南昌市南昌縣2025屆中考試題猜想數(shù)學(xué)試卷含解析_第1頁
南昌市南昌縣2025屆中考試題猜想數(shù)學(xué)試卷含解析_第2頁
南昌市南昌縣2025屆中考試題猜想數(shù)學(xué)試卷含解析_第3頁
南昌市南昌縣2025屆中考試題猜想數(shù)學(xué)試卷含解析_第4頁
南昌市南昌縣2025屆中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

南昌市南昌縣2025屆中考試題猜想數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列圖形中為正方體的平面展開圖的是()A. B.C. D.2.如圖,將一正方形紙片沿圖(1)、(2)的虛線對折,得到圖(3),然后沿圖(3)中虛線的剪去一個(gè)角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.3.如圖,將含60°角的直角三角板ABC繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)45°度后得到△AB′C′,點(diǎn)B經(jīng)過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是()A. B. C. D.π4.如圖是一個(gè)由4個(gè)相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.5.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計(jì)算6.如圖,桌面上放著1個(gè)長方體和1個(gè)圓柱體,按如圖所示的方式擺放在一起,其左視圖是()A. B. C. D.7.如圖是一個(gè)由正方體和一個(gè)正四棱錐組成的立體圖形,它的主視圖是()A. B. C. D.8.如圖所示的圖形為四位同學(xué)畫的數(shù)軸,其中正確的是()A. B.C. D.9.下列四個(gè)命題,正確的有()個(gè).①有理數(shù)與無理數(shù)之和是有理數(shù)②有理數(shù)與無理數(shù)之和是無理數(shù)③無理數(shù)與無理數(shù)之和是無理數(shù)④無理數(shù)與無理數(shù)之積是無理數(shù).A.1 B.2 C.3 D.410.如圖,為的直徑,為上兩點(diǎn),若,則的大小為().A.60° B.50° C.40° D.20°二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,點(diǎn)E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點(diǎn)F,∠CDE的平分線交EF于點(diǎn)G,AE=2DG.若BC=8,則AF=_____.12.如果拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(diǎn)(2,1),那么m的值為_____.13.已知正比例函數(shù)的圖像經(jīng)過點(diǎn)M(-2,1)、Ax1,y1、Bx2,y14.如圖,直角△ABC中,AC=3,BC=4,AB=5,則內(nèi)部五個(gè)小直角三角形的周長為_____.15.在平面直角坐標(biāo)系中,若點(diǎn)P(2x+6,5x)在第四象限,則x的取值范圍是_________;16.如圖,網(wǎng)格中的四個(gè)格點(diǎn)組成菱形ABCD,則tan∠DBC的值為___________.三、解答題(共8題,共72分)17.(8分)如圖,在中,,是角平分線,平分交于點(diǎn),經(jīng)過兩點(diǎn)的交于點(diǎn),交于點(diǎn),恰為的直徑.求證:與相切;當(dāng)時(shí),求的半徑.18.(8分)在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),點(diǎn)B(0,2),點(diǎn)O(0,0).△AOB繞著O順時(shí)針旋轉(zhuǎn),得△A′OB′,點(diǎn)A、B旋轉(zhuǎn)后的對應(yīng)點(diǎn)為A′、B′,記旋轉(zhuǎn)角為α.(I)如圖1,若α=30°,求點(diǎn)B′的坐標(biāo);(Ⅱ)如圖2,若0°<α<90°,設(shè)直線AA′和直線BB′交于點(diǎn)P,求證:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的點(diǎn)P縱坐標(biāo)的最小值(直接寫出結(jié)果即可).19.(8分)全面兩孩政策實(shí)施后,甲,乙兩個(gè)家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:甲家庭已有一個(gè)男孩,準(zhǔn)備再生一個(gè)孩子,則第二個(gè)孩子是女孩的概率是;乙家庭沒有孩子,準(zhǔn)備生兩個(gè)孩子,求至少有一個(gè)孩子是女孩的概率.20.(8分)如圖,為的直徑,,為上一點(diǎn),過點(diǎn)作的弦,設(shè).(1)若時(shí),求、的度數(shù)各是多少?(2)當(dāng)時(shí),是否存在正實(shí)數(shù),使弦最短?如果存在,求出的值,如果不存在,說明理由;(3)在(1)的條件下,且,求弦的長.21.(8分)某校為了解本校九年級男生體育測試中跳繩成績的情況,隨機(jī)抽取該校九年級若干名男生,調(diào)查他們的跳繩成績(次/分),按成績分成,,,,五個(gè)等級.將所得數(shù)據(jù)繪制成如下統(tǒng)計(jì)圖.根據(jù)圖中信息,解答下列問題:該校被抽取的男生跳繩成績頻數(shù)分布直方圖(1)本次調(diào)查中,男生的跳繩成績的中位數(shù)在________等級;(2)若該校九年級共有男生400人,估計(jì)該校九年級男生跳繩成績是等級的人數(shù).22.(10分)頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過點(diǎn)C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動點(diǎn),過點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;點(diǎn)P為x軸的正半軸上一個(gè)動點(diǎn),過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對應(yīng)點(diǎn)F恰好落在y軸上時(shí),請直接寫出點(diǎn)P的坐標(biāo).23.(12分)如圖,矩形中,對角線、交于點(diǎn),以、為鄰邊作平行四邊形,連接求證:四邊形是菱形若,,求四邊形的面積24.如圖,拋物線y=ax2+bx﹣2經(jīng)過點(diǎn)A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點(diǎn)D是直線AC上方的拋物線上的一點(diǎn),求△DCA面積的最大值;(3)P是拋物線上一動點(diǎn),過P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

利用正方體及其表面展開圖的特點(diǎn)依次判斷解題.【詳解】由四棱柱四個(gè)側(cè)面和上下兩個(gè)底面的特征可知A,B,D上底面不可能有兩個(gè),故不是正方體的展開圖,選項(xiàng)C可以拼成一個(gè)正方體,故選C.本題是對正方形表面展開圖的考查,熟練掌握正方體的表面展開圖是解題的關(guān)鍵.2、D【解析】

本題關(guān)鍵是正確分析出所剪時(shí)的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內(nèi)部的矩形與原來的正方形紙片的邊平行,故剪時(shí),虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項(xiàng).本題考查了平面圖形在實(shí)際生活中的應(yīng)用,有良好的空間想象能力過動手能力是解題關(guān)鍵.3、A【解析】試題解析:如圖,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC?BC=.根據(jù)旋轉(zhuǎn)的性質(zhì)知△ABC≌△AB′C′,則S△ABC=S△AB′C′,AB=AB′.∴S陰影=S扇形ABB′+S△AB′C′-S△ABC==.故選A.考點(diǎn):1.扇形面積的計(jì)算;2.旋轉(zhuǎn)的性質(zhì).4、D【解析】

從正面看,有2層,3列,左側(cè)一列有1層,中間一列有2層,右側(cè)一列有一層,據(jù)此解答即可.【詳解】∵從正面看,有2層,3列,左側(cè)一列有1層,中間一列有2層,右側(cè)一列有一層,∴D是該幾何體的主視圖.故選D.本題考查三視圖的知識,從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實(shí)線,被遮擋的線畫虛線.5、B【解析】

有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時(shí),S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【詳解】把△IBE繞B順時(shí)針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時(shí),S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.6、C【解析】

根據(jù)左視圖是從左面看所得到的圖形進(jìn)行解答即可.【詳解】從左邊看時(shí),圓柱和長方體都是一個(gè)矩形,圓柱的矩形豎放在長方體矩形的中間.故選:C.本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.7、A【解析】

對一個(gè)物體,在正面進(jìn)行正投影得到的由前向后觀察物體的視圖,叫做主視圖.【詳解】解:由主視圖的定義可知A選項(xiàng)中的圖形為該立體圖形的主視圖,故選擇A.本題考查了三視圖的概念.8、D【解析】

根據(jù)數(shù)軸三要素:原點(diǎn)、正方向、單位長度進(jìn)行判斷.【詳解】A選項(xiàng)圖中無原點(diǎn),故錯(cuò)誤;B選項(xiàng)圖中單位長度不統(tǒng)一,故錯(cuò)誤;C選項(xiàng)圖中無正方向,故錯(cuò)誤;D選項(xiàng)圖形包含數(shù)軸三要素,故正確;故選D.本題考查數(shù)軸的畫法,熟記數(shù)軸三要素是解題的關(guān)鍵.9、A【解析】解:①有理數(shù)與無理數(shù)的和一定是有理數(shù),故本小題錯(cuò)誤;②有理數(shù)與無理數(shù)的和一定是無理數(shù),故本小題正確;③例如=0,0是有理數(shù),故本小題錯(cuò)誤;④例如(﹣)×=﹣2,﹣2是有理數(shù),故本小題錯(cuò)誤.故選A.點(diǎn)睛:本題考查的是實(shí)數(shù)的運(yùn)算及無理數(shù)、有理數(shù)的定義,熟知以上知識是解答此題的關(guān)鍵.10、B【解析】

根據(jù)題意連接AD,再根據(jù)同弧的圓周角相等,即可計(jì)算的的大小.【詳解】解:連接,∵為的直徑,∴.∵,∴,∴.故選:B.本題主要考查圓弧的性質(zhì),同弧的圓周角相等,這是考試的重點(diǎn),應(yīng)當(dāng)熟練掌握.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

如圖作DH⊥AE于H,連接CG.設(shè)DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.12、2【解析】

把點(diǎn)(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【詳解】∵拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(diǎn)(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案為2.本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是找出二次函數(shù)圖象上的點(diǎn)的坐標(biāo)滿足的關(guān)系式.13、>【解析】分析:根據(jù)正比例函數(shù)的圖象經(jīng)過點(diǎn)M(﹣1,1)可以求得該函數(shù)的解析式,然后根據(jù)正比例函數(shù)的性質(zhì)即可解答本題.詳解:設(shè)該正比例函數(shù)的解析式為y=kx,則1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函數(shù)的圖象經(jīng)過點(diǎn)A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.故答案為>.點(diǎn)睛:本題考查了正比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用正比例函數(shù)的性質(zhì)解答.14、1【解析】分析:由圖形可知,內(nèi)部小三角形直角邊是大三角形直角邊平移得到的,故內(nèi)部五個(gè)小直角三角形的周長為大直角三角形的周長.詳解:由圖形可以看出:內(nèi)部小三角形直角邊是大三角形直角邊平移得到的,故內(nèi)部五個(gè)小直角三角形的周長為AC+BC+AB=1.故答案為1.點(diǎn)睛:本題主要考查了平移的性質(zhì),需要注意的是:平移前后圖形的大小、形狀都不改變.15、﹣3<x<1【解析】

根據(jù)第四象限內(nèi)橫坐標(biāo)為正,縱坐標(biāo)為負(fù)可得出答案.【詳解】∵點(diǎn)P(2x-6,x-5)在第四象限,∴2x+解得-3<x<1.故答案為-3<x<1.本題考查了點(diǎn)的坐標(biāo)、一元一次不等式組,解題的關(guān)鍵是知道平面直角坐標(biāo)系中第四象限橫、縱坐標(biāo)的符號.16、3【解析】試題分析:如圖,連接AC與BD相交于點(diǎn)O,∵四邊形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案為3.考點(diǎn):3.菱形的性質(zhì);3.解直角三角形;3.網(wǎng)格型.三、解答題(共8題,共72分)17、(1)證明見解析;(2).【解析】

(1)連接OM,證明OM∥BE,再結(jié)合等腰三角形的性質(zhì)說明AE⊥BE,進(jìn)而證明OM⊥AE;(2)結(jié)合已知求出AB,再證明△AOM∽△ABE,利用相似三角形的性質(zhì)計(jì)算.【詳解】(1)連接OM,則OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵點(diǎn)M在圓O上,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=4,cosC=∴BE=2,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB==6,設(shè)⊙O的半徑為r,則AO=6-r,∵OM∥BC,∴△AOM∽△ABE,∴∴,∴,解得,∴的半徑為.本題考查了切線的判定;等腰三角形的性質(zhì);相似三角形的判定與性質(zhì);解直角三角形等知識,綜合性較強(qiáng),正確添加輔助線,熟練運(yùn)用相關(guān)知識是解題的關(guān)鍵.18、(1)B'的坐標(biāo)為(,3);(1)見解析;(3)﹣1.【解析】

(1)設(shè)A'B'與x軸交于點(diǎn)H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)證明∠BPA'=90即可;(3)作AB的中點(diǎn)M(1,),連接MP,由∠APB=90°,推出點(diǎn)P的軌跡為以點(diǎn)M為圓心,以MP=AB=1為半徑的圓,除去點(diǎn)(1,),所以當(dāng)PM⊥x軸時(shí),點(diǎn)P縱坐標(biāo)的最小值為﹣1.【詳解】(Ⅰ)如圖1,設(shè)A'B'與x軸交于點(diǎn)H,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴點(diǎn)B'的坐標(biāo)為(,3);(Ⅱ)證明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四邊形OBPA'的內(nèi)角和為360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)點(diǎn)P縱坐標(biāo)的最小值為.如圖,作AB的中點(diǎn)M(1,),連接MP,∵∠APB=90°,∴點(diǎn)P的軌跡為以點(diǎn)M為圓心,以MP=AB=1為半徑的圓,除去點(diǎn)(1,).∴當(dāng)PM⊥x軸時(shí),點(diǎn)P縱坐標(biāo)的最小值為﹣1.本題考查的知識點(diǎn)是幾何變換綜合題,解題的關(guān)鍵是熟練的掌握幾何變換綜合題.19、(1);(2)【解析】

(1)根據(jù)可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后確定至少有一個(gè)女孩的可能性,然后可求概率.【詳解】解:(1)(1)第二個(gè)孩子是女孩的概率=;故答案為;(2)畫樹狀圖為:

共有4種等可能的結(jié)果數(shù),其中至少有一個(gè)孩子是女孩的結(jié)果數(shù)為3,

所以至少有一個(gè)孩子是女孩的概率=.本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.20、(1),;(2)見解析;(3).【解析】

(1)連結(jié)AD、BD,利用m求出角的關(guān)系進(jìn)而求出∠BCD、∠ACD的度數(shù);

(2)連結(jié),由所給關(guān)系式結(jié)合直徑求出AP,OP,根據(jù)弦CD最短,求出∠BCD、∠ACD的度數(shù),即可求出m的值.

(3)連結(jié)AD、BD,先求出AD,BD,AP,BP的長度,利用△APC∽△DPB和△CPB∽△APD得出比例關(guān)系式,得出比例關(guān)系式結(jié)合勾股定理求出CP,PD,即可求出CD.【詳解】解:(1)如圖1,連結(jié)、.是的直徑,又,,(2)如圖2,連結(jié).,,,則,解得要使最短,則于,,,故存在這樣的值,且;(3)如圖3,連結(jié)、.由(1)可得,,,,,,,,①,②同理,③,由①得,由③得,在中,,,由②,得,.本題考查了相似三角形的判定與性質(zhì)和銳角三角函數(shù)關(guān)系和圓周角定理等知識,掌握圓周角定理以及垂徑定理是解題的關(guān)鍵.21、(1)C;(2)100【解析】

(1)根據(jù)中位數(shù)的定義即可作出判斷;(2)先算出樣本中C等級的百分比,再用總數(shù)乘以400即可.【詳解】解:(1)由直方圖中可知數(shù)據(jù)總數(shù)為40個(gè),第20,21個(gè)數(shù)據(jù)的平均數(shù)為本組數(shù)據(jù)的中位數(shù),第20,21個(gè)數(shù)據(jù)的等級都是C等級,故本次調(diào)查中,男生的跳繩成績的中位數(shù)在C等級;故答案為C.(2)400=100(人)答:估計(jì)該校九年級男生跳繩成績是等級的人數(shù)有100人.本題考查了中位數(shù)的求法和用樣本數(shù)估計(jì)總體數(shù)據(jù),理解相關(guān)知識是解題的關(guān)鍵.22、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時(shí),S有最大值,最大值為;(3)存在,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【解析】

(1)將點(diǎn)E代入直線解析式中,可求出點(diǎn)C的坐標(biāo),將點(diǎn)C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點(diǎn)式,可求出點(diǎn)D的坐標(biāo),設(shè)直線BD的解析式,代入點(diǎn)B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點(diǎn)P的坐標(biāo),則點(diǎn)G的坐標(biāo)可表示,點(diǎn)H的坐標(biāo)可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點(diǎn)E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點(diǎn)B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點(diǎn)M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時(shí),S有最大值,最大值為.(3)存在,如圖所示,設(shè)點(diǎn)P的坐標(biāo)為(t,0),則點(diǎn)G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應(yīng)點(diǎn)為點(diǎn)F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時(shí),解得t1=0(舍),t2=4,此時(shí)點(diǎn)P(4,0).當(dāng)t2﹣t=﹣t時(shí),解得t1=0(舍),t2=,此時(shí)點(diǎn)P(,0).綜上,點(diǎn)P的坐標(biāo)為(4,0)或(,0).此題考查了待定系數(shù)法求函數(shù)解析式,點(diǎn)坐標(biāo)轉(zhuǎn)換為線段長度,幾何圖形與二次函數(shù)結(jié)合的問題,最后一問推出CG=HG為解題關(guān)鍵.23、(1)見解析;(2)S四邊形ADOE=.【解析】

(1)根據(jù)矩形的性質(zhì)有OA=OB=OC=OD,根據(jù)四邊形ADOE是平行四邊形,得到OD∥AE,AE=OD.等量代換得到AE=OB.即可證明四邊形AOBE為平行四邊形.根據(jù)有一組鄰邊相等的平行四邊形是菱形即可證明.(2)根據(jù)菱形的性質(zhì)有∠EAB=∠BAO.根據(jù)矩形的性質(zhì)有AB∥CD,根據(jù)平行線的性質(zhì)有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根據(jù)面積公式SΔADC,即可求解.【詳解】(1)證明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四邊形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四邊形AOBE為平行四邊形.∵OA=OB,∴四邊形AOBE為菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論