專題16.6整式的乘法(整式的乘法運(yùn)算綜合訓(xùn)練六類題型)2025-2026學(xué)年(人教版)八年級(jí)數(shù)學(xué)上冊(cè)(含答案)_第1頁(yè)
專題16.6整式的乘法(整式的乘法運(yùn)算綜合訓(xùn)練六類題型)2025-2026學(xué)年(人教版)八年級(jí)數(shù)學(xué)上冊(cè)(含答案)_第2頁(yè)
專題16.6整式的乘法(整式的乘法運(yùn)算綜合訓(xùn)練六類題型)2025-2026學(xué)年(人教版)八年級(jí)數(shù)學(xué)上冊(cè)(含答案)_第3頁(yè)
專題16.6整式的乘法(整式的乘法運(yùn)算綜合訓(xùn)練六類題型)2025-2026學(xué)年(人教版)八年級(jí)數(shù)學(xué)上冊(cè)(含答案)_第4頁(yè)
專題16.6整式的乘法(整式的乘法運(yùn)算綜合訓(xùn)練六類題型)2025-2026學(xué)年(人教版)八年級(jí)數(shù)學(xué)上冊(cè)(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩68頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

(-3a2b)3-(2a3)2.(-b)3+3a6b3;(2)2x(x-4)-(2x-3)(x+2).(-x2y)2-x(3x2-x3y2+1);(3)(x-8y)(x-y);(4)(a+b)(a2-ab+b2).(2)-4x2.(3x2+2x-y).(1)-3x2(4x-3);(2)5ab(2a-b)+5ab2;(3)4m(m-n)+(5m-n)(m+n).(1)x(x2+x-1)-(2x2-1)(x-4);(2)(2x+5y)(3x-2y).(1)x(x2+x-1)-(2x2-1)(x-4);(2)2x(x-4)+(3x-1)(x+3).(1)a5.a-(-3a3)2;(2)(n-m)2.(m-n)3.(n-m)54;(-2ab)+(-3a2b)2.3+(1)2x2y3÷(-3xy);÷(-5×106.2x2y)3.(x2y-7xy2)÷14x6y3;(3)(x-2)(x+6)-(6x4-4x3-2x2)÷(-2x2).12a3-6a2)÷(-2a);3ab2-5a2b)÷(-ab)3;6x4-8x3)÷(-2x2)-(3x+2)(1-x).3x3-6x2+12x)÷3x;-ab.(-x)+(-x3)3÷x2;28a3b2c+7a2b3-14a2b2)÷(-7a2b).(-4ab3)-ab÷-?ab22;(3)(x-3)(x-2)-6(x2+x-1);(-4ab3+8a2b2)÷(4ab)-(2a+b)(a-b).(1)x2.x3+x8÷x3;(2)(-2m)2.23;(3)(2a+2)(a-3)+6÷2a.(-4a3-7a3b2+12a2b)÷(-2a)2.小亮也舉起了手,說(shuō)小明的解題過(guò)程不對(duì),并指了出來(lái).老錯(cuò)在哪兒?jiǎn)???qǐng)指出來(lái),并寫(xiě)出正確的解答過(guò)程.22.2x(m-x2)=4x3y2-2x3,則m=.23.若xx2-a)+3x-2b=x3+5x-6對(duì)任意x都成立,則a+b=.24.若(2x2-mx+6)(x2-3x+3n)的展開(kāi)式中x2項(xiàng)的系數(shù)為9,x3項(xiàng)的系數(shù)為1,求m-n的25.已知多項(xiàng)式2x2-3x+5與多項(xiàng)式ax+c的乘積中x2,x的系數(shù)分別是-2和5,求a,c26.已知單項(xiàng)式-2xa+2by2a+b與x3y3b是同類項(xiàng),試求這兩個(gè)單項(xiàng)式的積.27.已知ax(5x-3x2y+by)=10x2-6x3y+2xy,求a,b的值.28.已知單項(xiàng)式-2x3m-1y2n-3和7xn-2ym-1的積與x6y4是同類項(xiàng),求(mn)m+n的值.于抄錯(cuò)了第一個(gè)多項(xiàng)式中的符號(hào),得到的結(jié)果為6x2+11x-10;乙由于漏抄了第二個(gè)多項(xiàng)式中的系數(shù),得到的結(jié)果為2x2-9x+10.31.先化簡(jiǎn),再求值:(a+b)(3a-2b)-b(a-b),其中.32.先化簡(jiǎn),再求值:(2x-1)(x-4)-2(x+3)(x+2),其中x=-1.33.先化簡(jiǎn),再求值:(x+y)(3x-2y)-y(4x-2y),其中x=-134.先化簡(jiǎn),再求值:(x+y)(3x-2y)-y(4x-2y),其中x=-135.先化簡(jiǎn),再求值:(4x+3)(x-2)-2(x-1)(2x-3),其中x=-2.37.求值:(x-y)(x2+xy+y2)-(x+y)(x2-y2),其中38.先化簡(jiǎn),再求值:(x+2y)(x-2y)+(20xy3-8x2y2)÷4xy,其中x=2025,y=2026.39.先化簡(jiǎn),再求值:(a+2)2+a(a-4)-(a+1)(a-2),其中a2+a-3=040.先化簡(jiǎn),再求值:2(a-3)+(3a-2)(2a+1)-(6a-1)(a+4),其中.42.若x2+nx+3)與(x2-3x+m)的乘積中不含x3和x2的項(xiàng),求m、n的值.43.已知二次三項(xiàng)式ax2+bx+1與2x2-3x+1的積不含x2的項(xiàng),也不含x的項(xiàng),求系數(shù)a與b44.已知將(x2+nx+3)(x2-2x-m)乘開(kāi)的結(jié)果不含x3和x2項(xiàng).45.已知計(jì)算(x2-2).(x3+mx)的結(jié)果中不含x3項(xiàng).(2)在(1)的條件下,求(m+1)(m2-m+1)的值.(2)求代數(shù)式m2025n2024的值.47.已知(x2+mx+n)(x-1)的展開(kāi)式中不含x項(xiàng)和x2項(xiàng).(2)先化簡(jiǎn),再求值:(2m-n)(m-2n)+(4mn2-6m2n+2m3)÷(-2m)49.若的積中不含x和x3項(xiàng).(2)求代數(shù)式(-18m2n)2+(9mn)2+(3m)2024n2026的值.50.已知(x-2)(x2+mx+1)的結(jié)果中不含x2項(xiàng),(2)在(1)的條件下,求(m+1)(m2-m+1)(3)計(jì)算(100-1)(1002+100+1)的值.(1)(2x-1)(x+3);(2)-3x2y2.2xy+(xy)3.(1)(-a)2-a(2a-1);4a3b2-8ab3)÷(4ab2).(1)x(x2+x-1)-(2x2-1)(x-4);54.已知A=(x+y)(x-2y)-y(x-2y)÷x(1)化簡(jiǎn)A;(2)當(dāng)x=-1,y=2時(shí),求A的值.(1)(-3y)(4x2y-2xy);(2)(a+2)(a+3)+2a62b-2ab2)2÷(-0.5a4b5)3-a2b-ab÷?ab(1)2x2y3(3x2-2xy+3y2)÷(-3x2y2);(2)(y+2)(y+3)-y(y-1).(-3x2y)2.6xy3÷9x3y4;(2)6x(x+2)-(3x-2)(2x-3);8x3y2-4x2y2)÷(-2x2y)-2x(1-2y).(1)-4ab2.(-ab)2.3abc÷6a2b3;(2)(x+y)(x-y)-x(x-2y);1.(1)-20a6b3(2)-9x+6(-3a2b)3-(2a3)2.(-b)3+3a6b3=-27a6b3-4a6.(-b3)+3a6b3=-27a6b3+4a6b3+3a6b3=-20a6b3;(2)解:2x(x-4)-(2x-3)(x+2)=2x2-8x-2x2+3x-4x+6=-9x+6.2.(1)2x4y2-3x3-x(2)m3-n3(-x2y)2-x(3x2-x3y2+1)=x4y2-3x3+x4y2-x=2x4y2-3x3-x;(2)解:(m-n)(m2+mn+n2)=m3-n3.3.(1)a2+a-6(2)3x2+7x+2(3)x2-9xy+8y2(4)a3+b3【分析】本題主要考查了多項(xiàng)式乘多項(xiàng)式,熟練掌握多項(xiàng)式乘多項(xiàng)式運(yùn)算法則:“多項(xiàng)式與=a2-2a+3a-6=a2+a-6;(3)解:(x-8y)(x-y)=x2-xy-8xy+8y2=x2-9xy+8y2;(4)解:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3.4.(1)a2b2-3a2b(2)-12x4-8x3+4x2y【分析】本題主要考查單項(xiàng)式乘以多項(xiàng)式,熟練掌握運(yùn)算法則是=a2b2-3a2b;(2)解:-4x2.(3x2+2x-y)=-4x2.3x2+(-4x2).2x+(-4x2).(-y)=-12x4-8x3+4x2y5.(1)-12x3+9x2(2)10a2b(3)9m2-n2【詳解】(1)解:原式=-3x2.4x-3×(-3x2)=-12x3+9x2.(2)解:原式=10a2b-5ab2+5ab2=10a2b.(3)解:原式=4m2-4mn+5m2+5mn-mn-n24m2+5m2)+(5mn-4mn-mn)-n2=9m2-n2.6.(1)-x3+9x2-4【詳解】(1)解:原式=x3+x2-x-(2x3-8x2-x+4)=x3+x2-x-2x3+8x2+x-4=-x3+9x2-4;7.(1)-24a4b5c;(2)6x2+11xy-10y2.【分析】本題考查了整式的運(yùn)算,熟練掌握運(yùn)算法(-8ab2).(-ab)2.3abc(-8ab2).a2b2.3abc=-8×3a1+2+1b2+2+1c=-24a4b5c;(2)解:(2x+5y)(3x-2y)=6x2-4xy+15xy-10y2=6x2+11xy-10y2.8.(1)-x3+9x2-4(2)5x2-3x2+x-1)-(2x2-1)(x-4)=x3+x2-x-(2x3-8x2-x+4)=x3+x2-x-2x3+8x2+x-4=-x3+9x2-4;(2)解:2x(x-4)+(3x-1)(x+3)=2x2-8x+3x2+9x-x-3=5x2-3.9.(1)-8a6(2)(m-n)25(3)a8b8(4)3a4b2【分析】本題主要考查整式的運(yùn)算,熟練掌握運(yùn)算法則是=a6-9a6=-8a6;(2)解:(n-m)2.(m-n)3.(n-m)54=(m-n)2.(m-n)3.(m-n)20=(m-n)25;=a8b8;(4)解:3a3b.(-2ab)+(-3a2b)2=-6a4b2+9a4b2=3a4b2.(2)-120a9.=9a6.a3+(-4a2).a7-125a9=9a9-4a9-125a9=-120a9.(2)-3×102【分析】本題考查了整式的除法以及科學(xué)記數(shù)法,掌握相關(guān)運(yùn)算÷(-5×106)=-0.3×103=-3×102.(3)4x2+2x-13(2)解:(2x2y)3.(x2y-7xy2)÷14x6y3=8x6y3.(x2y-7xy2)÷14x6y38x8y4-56x7y5)÷14x6y3422=7xy-4xy(3)解:(x-2)(x+6)-(6x4-4x3-2x2)÷(-2x2)=x2+4x-12-(-3x2+2x+1)=x2+4x-12+3x2-2x-1=4x2+2x-13.13.(1)-6a2+3a【分析】本題考查了多項(xiàng)式除以單項(xiàng)式,掌握相關(guān)運(yùn)算12a3-6a2)÷(-2a)(-2a)-6a2÷(-2a)=-6a2+3a;=a2b÷(-2b)-2ab2÷(-2b)-b3÷(-2b)14.(1)-12a2b+20a3(2)3x-2(-2a2b)2.3ab2-5a2b)÷(-ab)33ab2-5a2b)÷(-a3b3)12a5b4-20a6b3)÷(-a3b3)=-12a2b+20a3;(2)解:(6x4-8x3)÷(-2x2)-(3x+2)(1-x)=-3x2+4x-(3x-3x2+2-2x)=-3x2+4x-(x-3x2+2)=-3x2+4x-x+3x2-2=3x-2.15.(1)x2-2x+4(2)-4a2+2ab-6b2=x2-2x+4.=-4a2+2ab-6b2.16.(1)-2x7(2)-4abc-b2+2b(-x)+(-x3)3÷x2(-x)+(-x9)÷x2=-x7+(-x7)=-2x7.(2)解:(28a3b2c+7a2b3-14a2b2)÷(-7a2b)=28a3b2c÷(-7a2b)+7a2b3÷(-7a2b)-14a2b2÷(-7a2b)=-4abc-b2+2b.17.(1)-8x4yz(3)-5x2-11x+12(4)3ab-2a2=-8x4yz;(3)解:(x-3)(x-2)-6(x2+x-1)=x2-2x-3x+6-6x2-6x+6=-5x2-11x+12;(4)解;(-4ab3+8a2b2)÷(4ab)-(2a+b)(a-b)=-b2+2ab-(2a2+ab-2ab-b2)=-b2+2ab-2a2-ab+2ab+b2=3ab-2a2.(3)a-2【詳解】(1)解:x2.x3+x8÷x3=x5+x5=2x5;=2a2-6a+2a-6+6÷2a2a2-4a)÷2a=a-2.19.(1)7a2-4ab【詳解】(1)解:原式=4a2-2ab+3a2-2ab=7a2-4ab;(2)原式=-4a3÷4a2-7a3b2÷4a2+12a2b÷4a2=-a-ab2+3b.【分析】本題主要考查了多項(xiàng)式除以單項(xiàng)式,觀察可知有兩處錯(cuò)誤第一處錯(cuò)是把(-a為(a+b)3;第二處錯(cuò)是把2(a+b)3化為8(a+b)3;把中括號(hào)內(nèi)的每一層分別除以2(a+b)3即可得到答案.【詳解】解:第一處錯(cuò)是把(-a-b)3化為(a+b)3;第二處錯(cuò)是把2(a+b)3化為8(a+b)3.【詳解】解:Qx(x+2)=x2+2x=:a=1,b=2,:a+b=3,故選:A.22.2x2y2【詳解】解:2x(m-x2)=4x3y2-2x3,2xm-2x3=4x3y2-2x3,2xm=4x3y2,m=4x3y2÷2xm=2x2y2.故答案為:2x2y2.式乘多項(xiàng)式的法則對(duì)等式左邊進(jìn)行整理,再【詳解】解:x(x2-a)+3x-2b=x3+5x-6,x3-ax+3x-2b=x3+5x-6,x3+(-a+3)x-2b=x3+5x-6,:-a+3=5,-2b=-6,解得:a=-2,b=3,:a+b=-2+3=1.24.-112x4-(m+6)x3+(6n+3m+6)x2-(3mn+18)x+18n,結(jié)合x(chóng)2項(xiàng)的系數(shù)為9,x3項(xiàng)的系數(shù)為1,故6n+3m+6=9,m+6=-1,再解得m=-7,n=4,即可作答.【詳解】解:(2x2-mx+6)(x2-3x+3n)=2x4-6x3+6nx2-mx3+3mx2-3mnx+6x2-18x+18n=2x4-(m+6)x3+(6n+3m+6)x2-(3mn+18)x+18n.∵展開(kāi)式中x2項(xiàng)的系數(shù)為9,x3項(xiàng)的系數(shù)為1,:6n+3m+6=9,m+6=-1,解得m=-7,n=4.:m-n=-7-4=-11.由題意易得(2x2-3x+5)(ax+c)=2ax3+(2c-3a)x2+(5a-3c)x+5c,則有【詳解】解:Q(2x2-3x+5)(ax+c)=2ax3+2cx2-3ax2-3cx+5ax+5c又Qx2,x的系數(shù)分別是-2和5,26.-2x6y6【詳解】解:∵單項(xiàng)式-2xa+2by2a+b與x3y3b是同類項(xiàng),:這兩個(gè)單項(xiàng)式分別為-2x3y3和x3y3.這兩個(gè)單項(xiàng)式的積為-2x3y3.x3y3=-2x6y6.【詳解】∵ax(5x-3x2y+by)=5ax2-3ax3y+abxy=10x2-6x3y+2xy:a=2,b=1.【分析】本題考查了單項(xiàng)式乘以單項(xiàng)式和同類項(xiàng)的定義,注意相乘的結(jié)果仍是一個(gè)單項(xiàng)式,【詳解】解:∵-2x3m-1y2n-3.7xn-2ym-1=-14x3m+n-3ym+2n-4 又∵單項(xiàng)式-2x3m-1y2n-3和7xn-2ym-1的積與x6y4是同類項(xiàng), :(mn)m+n=(2×3)2+3=65.:(mn)m+n的值為65.29.4053先根據(jù)同底數(shù)冪相除法則可得b-a=1,c-b=3,再將待求式整理為-2025(b-a)+2026(c-b),然后代入求值即可.:2b÷2a=21,2c÷2b=8=23,:b-a=1,c-b=3,∴原式=2025a-2025b-2026b+2026c=-2025(b-a)+2026(c-b)=-2025×1+2026×3=-2025+607830.(1)a=-5,b=-2(2)6x-19x+10【詳解】(1)解:由題意,得(2x-a)(3x+b)=6x2+(2b-3a)x-ab=6x2+11x-10,所以2b-3a=11①;a+2b=-9②由②得2b=-9-a,代入①得-9-a-3a=11,所以a=-5,所以2b=-4,所以b=-2.(2)解:由(1)得(2x+a)(3x+b)=(2x-5)(3x-2)=6x2-19x+10.31.3a2-b2,-【詳解】解:原式=3a2+ab-2b2-ab+b2=3a2-b2;:原式.32.-19x-8,11【詳解】解:(2x-1)(x-4)-2(x+3)(x+2)=2x2-8x-x+4-2(x2+2x+3x+6)=2x2-9x+4-2x2-10x-12=-19x-8將x=-1代入上式得,33.3x2-3xy,4【詳解】解:(x+y)(3x-2y)-y(4x-2y)=3x2+3xy-2xy-2y2-4xy+2y2=3x2-3xy,34.3x2-3xy,4【詳解】解:(x+y)(3x-2y)-y(4x-2y)=3x2+3xy-2xy-2y2-4xy+2y2=3x2-3xy,當(dāng)x=-1,y=時(shí),原式=3×(-1)2-3×(-1)×=3+1=4.35.5x-12,-22【詳解】解:原式=4x2-8x+3x-6-2(2x2-3x-2x+3)=4x2-5x-6-4x2+10x-6=5x-12,當(dāng)x=-2時(shí),5x-12=5×(-2)-12=-22.36.a(chǎn)2-b2+2b,2【詳解】解:原式=a2-2ab+3a+2ab-4b2+6b-3a+6b-9-10b+3b2+9=a2-b2+2b;當(dāng)a=-1,b=1時(shí),原式=(-1)2-12+2×1=2.定的x、y的值代入化簡(jiǎn)后的式子求值.本題主要考查了整式的混合運(yùn)算以及代數(shù)式求值,熟練掌握多項(xiàng)式乘法法則、合并同類項(xiàng)法則以及【詳解】解:(x-y)(x2+xy+y2)-(x+y)(x2-y2)=x3+x2y+xy2-x2y-xy2-y3-(x3-xy2+x2y-y3)=x3-y3-x3+xy2-x2y+y3=-xy+xy,當(dāng)x=,y=5時(shí),2原式=-()×5+×2故答案為:4.8.38.(x-y)2,1單項(xiàng)式進(jìn)行計(jì)算即可化簡(jiǎn),最后代入x、y的值計(jì)算即可,熟練掌握運(yùn)算法則是解此題的關(guān)【詳解】解:(x+2y)(x-2y)+(20xy3-8x2y2)÷4xy=x2-4y2+(20xy3÷4xy-8x2y2÷4xy)=x2-4y2+5y2-2xy=x2+y2-2xy=(x-y)2.當(dāng)x=2025,y=2026時(shí),原式=(2025-2026)2=1.39.a(chǎn)2+a+6,9后將a2+a-3=0變形為a2+a=3,再整體代入求值即可.【詳解】解:(a+2)2+a(a-4)-(a+1)(a-2)=a2+4a+4+a2-4a-(a2-a-2)=a2+4a+4+a2-4a-a2+a+2:a2+a-3=0:a2+a=3:原式=3+6=940.-22a-4;-15簡(jiǎn)的結(jié)果,最后把a(bǔ)=代入進(jìn)行計(jì)算即可.【詳解】解:2(a-3)+(3a-2)(2a+1)-(6a-1)(a+4)=2a-6+6a2+3a-4a-2-(6a2+24a-a-4)=2a-6+6a2+3a-4a-2-6a2-23a+4=(6-6)a2+(2+3-4-23)a+(-6-2+4)=-22a-4.41.m=-3【分析】本題考查了多項(xiàng)式乘多項(xiàng)式,熟練掌握多項(xiàng)式乘多項(xiàng)式的:m=-3.【分析】本題考查了多項(xiàng)式乘以多項(xiàng)式、二元一次方程組,熟練掌握運(yùn)算法則是解題關(guān)鍵.先計(jì)算多項(xiàng)式乘以多項(xiàng)式,再根據(jù)含x3和x2的項(xiàng)的系數(shù)都等于0,據(jù)此求解即可得.【詳解】解:(x2+nx+3)(x2-3x+m)=x4-3x3+mx2+nx3-3nx2+mnx+3x2-9x+3m(n-3)x3+(m-3n+3)x2+(mn-9)x+3m,:(x2+nx+3)與(x2-3x+m)的乘積中不含x3和x2的項(xiàng),ììn-3=0::í,llm-3n+3=0為0,即可求出a與b的值.【詳解】解:(ax2+bx+1)(2x2-3x+1)=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1=2ax4+(2b-3a)x3+(a+2-3b)x2+(b-3)x+1:積不含x2的項(xiàng),也不含x的項(xiàng),:íìa+2-3b:í:解得:(2)-9(1)先計(jì)算多項(xiàng)式乘以多項(xiàng)式,再根據(jù)結(jié)果中含x3和x2項(xiàng)的系數(shù)等于0建立方程組,解方x2+nx+3)(x2-2x-m)=x4-2x3-mx2+nx3-2nx2-mnx+3x2-6x-3m(n-2)x3+(3-m-2n)x2-(mn+6)x-3m,(x2+nx+3)(x2-2x-m)乘開(kāi)的結(jié)果不含x3和x2項(xiàng),:n-2=0,3-m-2n=0,解得m=-1,n=2.(2)解:(m-n).(m2+mn+n2)=m3-n3,將m=-1,n=2代入得:原式=m3-n3=(-1)3-23=-1-8=-9.(1)先根據(jù)多項(xiàng)式乘多項(xiàng)式運(yùn)算法則展開(kāi),再合并同類x2-2).(x3+mx),=x5+mx3-2x3-2mx,=x5+(m-2)x3-2mx,x2-2)(x3+mx)的結(jié)果中不含x3項(xiàng),:m-2=0,解得,m=2;(2)解:(m+1)(m2-m+1),=m3-m2+m+m2-m+1,:該代數(shù)式中不含x項(xiàng)與x2項(xiàng),(2)m2-2mn,-1【分析】本題考查整式乘除及化簡(jiǎn)求值,熟練掌握以上知識(shí)x2+mx+n)(x-1)=x3+(m-1)x2+(n-m)x-nQ展開(kāi)式中不含x項(xiàng)和x2項(xiàng),:n-m=0,m-1=0,(2)原式=2m2-4mn-mn+2n2+(-2n2+3mn-m2)=m2-2mn:原式=12-2×1×1=1-2=-1.【詳解】(1)解:將多項(xiàng)式(x2+3m22222=x.x+x.(-3x)+x.n+3mx.x+3mx.(-3x)+3mx.n-.x-.(-322222=x-3x+nx+3mx=x-3x+nx+3mx-9mx+3mnx-x+x-∵展開(kāi)式中不含x3項(xiàng)和x項(xiàng),故這兩項(xiàng)的系數(shù)為0.對(duì)于x3項(xiàng):3m-3=0,解得m=1;對(duì)于x項(xiàng):3mn+1=0,將m=1代入得3×1×n+1=0,解得n=-.解:將代入式子2025n2025:(-m2n)2+(3mn)2+(3m)2025n2025是解本題的關(guān)鍵.原式利用多項(xiàng)式乘以多項(xiàng)式法則計(jì)算,整理后根據(jù)積中不含x【詳解】(1)解:原式=x4-3x3+nx2+3mx3-9mx2+3mnx-x2+x-由積中不含x和x3項(xiàng),得3m-3=0,3mn+1=0,:3mn=-1,:原式=(-6m.3mn)2+(3.3mn)2+(3mn)2024n2(1)根據(jù)多項(xiàng)式乘以多項(xiàng)式的計(jì)算法則求出(x-2)(x2+mx+1)的結(jié)果,再根據(jù)不含x2項(xiàng),【詳解】(1)解:(x-2)(x2+mx+1)=x3+mx2+x-2x2-2mx-2=x3+(m-2)x2+(1-2m)x-2,∵(x-2)(x2+mx+1)的結(jié)果中不含x2項(xiàng),:m-2=0:m=2;(2)解:(m+1)(m2-m+1)=m3+m2-m2-m+m+1=23+1(3)解:由(2)可得(m+1)(m2-m+1)=m3+1,:(100-1)(1002+100+1)=1003-151.(1)2x2+5x-3(2)-5x3y3【分析】本題主要考查了整式混合運(yùn)算,熟練掌握運(yùn)算法則=2x2+6x-x-3=2x2+5x-3;(2)解:-3x2y2.2xy+(xy)3=-6x3y3+x3y3=-5x3y3.52.(1)-a2+a;(2)a2-2b.(1)先

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論