2026屆福建省龍巖市永定二中學(xué)、三中學(xué)聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2026屆福建省龍巖市永定二中學(xué)、三中學(xué)聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2026屆福建省龍巖市永定二中學(xué)、三中學(xué)聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2026屆福建省龍巖市永定二中學(xué)、三中學(xué)聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2026屆福建省龍巖市永定二中學(xué)、三中學(xué)聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆福建省龍巖市永定二中學(xué)、三中學(xué)聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.4個B.3個C.2個D.1個2.從拼音“nanhai”中隨機(jī)抽取一個字母,抽中a的概率為()A. B. C. D.3.如圖,在菱形ABCD中,AC與BD相交于點O,AC=8,BD=6,則菱形的周長等于()A.40 B. C.24 D.204.下列美麗的圖案中,既是軸對稱圖形又是中心對稱圖形的個數(shù)有()A.1個 B.2個 C.3個 D.4個5.如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段,在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率為()A. B. C. D.6.如圖,△ABC中,DE∥BC,BE與CD交于點O,AO與DE,BC交于點N、M,則下列式子中錯誤的是()A. B. C. D.7.拋物線y=4x2﹣3的頂點坐標(biāo)是()A.(0,3) B.(0,﹣3) C.(﹣3,0) D.(4,﹣3)8.圖中所示的幾個圖形是國際通用的交通標(biāo)志.其中不是軸對稱圖形的是()A. B. C. D.9.如圖,正方形的邊長為4,點在的邊上,且,與關(guān)于所在的直線對稱,將按順時針方向繞點旋轉(zhuǎn)得到,連接,則線段的長為()A.4 B. C.5 D.610.如圖,中,、分別是、邊上一點,是、的交點,,,交于,若,則長度為()A. B. C. D.11.如圖所示,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與y軸的一個交點坐標(biāo)為(0,3),其部分圖象如圖所示,下列5個結(jié)論中,其中正確的是()①abc>0;②4a+c>0;③方程ax2+bx+c=3兩個根是=0,=2;④方程ax2+bx+c=0有一個實數(shù)根大于2;⑤當(dāng)x<0,y隨x增大而增大A.4 B.3 C.2 D.112.關(guān)于反比例函數(shù)y=﹣,下列說法錯誤的是()A.圖象經(jīng)過點(1,﹣3)B.圖象分布在第一、三象限C.圖象關(guān)于原點對稱D.圖象與坐標(biāo)軸沒有交點二、填空題(每題4分,共24分)13.2018年我國新能源汽車保有量居世界前列,2016年和2018年我國新能源汽車保有量分別為51.7萬輛和261萬輛.設(shè)我國2016至2018年新能源汽車保有量年平均增長率為,根據(jù)題意,可列方程為______.14.某校開展“節(jié)約每一滴水”活動,為了了解開展活動一個月以來節(jié)約用水的情況,從八年級的400名同學(xué)中選取20名同學(xué)統(tǒng)計了各自家庭一個月節(jié)約用水情況如表,請你估計這400名同學(xué)的家庭一個月節(jié)約用水的總量大約是_____.節(jié)水量/m30.20.250.30.40.5家庭數(shù)/個2467115.已知關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是________.16.如圖,菱形ABCD中,∠B=120°,AB=2,將圖中的菱形ABCD繞點A沿逆時針方向旋轉(zhuǎn),得菱形AB′C′D′1,若∠BAD′=110°,在旋轉(zhuǎn)的過程中,點C經(jīng)過的路線長為____.17.關(guān)于的方程的一個根為2,則______.18.已知一元二次方程ax2+bx+c=0的兩根為﹣5和3,則二次函數(shù)y=ax2+bx+c圖象對稱軸是直線_____.三、解答題(共78分)19.(8分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球1個,若從中隨機(jī)摸出一個球,這個球是白球的概率為(1)求袋子中白球的個數(shù)(2)隨機(jī)摸出一個球后,放回并攪勻,再隨機(jī)摸出一個球,請用畫樹狀圖或列表的方法,求兩次都摸到白球的概率.20.(8分)已知拋物線與x軸分別交于,兩點,與y軸交于點C.(1)求拋物線的表達(dá)式及頂點D的坐標(biāo);(2)點F是線段AD上一個動點.①如圖1,設(shè),當(dāng)k為何值時,.②如圖2,以A,F(xiàn),O為頂點的三角形是否與相似?若相似,求出點F的坐標(biāo);若不相似,請說明理由.21.(8分)解方程(1)x2+4x﹣3=0(用配方法)(2)3x(2x+3)=4x+622.(10分)如圖,在矩形ABCD中,AB=6,BC=8,點E是BC邊上的一個動點(不與點B.

C重合),連結(jié)AE,并作EF⊥AE,交CD邊于點F,連結(jié)AF.設(shè)BE=x,CF=y.(1)求證:△ABE∽△ECF;(2)當(dāng)x為何值時,y的值為2;23.(10分)如圖,在四邊形ABCD中,AD∥BC,AB=BC,對角線AC、BD交于點O,BD平分∠ABC,過點D作DE⊥BC,交BC的延長線于點E,連接OE.(1)求證:四邊形ABCD是菱形;(2)若DC=2,AC=4,求OE的長.24.(10分)如圖,頂點為P(2,﹣4)的二次函數(shù)y=ax2+bx+c的圖象經(jīng)過原點,點A(m,n)在該函數(shù)圖象上,連接AP、OP.(1)求二次函數(shù)y=ax2+bx+c的表達(dá)式;(2)若∠APO=90°,求點A的坐標(biāo);(3)若點A關(guān)于拋物線的對稱軸的對稱點為C,點A關(guān)于y軸的對稱點為D,設(shè)拋物線與x軸的另一交點為B,請解答下列問題:①當(dāng)m≠4時,試判斷四邊形OBCD的形狀并說明理由;②當(dāng)n<0時,若四邊形OBCD的面積為12,求點A的坐標(biāo).25.(12分)我們把對角線互相垂直的四邊形叫做垂直四邊形.(1)如圖1,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂直四邊形嗎?請說明理由;(2)如圖2,四邊形ABCD是垂直四邊形,求證:AD2+BC2=AB2+CD2;(3)如圖3,Rt△ABC中,∠ACB=90°,分別以AC、AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,BC=3,求GE長.26.如圖,在平面直角坐標(biāo)系中,的三個頂點的坐標(biāo)分別為點、、.(1)的外接圓圓心的坐標(biāo)為.(2)①以點為位似中心,在網(wǎng)格區(qū)域內(nèi)畫出,使得與位似,且點與點對應(yīng),位似比為2:1,②點坐標(biāo)為.(3)的面積為個平方單位.

參考答案一、選擇題(每題4分,共48分)1、B【解析】試題分析:A選項既是軸對稱圖形,也是中心對稱圖形;B選項中該圖形是軸對稱圖形不是中心對稱圖形;C選項中既是中心對稱圖形又是軸對稱圖形;D選項中是中心對稱圖形又是軸對稱圖形.故選B.考點:1.軸對稱圖形;2.中心對稱圖形.2、B【解析】nanhai共有6個拼音字母,a有2個,根據(jù)概率公式可得答案.【詳解】∵nanhai共有6個拼音字母,a有2個,∴抽中a的概率為,故選:B.此題考查了概率公式的應(yīng)用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、D【分析】根據(jù)菱形的性質(zhì)可求得BO、AO的長,AC⊥BD,根據(jù)勾股定理可求出AB,進(jìn)而可得答案.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC=CD=DA,,,AC⊥BD,則在Rt△ABO中,根據(jù)勾股定理得:,∴菱形ABCD的周長=4×5=1.故選:D.本題考查了菱形的性質(zhì)和勾股定理,屬于基礎(chǔ)題目,熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.4、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:從左數(shù)第一、四個是軸對稱圖形,也是中心對稱圖形.第二是軸對稱圖形,不是中心對稱圖形,第三個圖形是中心對稱圖形不是軸對稱圖形.故選B.本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.5、D【分析】先求出連接兩點所得的所有線段總數(shù),再用列舉法求出取到長度為2的線段條數(shù),由此能求出在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率.【詳解】∵點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段,∴連接兩點所得的所有線段總數(shù)n==15條,∵取到長度為2的線段有:FC、AD、EB共3條∴在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率為:p=.故選:D此題主要考查了正多邊形和圓以及幾何概率,正確利用正六邊形的性質(zhì)得出AD的長是解題關(guān)鍵.6、D【解析】試題分析:∵DE∥BC,∴△ADN∽△ABM,△ADE∽△ABC,△DOE∽△COB,∴,,,所以A、B、C正確;∵DE∥BC,∴△AEN∽△ACM,∴,∴,所以D錯誤.故選D.點睛:本題考查了相似三角形的判定與性質(zhì).注意平行于三角形的一邊的直線與其他兩邊相交,所構(gòu)成的三角形與原三角形相似;相似三角形對應(yīng)邊成比例.注意數(shù)形結(jié)合思想的應(yīng)用.7、B【分析】根據(jù)拋物線的頂點坐標(biāo)為(0,b),可以直接寫出該拋物線的頂點坐標(biāo),【詳解】解:拋物線,該拋物線的頂點坐標(biāo)為,故選:B.本題考查二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.8、C【分析】根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形.【詳解】A、B、D都是軸對稱圖形,而C不是軸對稱圖形.

故選C.本題主要考查了軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、C【分析】如圖,連接BE,根據(jù)軸對稱的性質(zhì)得到AF=AD,∠EAD=∠EAF,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AG=AE,∠GAB=∠EAD.求得∠GAB=∠EAF,根據(jù)全等三角形的性質(zhì)得到FG=BE,根據(jù)正方形的性質(zhì)得到BC=CD=AB=1.根據(jù)勾股定理即可得到結(jié)論.【詳解】解:如圖,連接BE,∵△AFE與△ADE關(guān)于AE所在的直線對稱,∴AF=AD,∠EAD=∠EAF,∵△ADE按順時針方向繞點A旋轉(zhuǎn)90°得到△ABG,∴AG=AE,∠GAB=∠EAD.∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠BAF+∠EAF.∴∠GAF=∠EAB.∴△GAF≌△EAB(SAS).∴FG=BE,∵四邊形ABCD是正方形,∴BC=CD=AB=1.∵DE=1,∴CE=2.∴在Rt△BCE中,BE=,∴FG=5,故選:C.本題考查了正方形的性質(zhì),勾股定理,全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.10、D【分析】根據(jù)AAS證明△BDF≌△ENF,得到NE=BD=1,再由NE∥BC,得到△ANE∽△ADC,根據(jù)相似三角形的對應(yīng)邊成比例即可得出結(jié)論.【詳解】∵NE∥BC,∴∠ENF=∠BDF,∠NEF=∠DBF.∵BF=EF,∴△BDF≌△ENF,∴NE=BD=1.∵NE∥BC,∴△ANE∽△ADC,∴,∴,∴DC=2.故選:D.本題考查了相似三角形的判定與性質(zhì).求出NE的長是解答本題的關(guān)鍵.11、B【分析】根據(jù)二次函數(shù)圖象的開口方向、對稱軸位置、與x軸的交點坐標(biāo)等知識,逐個判斷即可.【詳解】拋物線開口向下,a<0,對稱軸為直線x=1>0,a、b異號,因此b>0,與y軸交點為(0,3),因此c=3>0,于是abc<0,故結(jié)論①是不正確的;由對稱軸為直線x=?=1得2a+b=0,當(dāng)x=?1時,y=a?b+c<0,所以a+2a+c<0,即3a+c<0,又a<0,4a+c<0,故結(jié)論②不正確;當(dāng)y=3時,x1=0,即過(0,3),拋物線的對稱軸為直線x=1,由對稱性可得,拋物線過(2,3),因此方程ax2+bx+c=3的有兩個根是x1=0,x2=2;故③正確;拋物線與x軸的一個交點(x1,0),且?1<x1<0,由對稱軸為直線x=1,可得另一個交點(x2,0),2<x2<3,因此④是正確的;根據(jù)圖象可得當(dāng)x<0時,y隨x增大而增大,因此⑤是正確的;正確的結(jié)論有3個,故選:B.考查二次函數(shù)的圖象和性質(zhì),掌握a、b、c的值決定拋物線的位置以及二次函數(shù)與一元二次方程的關(guān)系,是正確判斷的前提.12、B【解析】反比例函數(shù)y=(k≠0)的圖象k>0時位于第一、三象限,在每個象限內(nèi),y隨x的增大而減??;k<0時位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大.根據(jù)反比例函數(shù)的性質(zhì)并結(jié)合其對稱性對各選項進(jìn)行判斷.【詳解】A、把點(1,﹣3)代入函數(shù)解析式,﹣3=﹣3,故本選項正確,不符合題意,B、∵k=﹣2<0,∴圖象位于二、四象限,且在每個象限內(nèi),y隨x的增大而增大,故本選項錯誤,符合題意,C、反比例函數(shù)的圖象可知,圖象關(guān)于原點對稱,故本選項正確,不符合題意D、∵x、y均不能為0,故圖象與坐標(biāo)軸沒有交點,故本選項正確,不符合題意.故選:B.本題主要考查的是反比例函數(shù)的性質(zhì),是中考中比較常見的知識點,一般難度不大,需熟練掌握.二、填空題(每題4分,共24分)13、【分析】根據(jù)增長率的特點即可列出一元二次方程.【詳解】設(shè)我國2016至2018年新能源汽車保有量年平均增長率為,根據(jù)題意,可列方程為故答案為:.此題主要考查一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意列出方程.14、110m1.【分析】先計算這20名同學(xué)各自家庭一個月的節(jié)水量的平均數(shù),即樣本平均數(shù),然后乘以總數(shù)400即可解答.【詳解】解:20名同學(xué)各自家庭一個月平均節(jié)約用水是:(0.2×2+0.25×4+0.1×6+0.4×7+0.5×1)÷20=0.125(m1),因此這400名同學(xué)的家庭一個月節(jié)約用水的總量大約是:400×0.125=110(m1),故答案為:110m1.此題考查的是根據(jù)樣本估計總體,掌握樣本平均數(shù)的公式是解決此題的關(guān)鍵.15、【分析】根據(jù)一元二次方程的根的判別式,建立關(guān)于k的不等式,求出k的取值范圍.【詳解】根據(jù)一元二次方程的根的判別式,建立關(guān)于k的不等式,求出k的取值范圍.,,方程有兩個不相等的實數(shù)根,,.故答案為:.本題考查了根的判別式.總結(jié):一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.16、π.【分析】連接AC、AC′,作BM⊥AC于M,由菱形的性質(zhì)得出∠BAC=∠D′AC′=30°,由含30°角的直角三角形的性質(zhì)得出BM=AB=1,由勾股定理求出AM=BM=,得出AC=2AM=2,求出∠CAC′=50°,再由弧長公式即可得出結(jié)果.【詳解】解:連接AC、AC′,作BM⊥AC于M,如圖所示:∵四邊形ABCD是菱形,∠B=120°,∴∠BAC=∠D′AC′=30°,∴BM=AB=1,∴AM=BM=,∴AC=2AM=2,∵∠BAD′=110°,∴∠CAC′=110°-30°-30°=50°,∴點C經(jīng)過的路線長==π故答案為:π本題考查了菱形的性質(zhì)、含30°角的直角三角形的性質(zhì)、等腰三角形的性質(zhì)、勾股定理、弧長公式;熟練掌握菱形的性質(zhì),由勾股定理和等腰三角形的性質(zhì)求出AC的長是解決問題的關(guān)鍵.17、1【分析】方程的根即方程的解,就是能使方程兩邊相等的未知數(shù)的值,利用方程解的定義就可以得到關(guān)于k的方程,從而求得k的值.【詳解】把x=2代入方程得:4k?2?2=0,解得k=1故答案為:1.本題主要考查了方程的根的定義,是一個基礎(chǔ)的題目.18、x=﹣1【分析】根據(jù)一元二次方程的兩根得出拋物線與x軸的交點,再利用二次函數(shù)的對稱性可得答案.【詳解】∵一元二次方程的兩根為﹣5和3,∴二次函數(shù)圖象與x軸的交點為(﹣5,0)和(3,0),由拋物線的對稱性知拋物線的對稱軸為,故答案為:.本題主要考查了拋物線與x軸的交點,解題的關(guān)鍵是掌握拋物線與x軸交點坐標(biāo)與對應(yīng)一元二次方程間的關(guān)系及拋物線的對稱性.三、解答題(共78分)19、(1)袋子中白球有2個;(2)(兩次都摸到白球)【分析】(1)設(shè)袋子中白球有個,根據(jù)摸出白球的概率=白球的個數(shù)÷紅、白球的總數(shù),列出方程即可求出白球的個數(shù);(2)根據(jù)題意,列出表格,然后根據(jù)表格和概率公式求概率即可.【詳解】解:(1)設(shè)袋子中白球有個,則,解得,經(jīng)檢驗是該方程的解,答:袋子中白球有2個.(2)列表如下:紅白1白2紅(紅,紅)(紅,白1)(紅,白2)白1(白1,紅)(白1,白1)(白1,白2)白2(白2,紅)(白2,白1)(白2,白2)由上表可知,總共有9種等可能結(jié)果,其中兩次都摸到白球的有4種,所以(兩次都摸到白球)此題考查的是根據(jù)概率求白球的數(shù)量和求概率問題,掌握列表法和概率公式是解決此題的關(guān)鍵.20、(1),D的坐標(biāo)為;(2)①;②以A,F(xiàn),O為頂點的三角形與相似,F(xiàn)點的坐標(biāo)為或.【分析】(1)將A、B兩點的坐標(biāo)代入二次函數(shù)解析式,用待定系數(shù)法即求出拋物線對應(yīng)的函數(shù)表達(dá)式,可求得頂點;(2)①由A、C、D三點的坐標(biāo)求出,,,可得為直角三角形,若,則點F為AD的中點,可求出k的值;②由條件可判斷,則,若以A,F(xiàn),O為頂點的三角形與相似,可分兩種情況考慮:當(dāng)或時,可分別求出點F的坐標(biāo).【詳解】(1)拋物線過點,,,解得:,拋物線解析式為;,頂點D的坐標(biāo)為;(2)①在中,,,,,,,,,,為直角三角形,且,,F(xiàn)為AD的中點,,;②在中,,在中,,,,,,若以A,F(xiàn),O為頂點的三角形與相似,則可分兩種情況考慮:當(dāng)時,,,設(shè)直線BC的解析式為,,解得:,直線BC的解析式為,直線OF的解析式為,設(shè)直線AD的解析式為,,解得:,直線AD的解析式為,,解得:,.當(dāng)時,,,,直線OF的解析式為,,解得:,,綜合以上可得F點的坐標(biāo)為或.本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標(biāo)特征、相似三角形的判定與性質(zhì)和直角三角形的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì);會運用分類討論的思想解決數(shù)學(xué)問題.21、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=,x2=﹣.【解析】(1)原式利用配方法求出解即可;(2)原式整理后,利用因式分解法求出解即可.【詳解】(1)方程整理得:x2+4x=3,配方得:x2+4x+4=7,即(x+2)2=7,開方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)方程整理得:3x(2x+3)﹣2(2x+3)=0,分解因式得:(3x﹣2)(2x+3)=0,可得3x﹣2=0或2x+3=0,解得:x1=,x2=﹣.此題考查了解一元二次方程﹣因式分解法,以及配方法,熟練掌握各種解法是解本題的關(guān)鍵.22、(1)見解析;(2)x的值為2或1時,y的值為2【分析】(1)①先判斷出∠BAE=∠CEF,即可得出結(jié)論;(2)利用的相似三角形得出比例式即可建立x,y的關(guān)系式,代入即可;【詳解】(1)證明:∵四邊形ABCD是矩形,∴∠B=∠C=90°.∵AE⊥EF,∴∠AEF=90°=∠B.∴∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF.又∵∠B=∠C,∴△ABE∽△ECF.②∵△ABE∽△ECF.∴,∵AB=1,BC=8,BE=x,CF=y(tǒng),EC=8?x,∴.∴y=?x2+x.∵y=2,?x2+x=2,解得x1=2,x2=1.∵0<x<8,∴x的值為2或1.此題是相似形綜合題,主要考查了矩形的性質(zhì),相似三角形的判定和性質(zhì),解本題的關(guān)鍵是用方程的思想解決問題.23、(1)證明見解析;(2)1.【分析】(1)由AD∥BC,BD平分∠ABC,可得AD=AB,結(jié)合AD∥BC,可得四邊形ABCD是平行四邊形,進(jìn)而,可證明四邊形ABCD是菱形,(2)由四邊形ABCD是菱形,可得OC=AC=2,在Rt△OCD中,由勾股定理得:OD=1,根據(jù)“在直角三角形中,斜邊上的中線等于斜邊的一半”,即可求解.【詳解】(1)證明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四邊形ABCD是平行四邊形,又∵AB=BC,∴四邊形ABCD是菱形;(2)解:∵四邊形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD==1,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=1.本題主要考查菱形的判定定理及性質(zhì)定理,題目中的“雙平等腰”模型是證明四邊形是菱形的關(guān)鍵,掌握直角三角形的性質(zhì)和勾股定理,是求OE長的關(guān)鍵.24、(1)y=x2﹣4x;(2)A(,﹣);(3)①平行四邊形,理由見解析;②A(1,﹣3)或A(3,﹣3).【分析】(1)由已知可得拋物線與x軸另一個交點(4,0),將(2,﹣4)、(4,0)、(0,0)代入y=ax2+bx+c即可求表達(dá)式;(2)由∠APO=90°,可知AP⊥PO,所以m﹣2=,即可求A(,﹣);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),可得CD∥OB,CD=CB,所以四邊形OBCD是平行四邊形;②四邊形由OBCD是平行四邊形,,所以12=4×(﹣n),即可求出A(1,﹣3)或A(3,﹣3).【詳解】解:(1)∵圖象經(jīng)過原點,∴c=0,∵頂點為P(2,﹣4)∴拋物線與x軸另一個交點(4,0),將(2,﹣4)和(4,0)代入y=ax2+bx,∴a=1,b=﹣4,∴二次函數(shù)的解析式為y=x2﹣4x;(2)∵∠APO=90°,∴AP⊥PO,∵A(m,m2﹣4m),∴m﹣2=,∴m=,∴A(,﹣);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),∴CD∥OB,∵CD=4,OB=4,∴四邊形OBCD是平行四邊形;②∵四邊形OBCD是平行四邊形,,∴12=4×(﹣n),∴n=﹣3,∴A(1,﹣3)或A(3,﹣3).本題考查了二次函數(shù)與幾何綜合問題,涉及二次函數(shù)求解析式、直角三角形、平行四邊形等知識點,解題的關(guān)鍵是靈活運用上述知識點進(jìn)行推導(dǎo)求解.25、(1)四邊形ABCD是垂直四邊形;理由見解析;(2)見解析;(3)GE=【分析】(1)由AB=AD,得出點A在線段BD的垂直平分線上,由CB=CD,得出點C在線段BD的垂直平分線上,則直線AC是線段BD的垂直平分線,即可得出結(jié)果;(2)設(shè)AC、BD交于點E,由AC⊥BD,得出∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,即可得出結(jié)論;(3)連接CG、BE,由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論