAF=90°,然后分三種情況討論:若∠EAF=4∠E,則∠E=22.5°,根據(jù)角平分線的定義和三角形的外角性質(zhì)可得∠ABO=2∠E,于是可得結(jié)果;若∠EAF=4∠F,則∠F=22.5°,由【探究2】的結(jié)論可求出∠ABO=135°,然后由三角形的外角性質(zhì)即可判斷此種情況不存在;若∠F=4∠E,則∠E=18°,然后再由第一種情況的結(jié)論∠ABO=2∠E即可求出結(jié)果,進(jìn)而可得答案.【詳解】解:【探究1】理由如下:∵BO和CO分別是∠ABC和∠ACB的角平分線,∴∠1=∠ABC,∠2=∠ACB,在ΔABC中,∠A+∠ABC+∠ACB=180o.∴∠1+∠2=(∠ABC+∠ACB)=(180o-∠A)=90o-∠A,∴∠BOC=180o-(∠1+∠2)=180o-(90o-∠A)=90o+∠A;故答案為:∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A;理由如下:如圖2,由三角形的外角性質(zhì)和角平分線的定義,∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),在△BOC中,∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣(∠A+∠ACB+∠A+∠ABC),=180°﹣(180°+∠A),=90°﹣∠A;【應(yīng)用】延長(zhǎng)AC與BD,設(shè)交點(diǎn)為G,如圖5,由【探究1】的結(jié)論可得:∠G=,∴∠GCD+∠GDC=45°,∵CE、DE分別是∠ACD和∠BDC的角平分線,∴∠1=∠ACD=,∠2=∠BDC=,∴∠1+∠2=+=,∴;故答案為:22.5°;【拓展】如圖4,∵AE、AF是∠BAO和∠OAG的角平分線,∴∠EAQ+∠FAQ=,即∠EAF=90°,在Rt△AEF中,若∠EAF=4∠E,則∠E=22.5°,∵∠EOQ=∠E+∠EAQ,∠BOQ=2∠EOQ,∠BAO=2∠EAQ,∴∠BOQ=2∠E+∠BAO,又∠BOQ=∠BAO+∠ABO,∴∠ABO=2∠E=45°;若∠EAF=4∠F,則∠F=22.5°,則由【探究2】知:,∴∠ABO=135°,∵∠ABO<∠BOQ=60°,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論