湖南省瀏陽市部分學校2026屆數(shù)學九上期末經(jīng)典試題含解析_第1頁
湖南省瀏陽市部分學校2026屆數(shù)學九上期末經(jīng)典試題含解析_第2頁
湖南省瀏陽市部分學校2026屆數(shù)學九上期末經(jīng)典試題含解析_第3頁
湖南省瀏陽市部分學校2026屆數(shù)學九上期末經(jīng)典試題含解析_第4頁
湖南省瀏陽市部分學校2026屆數(shù)學九上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

湖南省瀏陽市部分學校2026屆數(shù)學九上期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.下列事件屬于隨機事件的是()A.拋出的籃球會下落B.兩枚骰子向上一面的點數(shù)之和大于1C.買彩票中獎D.口袋中只裝有10個白球,從中摸出一個黑球2.邊長相等的正方形與正六邊形按如圖方式拼接在一起,則的度數(shù)為()A. B. C. D.3.過矩形ABCD的對角線AC的中點O作EF⊥AC,交BC邊于點E,交AD邊于點F,分別連接AE、CF,若AB,∠DCF30°,則EF的長為().A.2 B.3 C. D.4.把函數(shù)的圖象,經(jīng)過怎樣的平移變換以后,可以得到函數(shù)的圖象()A.向左平移個單位,再向下平移個單位B.向左平移個單位,再向上平移個單位C.向右平移個單位,再向上平移個單位D.向右平移個單位,再向下平移個單位5.關于反比例函數(shù),下列說法正確的是()A.圖象過(1,2)點 B.圖象在第一、三象限C.當x>0時,y隨x的增大而減小 D.當x<0時,y隨x的增大而增大6.反比例函數(shù)經(jīng)過點(1,),則的值為()A.3 B. C. D.7.的絕對值為()A. B. C. D.8.如圖,AB是⊙O直徑,若∠AOC=100°,則∠D的度數(shù)是()A.50° B.40° C.30° D.45°9.某水果園2017年水果產(chǎn)量為50噸,2019年水果產(chǎn)量為70噸,求該果園水果產(chǎn)量的年平均增長率.設該果園水果產(chǎn)量的年平均增長率為,則根據(jù)題意可列方程為()A. B.C. D.10.如圖,在中,,已知,把沿軸負方向向左平移到的位置,此時在同一雙曲線上,則的值為()A. B. C. D.11.如圖,在半徑為的中,弦與交于點,,,則的長是()A. B. C. D.12.如圖,已知矩形ABCD,AB=6,BC=10,E,F(xiàn)分別是AB,BC的中點,AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為()A.6 B.7 C.8 D.9二、填空題(每題4分,共24分)13.若兩個相似三角形的面積之比為1:4,則它們對應角的角平分線之比為___.14.九年級某同學6次數(shù)學小測驗的成績分別為:100,112,102,105,112,110,則該同學這6次成績的眾數(shù)是_____.15.在、、、1、2五個數(shù)中,若隨機取一個數(shù)作為反比例函數(shù)中的值,則該函數(shù)圖象在第二、第四象限的概率是__________.16.將二次函數(shù)的圖像向左平移個單位得到,則函數(shù)的解析式為______.17.《算學寶鑒》中記載了我國南宋數(shù)學家楊輝提出的一個問題:直田積八百六十四步,只云闊不及長一十二步.問闊及長各幾步?大意是“一個矩形田地的面積等于864平方步,它的寬比長少12步,問長與寬各多少步?”若設矩形田地的寬為x步,則所列方程為__________.18.Q是半徑為3的⊙O上一點,點P與圓心O的距離OP=5,則PQ長的最小值是_____.三、解答題(共78分)19.(8分)在菱形中,,點是射線上一動點,以為邊向右側(cè)作等邊,點的位置隨點的位置變化而變化.(1)如圖1,當點在菱形內(nèi)部或邊上時,連接,與的數(shù)量關系是,與的位置關系是;(2)當點在菱形外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由(選擇圖2,圖3中的一種情況予以證明或說理).(3)如圖4,當點在線段的延長線上時,連接,若,,求四邊形的面積.20.(8分)如圖,在平面直角坐標系中,點為坐標原點,每個小方格的邊長為個單位長度,在第二象限內(nèi)有橫、縱坐標均為整數(shù)的兩點,點,點的橫坐標為,且.在平面直角坐標系中標出點,寫出點的坐標并連接;畫出關于點成中心對稱的圖形.21.(8分)如圖,正方形中,,點在上運動(不與重臺),過點作,交于點,求運動到多長時,有最大值,并求出最大值.22.(10分)在⊙O中,AB為直徑,C為⊙O上一點.(1)如圖1,過點C作⊙O的切線,與AB延長線相交于點P,若∠CAB=27°,求∠P的度數(shù);(2)如圖2,D為弧AB上一點,OD⊥AC,垂足為E,連接DC并延長,與AB的延長線交于點P,若∠CAB=10°,求∠P的大?。?3.(10分)已知是上一點,.(Ⅰ)如圖①,過點作的切線,與的延長線交于點,求的大小及的長;(Ⅱ)如圖②,為上一點,延長線與交于點,若,求的大小及的長.24.(10分)如圖,在△ABC中,∠ACB=90o,∠ABC=45o,點O是AB的中點,過A、C兩點向經(jīng)過點O的直線作垂線,垂足分別為E、F.(1)如圖①,求證:EF=AE+CF.(2)如圖②,圖③,線段EF、AE、CF之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.25.(12分)如圖,一般捕魚船在A處發(fā)出求救信號,位于A處正西方向的B處有一艘救援艇決定前去數(shù)援,但兩船之間有大片暗礁,無法直線到達.救援艇決定馬上調(diào)整方向,先向北偏東方以每小時30海里的速度航行,同時捕魚船向正北低速航行.30分鐘后,捕魚船到達距離A處海里的D處,此時救援艇在C處測得D處在南偏東的方向上.求C、D兩點的距離;捕魚船繼續(xù)低速向北航行,救援艇決定再次調(diào)整航向,沿CE方向前去救援,并且捕魚船和救援艇同達時到E處,若兩船航速不變,求的正弦值.參考數(shù)據(jù):,,26.(1)用配方法解方程:;(2)用公式法解方程:.

參考答案一、選擇題(每題4分,共48分)1、C【解析】根據(jù)隨機事件,必然事件,不可能事件概念解題即可.【詳解】解:A.拋出的籃球會下落,是必然事件,所以錯誤,B.兩枚骰子向上一面的點數(shù)之和大于1,是不可能事件,所以錯誤,C.買彩票中獎.是隨機事件,正確,D.口袋中只裝有10個白球,從中摸出一個黑球,,是不可能事件,所以錯誤,故選C.本題考查了隨機事件的概念,屬于簡單題,熟悉概念是解題關鍵.2、B【解析】利用多邊形的內(nèi)角和定理求出正方形與正六邊形的內(nèi)角和,進而求出每一個內(nèi)角,根據(jù)等腰三角形性質(zhì),即可確定出所求角的度數(shù).【詳解】正方形的內(nèi)角和為360°,每一個內(nèi)角為90°;

正六邊形的內(nèi)角和為720°,每一個內(nèi)角為120°,

則=360°-120°-90°=150°,因為AB=AC,所以==15°

故選B此題考查了多邊形內(nèi)角和外角,等腰三角形性質(zhì),熟練掌握多邊形的內(nèi)角和定理是解本題的關鍵.3、A【解析】試題分析:由題意可證△AOF≌△COE,EO=FO,AF=CF=CE=AE,四邊形AECF是菱形,若∠DCF=30°,則∠FCE=60°,△EFC是等邊三角形,∵CD=AB=,∴DF=tan30°×CD=×=1,∴CF=2DF=2×1=2,∴EF=CF=2,故選A.考點:1.矩形及菱形性質(zhì);2.解直角三角形.4、C【分析】根據(jù)拋物線頂點的變換規(guī)律作出正確的選項.【詳解】拋物線的頂點坐標是,拋物線線的頂點坐標是,所以將頂點向右平移個單位,再向上平移個單位得到頂點,即將函數(shù)的圖象向右平移個單位,再向上平移個單位得到函數(shù)的圖象.故選:C.主要考查了函數(shù)圖象的平移,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用規(guī)律求函數(shù)解析式.5、D【解析】試題分析:根據(jù)反比例函數(shù)y=(k≠0)的圖象k>0時位于第一、三象限,在每個象限內(nèi),y隨x的增大而減??;k<0時位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大;在不同象限內(nèi),y隨x的增大而增大.可由k=-2<0,所以函數(shù)圖象位于二四象限,在每一象限內(nèi)y隨x的增大而增大,圖象是軸對稱圖象,故A、B、C錯誤.故選D.考點:反比例函數(shù)圖象的性質(zhì)6、B【解析】此題只需將點的坐標代入反比例函數(shù)解析式即可確定k的值.【詳解】把已知點的坐標代入解析式可得,k=1×(-1)=-1.故選:B.本題主要考查了用待定系數(shù)法求反比例函數(shù)的解析式,.7、C【分析】根據(jù)絕對值的定義即可求解.【詳解】的絕對值為故選C.此題主要考查絕對值,解題的關鍵是熟知其定義.8、B【分析】根據(jù)∠AOB=180°,∠AOC=100°,可得出∠BOC的度數(shù),最后根據(jù)圓周角∠BDC與圓心角∠BOC所對的弧都是弧BC,即可求出∠BDC的度數(shù).【詳解】解:∵AB是⊙O直徑,∴∠AOB=180°,∵∠AOC=100°,∴∠BOC=∠AOB-∠AOC=80°;∵所對的圓周角是∠BDC,圓心角是∠BOC,∴;故答案選B.本題考查同圓或等圓中,同弧或等弧所對的圓周角是圓心角的一半,在做題時遇到已知圓心角,求圓周角的度數(shù),可以通過計算,得出相應的圓心角的度數(shù),即可得出圓周角的度數(shù).9、B【分析】根據(jù)2019年的產(chǎn)量=2017年的產(chǎn)量×(1+年平均增長率)2,即可列出方程.【詳解】解:根據(jù)題意可得,2018年的產(chǎn)量為50(1+x),

2019年的產(chǎn)量為50(1+x)(1+x)=50(1+x)2,

即所列的方程為:50(1+x)2=1.

故選:B.此題主要考查了一元二次方程的應用,解題關鍵是要讀懂題意,根據(jù)題目給出的條件,找出合適的等量關系,列出方程.10、C【分析】作CN⊥x軸于點N,根據(jù)證明,求得點C的坐標;設△ABC沿x軸的負方向平移c個單位,用c表示出和,根據(jù)兩點都在反比例函數(shù)圖象上,求出k的值,即可求出反比例函數(shù)的解析式.【詳解】作CN⊥軸于點N,

∵A(2,0)、B(0,1).

∴AO=2,OB=1,∵,∴,

在和中,∴,∴,

又∵點C在第一象限,

∴C(3,2);設△ABC沿軸的負方向平移c個單位,

則,則,

又點和在該比例函數(shù)圖象上,

把點和的坐標分別代入,得,

解得:,∴,

故選:C.本題是反比例函數(shù)與幾何的綜合題,涉及的知識有:全等三角形的判定與性質(zhì),勾股定理,坐標與圖形性質(zhì),利用待定系數(shù)法求函數(shù)解析式,平移的性質(zhì).11、C【分析】過點作于點,于,連接,由垂徑定理得出,得出,由勾股定理得出,證出是等腰直角三角形,得出,求出,由直角三角形的性質(zhì)得出,由勾股定理得出,即可得出答案.【詳解】解:過點作于點,于,連接,如圖所示:則,∴,在中,,∴,∴是等腰直角三角形,∴,,∵,∴,∴,在中,,∴;故選C.考核知識點:垂徑定理.利用垂徑定理和勾股定理解決問題是關鍵.12、B【分析】延長AF交DC于Q點,由矩形的性質(zhì)得出CD=AB=6,AB∥CD,AD∥BC,得出=1,△AEI∽△QDE,因此CQ=AB=CD=6,△AEI的面積:△QDI的面積=1:16,根據(jù)三角形的面積公式即可得出結(jié)果.【詳解】延長AF交DC于Q點,如圖所示:∵E,F(xiàn)分別是AB,BC的中點,∴AE=AB=3,BF=CF=BC=5,∵四邊形ABCD是矩形,∴CD=AB=6,AB∥CD,AD∥BC,∴=1,△AEI∽△QDI,∴CQ=AB=CD=6,△AEI的面積:△QDI的面積=()2=,∵AD=10,∴△AEI中AE邊上的高=2,∴△AEI的面積=×3×2=3,∵△ABF的面積=×5×6=15,∵AD∥BC,∴△BFH∽△DAH,∴==,∴△BFH的面積=×2×5=5,∴四邊形BEIH的面積=△ABF的面積﹣△AEI的面積﹣△BFH的面積=15﹣3﹣5=1.故選:B.本題考查了矩形的性質(zhì)、相似三角形的判定與性質(zhì)、三角形面積的計算;熟練掌握矩形的性質(zhì),證明三角形相似是解決問題的關鍵.二、填空題(每題4分,共24分)13、1:1【分析】根據(jù)相似三角形的性質(zhì)進行分析即可得到答案.【詳解】解:∵兩個相似三角形的面積比為1:4,∴它們對應角的角平分線之比為1:=1:1,故答案為:1:1.本題考查對相似三角形性質(zhì)的理解.(1)相似三角形周長的比等于相似比.(1)相似三角形面積的比等于相似比的平方.(3)相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.14、1【分析】根據(jù)眾數(shù)的出現(xiàn)次數(shù)最多的特點從數(shù)據(jù)中即可得到答案.【詳解】解:在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1,所以這組數(shù)據(jù)的眾數(shù)為1,故答案為:1.此題重點考查學生對眾數(shù)的理解,掌握眾數(shù)的定義是解題的關鍵.15、【分析】根據(jù)反比例函數(shù)的圖象在第二、第四象限得出,最后利用概率公式進行求解.【詳解】∵反比例函數(shù)的圖象在第二、第四象限,∴,∴該函數(shù)圖象在第二、第四象限的概率是,故答案為:.本題考查了反比例函數(shù)的圖象,等可能情況下的概率計算公式,熟練掌握反比例函數(shù)圖象的特征與概率公式是解題的關鍵.16、【分析】直接將函數(shù)解析式寫成頂點式,再利用平移規(guī)律得出答案.【詳解】解:,將二次函數(shù)的圖象先向左平移1個單位,得到的函數(shù)的解析式為:,故答案為:.此題主要考查了二次函數(shù)與幾何變換,正確掌握平移規(guī)律(上加下減,左加右減)是解題關鍵.17、【分析】如果設矩形田地的寬為x步,那么長就應該是(x+12)步,根據(jù)面積為864,即可得出方程.【詳解】解:設矩形田地的寬為x步,那么長就應該是(x+12)步,根據(jù)面積公式,得:;故答案為:.本題為面積問題,考查了由實際問題抽象出一元二次方程,掌握好面積公式即可進行正確解答;矩形面積=矩形的長×矩形的寬.18、1【分析】根據(jù)點與圓的位置關系即可得到結(jié)論.【詳解】解:∵Q是半徑為3的⊙O上一點,點P與圓心O的距離OP=5,根據(jù)三角形的三邊關系,PQ≥OP-OQ(注:當O、P、Q共線時,取等號)∴PQ長的最小值=5-3=1,故答案為:1.此題考查的是點與圓的位置關系,掌握三角形的三邊關系求最值是解決此題的關鍵.三、解答題(共78分)19、(1)BP=CE;CE⊥AD;(2)成立,理由見解析;(3).【解析】(1)①連接AC,證明△ABP≌△ACE,根據(jù)全等三角形的對應邊相等即可證得BP=CE;②根據(jù)菱形對角線平分對角可得,再根據(jù)△ABP≌△ACE,可得,繼而可推導得出,即可證得CE⊥AD;(2)(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立,利用(1)的方法進行證明即可;(3)連接AC交BD于點O,CE,作EH⊥AP于H,由已知先求得BD=6,再利用勾股定理求出CE的長,AP長,由△APE是等邊三角形,求得,的長,再根據(jù),進行計算即可得.【詳解】(1)①BP=CE,理由如下:連接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;②CE⊥AD,∵菱形對角線平分對角,∴,∵△ABP≌△ACE,∴,∵,∴,∴,∴,∴CF⊥AD,即CE⊥AD;(2)(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立,理由如下:連接AC,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等邊三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD,∴(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立;(3)連接AC交BD于點O,CE,作EH⊥AP于H,∵四邊形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∵∠ABC=60°,,∴∠ABO=30°,∴,BO=DO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵,,∴,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE是等邊三角形,∴,,∵,∴,===,∴四邊形ADPE的面積是.【點睛】本題考查了菱形的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形判定與性質(zhì)等,熟練掌握相關知識,正確添加輔助線是解題的關鍵.20、(1)作圖見解析;(2)作圖見解析.【分析】(1)根據(jù)勾股定理求得點A的縱坐標,即可在坐標系中描出點A,并連接;(2)將OA、OB分別延長相等的長度,連接后即可得到中心對稱的圖形.【詳解】(1)∵點的橫坐標為,∴OA=2,∵,∴點A的縱坐標為,∴點坐標(2)如圖,此題考查中心對稱圖形的畫法,掌握中心對稱的特點即可正確畫出圖形.21、當BP=6時,CQ最大,且最大值為1.【分析】根據(jù)正方形的性質(zhì)和余角的性質(zhì)可得∠BEP=∠CPQ,進而可證△BPE∽△CQP,設CQ=y(tǒng),BP=x,根據(jù)相似三角形的性質(zhì)可得y與x的函數(shù)關系式,然后利用二次函數(shù)的性質(zhì)即可求出結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴∠B=∠C=90°,∴∠BEP+∠BPE=90°,∵,∴∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.∴△BPE∽△CQP,∴.設CQ=y(tǒng),BP=x,∵AB=BC=12,∴CP=12﹣x.∵AE=AB,AB=12,∴BE=9,∴,化簡得:y=﹣(x2﹣12x),即y=﹣(x﹣6)2+1,所以當x=6時,y有最大值為1.即當BP=6時,CQ有最大值,且最大值為1.本題考查了正方形的性質(zhì)、相似三角形的判定和性質(zhì)和二次函數(shù)的性質(zhì)等知識,屬于常見題型,熟練掌握相似三角形的性質(zhì)和二次函數(shù)的性質(zhì)是解答的關鍵.22、(1)∠P=36°;(2)∠P=30°.【分析】(1)連接OC,首先根據(jù)切線的性質(zhì)得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形兩銳角互余即可求得答案;(2)根據(jù)E為AC的中點得到OD⊥AC,從而求得∠AOE=90°﹣∠EAO=80°,然后利用圓周角定理求得∠ACD=12∠AOD=40°【詳解】解:(1)如圖,連接OC,∵⊙O與PC相切于點C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(2)∵E為AC的中點,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=12∠AOD=40°∵∠ACD是△ACP的一個外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.本題考查切線的性質(zhì).23、(Ⅰ),PA=4;(Ⅱ),【分析】(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數(shù),由OC=4可得PA的長度(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過點C作CD⊥AB于點D,易得AD=AO=CO,在Rt△DOC中易得CD的長,即可求解【詳解】解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.∴∠AOC=60°.∵PC是○O的切線,OC為○O的半徑,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如圖②,過點C作CD⊥AB于點D.∵△OAC是等邊三角形,CD⊥AB于點D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2此題主要考查圓的綜合應用24、(1)見解析;(2)圖②:EF=AE+CF圖③:EF=AE-CF,見解析【分析】(1)連接OC,運用AAS證△AOE≌△OCF即可;(2)按(1)中的方法,連接OC,證明△AOE≌△OCF,即可得出結(jié)論【詳解】(1)連接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論