版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.如圖,在平面直角坐標系中,點O為坐標原點,三角形OAB的邊OA、OB分別在x軸正半軸上和y軸正半軸上,A(a,0),a是方程的解,且△OAB的面積為6.(1)求點A、B的坐標;(2)將線段OA沿軸向上平移后得到PQ,點O、A的對應點分別為點P和點Q(點P與點B不重合),設點P的縱坐標為t,△BPQ的面積為S,請用含t的式子表示S;(3)在(2)的條件下,設PQ交線段AB于點K,若PK=,求t的值及△BPQ的面積.2.已知,點在與之間.(1)圖1中,試說明:;(2)圖2中,的平分線與的平分線相交于點,請利用(1)的結論說明:.(3)圖3中,的平分線與的平分線相交于點,請直接寫出與之間的數量關系.3.已知點C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數;(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關系(用含α的代數式表示)(3)在②中,過點O′作OB的垂線,與∠OCD的平分線交于點P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關系.4.如圖,已知,是的平分線.(1)若平分,求的度數;(2)若在的內部,且于,求證:平分;(3)在(2)的條件下,過點作,分別交、于點、,繞著點旋轉,但與、始終有交點,問:的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.5.如圖,直線,點是、之間(不在直線,上)的一個動點.(1)如圖1,若與都是銳角,請寫出與,之間的數量關系并說明理由;(2)把直角三角形如圖2擺放,直角頂點在兩條平行線之間,與交于點,與交于點,與交于點,點在線段上,連接,有,求的值;(3)如圖3,若點是下方一點,平分,平分,已知,求的度數.6.如圖①,將一張長方形紙片沿對折,使落在的位置;(1)若的度數為,試求的度數(用含的代數式表示);(2)如圖②,再將紙片沿對折,使得落在的位置.①若,的度數為,試求的度數(用含的代數式表示);②若,的度數比的度數大,試計算的度數.7.據說,我國著名數學家華羅庚在一次訪問途中,看到飛機鄰座的乘客閱讀的雜志上有一道智力題:一個數32768,它是一個正數的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準確計算出的嗎?請按照下面的問題試一試:(1)由,因為,請確定是______位數;(2)由32768的個位上的數是8,請確定的個位上的數是________,劃去32768后面的三位數768得到32,因為,請確定的十位上的數是_____________;(3)已知和分別是兩個數的立方,仿照上面的計算過程,請計算:;.8.我們知道,任意一個正整數n都可以進行這樣的分解:(p,q是正整數,且),在n的所有這種分解中,如果p,q兩因數之差的絕對值最小,我們就稱p×q是n的完美分解.并規(guī)定:.例如18可以分解成1×18,2×9或3×6,因為18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=.(1)F(13)=,F(24)=;(2)如果一個兩位正整數t,其個位數字是a,十位數字為,交換其個位上的數與十位上的數得到的新數減去原來的兩位正整數所得的差為36,那么我們稱這個數為“和諧數”,求所有“和諧數”;(3)在(2)所得“和諧數”中,求F(t)的最大值.9.先閱讀下面的材料,再解答后面的各題:現代社會會保密要求越來越高,密碼正在成為人們生活的一部分,有一種密碼的明文(真實文)按計算機鍵盤字母排列分解,其中這26個字母依次對應這26個自然數(見下表).QWERTYUIOPASD12345678910111213FGHJKLZXCVBNM14151617181920212223242526給出一個變換公式:將明文轉成密文,如,即變?yōu)椋?,即A變?yōu)镾.將密文轉成成明文,如,即變?yōu)椋?,即D變?yōu)镕.(1)按上述方法將明文譯為密文.(2)若按上方法將明文譯成的密文為,請找出它的明文.10.閱讀材料:求1+2+22+23+24+…+22017的值.解:設S=1+2+22+23+24+…+22017,將等式兩邊同時乘以2得:2S=2+22+23+24+…+22017+22018將下式減去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1請你仿照此法計算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n(其中n為正整數);(3)1+2×2+3×22+4×23+…+9×28+10×29.11.先閱讀然后解答提出的問題:設a、b是有理數,且滿足,求ba的值.解:由題意得,因為a、b都是有理數,所以a﹣3,b+2也是有理數,由于是無理數,所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問題:設x、y都是有理數,且滿足,求x+y的值.12.若一個四位數t的前兩位數字相同且各位數字均不為0,則稱這個數為“前介數”;若把這個數的個位數字放到前三位數字組成的數的前面組成一個新的四位數,則稱這個新的四位數為“中介數”;記一個“前介數”t與它的“中介數”的差為P(t).例如,5536前兩位數字相同,所以5536為“前介數”;則6553就為它的“中介數”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求證:任意一個“前介數”t,P(t)一定能被9整除.(3)若一個千位數字為2的“前介數”t能被6整除,它的“中介數”能被2整除,請求出滿足條件的P(t)的最大值.13.如圖,在長方形中,為平面直角坐標系的原點,點的坐標為,點的坐標為且、滿足,點在第一象限內,點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動.(1)點的坐標為___________;當點移動5秒時,點的坐標為___________;(2)在移動過程中,當點到軸的距離為4個單位長度時,求點移動的時間;(3)在的線路移動過程中,是否存在點使的面積是20,若存在直接寫出點移動的時間;若不存在,請說明理由.14.問題情境:(1)如圖1,,,.求度數.小穎同學的解題思路是:如圖2,過點作,請你接著完成解答.問題遷移:(2)如圖3,,點在射線上運動,當點在、兩點之間運動時,,.試判斷、、之間有何數量關系?(提示:過點作),請說明理由;(3)在(2)的條件下,如果點在、兩點外側運動時(點與點、、三點不重合),請你猜想、、之間的數量關系并證明.15.如圖,在平面直角坐標系中,同時將點A(﹣1,0)、B(3,0)向上平移2個單位長度再向右平移1個單位長度,分別得到A、B的對應點C、D.連接AC,BD(1)求點C、D的坐標,并描出A、B、C、D點,求四邊形ABDC面積;(2)在坐標軸上是否存在點P,連接PA、PC使S△PAC=S四邊形ABCD?若存在,求點P坐標;若不存在,請說明理由.16.閱讀下列材料:我們知道的幾何意義是在數軸上數對應的點與原點的距離,即,也就是說,表示在數軸上數與數對應的點之間的距離;例1.解方程,因為在數軸上到原點的距離為的點對應的數為,所以方程的解為.例2.解不等式,在數軸上找出的解(如圖),因為在數軸上到對應的點的距離等于的點對應的數為或,所以方程的解為或,因此不等式的解集為或.參考閱讀材料,解答下列問題:(1)方程的解為;(2)解不等式:;(3)解不等式:.17.在平面直角坐標系中,已知長方形,點,.(1)如圖,有一動點在第二象限的角平分線上,若,求的度數;(2)若把長方形向上平移,得到長方形.①在運動過程中,求的面積與的面積之間的數量關系;②若,求的面積與的面積之比.18.如圖:在四邊形ABCD中,A、B、C、D四個點的坐標分別是:(-2,0)、(0,6)、(4,4)、(2,0)現將四邊形ABCD先向上平移1個單位,再向左平移2個單位,平移后的四邊形是A'B'C′D'(1)請畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點的坐標.(2)若四邊形內部有一點P的坐標為(a,b)寫點P的對應點P′的坐標.(3)求四邊形ABCD的面積.19.如圖,學校印刷廠與A,D兩地有公路、鐵路相連,從A地購進一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運到D地批發(fā),已知公路運價1.5元/(t?km),鐵路運價1.2元/(t?km).這兩次運輸支出公路運費4200元,鐵路運費26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多多少元?20.我國傳統(tǒng)數學名著《九章算術》記載:“今有牛五、羊二,直金十九兩;牛二、羊五,直金十六兩.問牛、羊各直金幾何?”譯文:“假設有5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子.問每頭牛、每只羊分別值銀子多少兩?”根據以上譯文,提出以下兩個問題:(1)求每頭牛、每只羊各值多少兩銀子?(2)若某商人準備用20兩銀子買牛和羊(要求既有牛也有羊,且銀兩須全部用完),請問商人有幾種購買方法?列出所有的可能.21.某企業(yè)用規(guī)格是170cm×40cm的標準板材作為原材料,按照圖①所示的裁法一或裁法二,裁剪出甲型與乙型兩種板材(單位:cm).(1)求圖中a、b的值;(2)若將40張標準板材按裁法一裁剪,5張標準板材按裁法二裁剪,裁剪后將得到的甲型與乙型板材做側面或底面,做成如圖②所示的豎式與橫式兩種無蓋的裝飾盒若干個(接縫處的長度忽略不計).①一共可裁剪出甲型板材張,乙型板材張;②恰好一共可以做出豎式和橫式兩種無蓋裝飾盒子多少個?22.對于不為0的一位數和一個兩位數,將數放置于兩位數之前,或者將數放置于兩位數的十位數字與個位數字之間就可以得到兩個新的三位數,將較大三位數減去較小三位數的差與15的商記為.例如:當,時,可以得到168,618.較大三位數減去較小三位數的差為,而,所以.(1)計算:.(2)若是一位數,是兩位數,的十位數字為(,為自然數),個位數字為8,當時,求出所有可能的,的值.23.如果3個數位相同的自然數m,n,k滿足:m+n=k,且k各數位上的數字全部相同,則稱數m和數n是一對“黃金搭檔數”.例如:因為25,63,88都是兩位數,且25+63=88,則25和63是一對“黃金搭檔數”.再如:因為152,514,666都是三位數,且152+514=666,則152和514是一對“黃金搭檔數”.(1)分別判斷87和12,62和49是否是一對“黃金搭檔數”,并說明理由;(2)已知兩位數s和兩位數t的十位數字相同,若s和t是一對“黃金搭檔數”,并且s與t的和能被7整除,求出滿足題意的s.24.某小區(qū)準備新建個停車位,以解決小區(qū)停車難的問題.已知新建個地上停車位和個地下停車位共需萬元:新建個地上停車位和個地下停車位共需萬元,(1)該小區(qū)新建個地上停車位和個地下停車位各需多少萬元?(2)若該小區(qū)新建車位的投資金額超過萬元而不超過萬元,問共有幾種建造方案?(3)對(2)中的幾種建造方案中,哪種方案的投資最少?并求出最少投資金額.25.如圖,在平面直角坐標系中,軸,軸,且,動點從點出發(fā),以每秒的速度,沿路線向點運動;動點從點出發(fā),以每秒的速度,沿路線向點運動.若兩點同時出發(fā),其中一點到達終點時,運動停止.(Ⅰ)直接寫出三個點的坐標;(Ⅱ)設兩點運動的時間為秒,用含的式子表示運動過程中三角形的面積;(Ⅲ)當三角形的面積的范圍小于16時,求運動的時間的范圍.26.定義:如果一個兩位數a的十位數字為m,個位數字為n,且、、,那么這個兩位數叫做“互異數”.將一個“互異數”的十位數字與個位數字對調后得到一個新的兩位數,把這個新兩位數與原兩位數的和與11的商記為.例如:,對調個位數字與十位數字得到新兩位數41,新兩位數與原兩位數的和為,和與11的商為,所以.根據以上定義,解答下列問題:(1)填空:①下列兩位數:20,21,22中,“互異數”為________;②計算:________;________;(m、n分別為一個兩位數的十位數字與個位數字)(2)如果一個“互異數”b的十位數字是x,個位數字是y,且;另一個“互異數”c的十位數字是,個位數字是,且,請求出“互異數”b和c;(3)如果一個“互異數”d的十位數字是x,個位數字是,另一個“互異數”e的十位數字是,個位數字是3,且滿足,請直接寫出滿足條件的所有x的值________;(4)如果一個“互異數”f的十位數字是,個位數字是x,且滿足的互異數有且僅有3個,則t的取值范圍________.27.閱讀材料:如果x是一個有理數,我們把不超過x的最大整數記作.例如,,,,那么,,其中.例如,,,.請你解決下列問題:(1)__________,__________;(2)如果,那么x的取值范圍是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.28.閱讀理解:定義:,,為數軸上三點,若點到點的距離是它到點的時距離的(為大于1的常數)倍,則稱點是的倍點,且當是的倍點或的倍點時,我們也稱是和兩點的倍點.例如,在圖1中,點是的2倍點,但點不是的2倍點.(1)特值嘗試.①若,圖1中,點______是的2倍點.(填或)②若,如圖2,,為數軸上兩個點,點表示的數是,點表示的數是4,數______表示的點是的3倍點.(2)周密思考:圖2中,一動點從出發(fā),以每秒2個單位的速度沿數軸向左運動秒,若恰好是和兩點的倍點,求所有符合條件的的值.(用含的式子表示)(3)拓展應用數軸上兩點間的距離不超過30個單位長度時,稱這兩點處于“可視距離”.若(2)中滿足條件的和兩點的所有倍點均處于點的“可視距離”內,請直接寫出的取值范圍.(不必寫出解答過程)29.如圖,在平面直角坐標系中,已知,,,,滿足.平移線段得到線段,使點與點對應,點與點對應,連接,.(1)求,的值,并直接寫出點的坐標;(2)點在射線(不與點,重合)上,連接,.①若三角形的面積是三角形的面積的2倍,求點的坐標;②設,,.求,,滿足的關系式.30.我區(qū)防汛指揮部在一河道的危險地帶兩岸各安置一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈光射線自順時針旋轉至便立即逆時針旋轉至,如此循環(huán)燈光射線自順時針旋轉至便立即逆時針旋轉至,如此循環(huán).兩燈交叉照射且不間斷巡視.若燈轉動的速度是度/秒,燈轉動的速度是度/秒,且,滿足.若這一帶江水兩岸河堤相互平行,即,且.根據相關信息,解答下列問題.(1)__________,__________.(2)若燈的光射線先轉動24秒,燈的光射線才開始轉動,在燈的光射線到達之前,燈轉動幾秒,兩燈的光射線互相平行?(3)如圖2,若兩燈同時開始轉動照射,在燈的光射線到達之前,若兩燈射出的光射線交于點,過點作交于點,則在轉動的過程中,與間的數量關系是否發(fā)生變化?若不變,請求出這兩角間的數量關系;若改變,請求出各角的取值范圍.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)B(0,3);(2)S=(3)4【分析】(1)解方程求出a的值,利用三角形的面積公式構建方程求出b的值即可解決問題;(2)分兩種情形分別求解:當點P在線段OB上時,當點P在線段OB的延長線上時;(3)過點K作KH⊥OA用H.根據S△BPK+S△AKH=S△AOB-S長方形OPKH,構建方程求出t,即可解決問題;【詳解】解:(1)∵,∴2(a+2)-3(a-2)=6,∴-a+4=0,∴a=4,∴A(4,0),∵S△OAB=6,∴?4?OB=6,∴OB=3,∴B(0,3).(2)當點P在線段OB上時,S=?PQ?PB=×4×(3-t)=-2t+6.當點P在線段OB的延長線上時,S=?PQ?PB=×4×(t-3)=2t-6.綜上所述,S=.(3)過點K作KH⊥OA用H.∵S△BPK+S△AKH=S△AOB-S長方形OPKH,∴PK?BP+AH?KH=6-PK?OP,∴××(3-t)+(4-)?t=6-?t,解得t=1,∴S△BPQ=-2t+6=4.【點睛】本題考查三角形綜合題,一元一次方程、三角形的面積、平移變換等知識,解題的關鍵是學會利用參數構建方程解決問題,屬于中考壓軸題.2.(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點E作EG∥AB,則∠BEG=∠ABE,根據AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據∠ABE的平分線與∠CDE的平分線相交于點F,結合(1)的結論即可說明:∠BED=2∠BFD;(3)圖3中,根據∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結合(1)的結論即可說明∠BED與∠BFD之間的數量關系.【詳解】解:(1)如圖1中,過點E作EG∥AB,則∠BEG=∠ABE,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點睛】本題考查了平行線的性質,解決本題的關鍵是掌握平行線的性質.3.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據平行線的性質得到∠AOE的度數,再根據直角、周角的定義即可求得∠BOE的度數;(2)如圖②,過O點作OF∥CD,根據平行線的判定和性質可得∠OCD、∠BO′E′的數量關系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(2)∠OCD+∠BO′E′=360°-∠AOB,進而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點睛】此題考查了平行線的判定和性質,平移的性質,直角的定義,角平分線的定義,正確作出輔助線是解決問題的關鍵.4.(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據鄰補角的定義及角平分線的定義即可得解;(2)根據垂直的定義及鄰補角的定義、角平分線的定義即可得解;(3),過,分別作,,根據平行線的性質及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線,,,又,,又在的內部,平分;(3)如圖,不發(fā)生變化,,過,分別作,,則有,,,,,,,,,,,,不變.【點睛】此題考查了平行線的性質,熟記平行線的性質及作出合理的輔助線是解題的關鍵.5.(1)見解析;(2);(3)75°【分析】(1)根據平行線的性質、余角和補角的性質即可求解.(2)根據平行線的性質、對頂角的性質和平角的定義解答即可.(3)根據平行線的性質和角平分線的定義以及三角形內角和解答即可.【詳解】解:(1)∠C=∠1+∠2,證明:過C作l∥MN,如下圖所示,∵l∥MN,∴∠4=∠2(兩直線平行,內錯角相等),∵l∥MN,PQ∥MN,∴l(xiāng)∥PQ,∴∠3=∠1(兩直線平行,內錯角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴,(3)設BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【點睛】本題考查了平行線的性質、余角和補角的性質,解題的關鍵是根據平行找出角度之間的關系.6.(1);(2)①;②【分析】(1)由平行線的性質得到,由折疊的性質可知,∠2=∠BFE,再根據平角的定義求解即可;(2)①由(1)知,,根據平行線的性質得到,再由折疊的性質及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據條件和折疊的性質得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數比的度數大,,,,.【點睛】此題考查了平行線的性質,屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內錯角相等”及折疊的性質是解題的關鍵.7.(1)兩;(2)2,3;(3)24,﹣48;【分析】(1)由題意可得,進而可得答案;(2)由只有個位數是2的數的立方的個位數是8,可確定的個位上的數,由可得27<32<64,進而可確定,于是可確定的十位上的數,進而可得答案;(3)仿照(1)(2)兩小題中的方法解答即可.【詳解】解:(1)因為,所以,所以是一個兩位數;故答案為:兩;(2)因為只有個位數是2的數的立方的個位數是8,所以的個位上的數是2,劃去32768后面的三位數768得到32,因為,27<32<64,所以,所以的十位上的數是3;故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數;∵只有個位數是4的數的立方的個位數是4,∴的個位上的數是4,劃去13824后面的三位數824得到13,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數;∵只有個位數是8的數的立方的個位數是2,∴的個位上的數是8,劃去110592后面的三位數592得到110,∵64<110<125,∴40<<50,∴;∴=﹣48.【點睛】本題考查了立方根和立方數的規(guī)律探求,具有一定的難度,正確理解題意、確定所求的數的個位數字和十位數字是解題的關鍵.8.(1),(2)所以和諧數為15,26,37,48,59;(3)F(t)的最大值是.【分析】(1)根據題意,按照新定義的法則計算即可.(2)根據新定義的”和諧數”定義,將數用a,b表示列出式子解出即可.(3)根據(2)中計算的結果求出最大即可.【詳解】解:(1)F(13)=,F(24)=;(2)原兩位數可表示為新兩位數可表示為∴∴∴∴∴(且b為正整數)∴b=2,a=5;b=3,a=6,b=4,a=7,b=5,a=8b=6,a=9所以和諧數為15,26,37,48,59(3)所有“和諧數”中,F(t)的最大值是.【點睛】本題為新定義的題型,關鍵在于讀懂題意,按照規(guī)定解題.9.(1)N,E,T密文為M,Q,P;(2)密文D,W,N的明文為F,Y,C.【分析】(1)
由圖表找出N,E,T對應的自然數,再根據變換公式變成密文.(2)由圖表找出N=M,Q,P對應的自然數,再根據變換.公式變成明文.【詳解】解:(1)將明文NET轉換成密文:即N,E,T密文為M,Q,P;(2)將密文D,W,N轉換成明文:即密文D,W,N的明文為F,Y,C.【點睛】本題考查有理數的混合運算,此題較復雜,解答本題的關鍵是由圖表中找到對應的數或字母,正確運用轉換公式進行轉換.10.(1)210-1;(2);(3)9×210+1.【分析】(1)根據題目中材料可以得到用類比的方法得到1+2+22+23+…+29的值;(2)根據題目中材料可以得到用類比的方法得到1+5+52+53+54+…+5n的值.(3)根據題目中的信息,運用類比的數學思想可以解答本題.【詳解】解:(1)設S=1+2+22+23+…+29,將等式兩邊同時乘以2得:2S=2+22+23+24+…+29+210,將下式減去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案為210-1;(2)設S=1+5+52+53+54+…+5n,將等式兩邊同時乘以5得:5S=5+52+53+54+55+…+5n+5n+1,將下式減去上式得5S-S=5n+1-1,即S=,即1+5+52+53+54+…+5n=;(3)設S=1+2×2+3×22+4×23+…+9×28+10×29,將等式兩邊同時乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,將上式減去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【點睛】本題考查有理數的混合運算、數字的變化類,解題的關鍵是明確題意,發(fā)現數字的變化規(guī)律.11.7或-1.【分析】根據題目中給出的方法,對所求式子進行變形,求出x、y的值,進而可求x+y的值.【詳解】解:∵,∴,∴=0,=0∴x=±4,y=3當x=4時,x+y=4+3=7當x=-4時,x+y=-4+3=-1∴x+y的值是7或-1.【點睛】本題考查實數的運算,解題的關鍵是弄清題中給出的解答方法,然后運用類比的思想進行解答.12.(1)-3006,990;(2)見解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根據“前介數”t與它的“中介數”的差為P(t)的定義求解即可;(2)設“前介數”為且a、b、c均不為0的整數,即1a、b、c,根據定義得到P(t)=,則P(t)一定能被9整除;(3)設“前介數”為,根據題意得到能被3整除,且b只能取2,4,6,8中的其中一個數;對應的“中介數”是,得到a只能取2,4,6,8中的其中一個數,計算P(t),推出要求P(t)的最大值,即要盡量的大,要盡量的小,再分類討論即可求解.【詳解】(1)解:2215是“前介數”,其對應的“中介數”是5221,∴P(2215)=2215-5221=-3006;6655是“前介數”,其對應的“中介數”是5665,∴P(6655)=6655-5665=990;故答案為:-3006,990;(2)證明:設“前介數”為且a、b、c均為不為0的整數,即1a、b、c,∴,又對應的“中介數”是,∴P(t)=,∵a、b、c均不為0的整數,∴為整數,∴P(t)一定能被9整除;(3)證明:設“前介數”為且即1a、b,a、b均為不為0的整數,∴,∵能被6整除,∴能被2整除,也能被3整除,∴為偶數,且能被3整除,又1,∴b只能取2,4,6,8中的其中一個數,又對應的“中介數”是,且該“中介數”能被2整除,∴為偶數,又1,∴a只能取2,4,6,8中的其中一個數,∴P(t)=,要求P(t)的最大值,即要盡量的大,要盡量的小,①的最大值為8,的最小值為2,但此時,且14不能被3整除,不符合題意,舍去;②的最大值為6,的最小值仍為2,但此時,能被3整除,且P(t)=2262-2226=36;③的最大值仍為8,的最小值為4,但此時,且16不能被3整除,不符合題意,舍去;其他情況,減少,增大,則P(t)減少,∴滿足條件的P(t)的最大值是P(2262)=36.【點睛】本題考查用新定義解題,根據新定義,表示出“前介數”,與其對應的“中介數”是求解本題的關鍵.本題中運用到的分類討論思想是重要一種數學解題思想方法.13.(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或【分析】(1)由非負數的性質可得a、b的值,據此可得點B的坐標;由點P運動速度和時間可得其運動5秒的路程,得到OP=10,從而得出其坐標;(2)先根據點P運動11秒判斷出點P的位置,再根據三角形的面積公式求解可得;(3)分為點P在OC、BC上分類計算即可.【詳解】解:(1)∵a,b滿足,∴a=8,b=12,∴點B(8,12);當點P移動5秒時,其運動路程為5×2=10,∴OP=10,則點P坐標為(0,10),故答案為:(8,12)、(0,10);(2)由題意可得,第一種情況,當點P在OC上時,點P移動的時間是:4÷2=2秒,第二種情況,當點P在BA上時.點P移動的時間是:(12+8+8)÷2=14秒,所以在移動過程中,當點P到x軸的距離為4個單位長度時,點P移動的時間是2秒或14秒.(3)如圖1所示:∵△OBP的面積=20,∴OP?BC=20,即×8×OP=20.解得:OP=5.∴此時t=2.5s如圖2所示;∵△OBP的面積=20,∴PB?OC=20,即×12×PB=20.解得:BP=.∴CP=.∴此時t=,綜上所述,滿足條件的時間t=2.5s或【點睛】本題考查矩形的性質,三角形的面積,坐標與圖形的性質,解題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答問題.14.(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構造同旁內角,利用平行線性質,可得∠APC=113°;(2)過過作交于,,推出,根據平行線的性質得出,即可得出答案;(3)畫出圖形(分兩種情況:①點P在BA的延長線上,②當在之間時(點不與點,重合)),根據平行線的性質即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當在延長線時(點不與點重合),;理由:如圖4,過作交于,,,,,,,,又,;②當在之間時(點不與點,重合),.理由:如圖5,過作交于,,,,,,,,又.【點睛】本題考查了平行線的性質的應用,主要考查學生的推理能力,解決問題的關鍵是作輔助線構造內錯角以及同旁內角.15.(1)(0,2),(4,2),見解析,ABDC面積:8;(2)存在,P的坐標為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【解析】【分析】(1)根據向右平移橫坐標加,向上平移縱坐標加寫出點C、D的坐標即可,再根據平行四邊形的面積公式列式計算即可得解;(2)分點P在x軸和y軸上兩種情況,依據S△PAC=S四邊形ABCD求解可得.【詳解】(1)由題意知點C坐標為(﹣1+1,0+2),即(0,2),點D的坐標為(3+1,0+2),即(4,2),如圖所示,S四邊形ABDC=2×4=8;(2)當P在x軸上時,∵S△PAC=S四邊形ABCD,∴,∵OC=2,∴AP=8,∴點P的坐標為(7,0)或(﹣9,0);當P在y軸上時,∵S△PAC=S四邊形ABCD,∴,∵OA=1,∴CP=16,∴點P的坐標為(0,18)或(0,﹣14);綜上,點P的坐標為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【點睛】本題考查了坐標與圖形性質,三角形的面積,坐標與圖形變化﹣平移,熟記各性質是解題的關鍵.16.(1)x=2或x=-8;(2)-1≤x≤5;(3)x>5或x<-3.【分析】(1)利用在數軸上到-3對應的點的距離等于5的點的對應的數為2或-8求解即可;(2)先求出的解,再求出的解集即可;(3)先在數軸上找出的解,即可得出的解集.【詳解】解:(1)∵在數軸上到-3對應的點的距離等于5的點的對應的數為2或-8∴方程的解為x=2或x=-8(2)∵在數軸上到2對應的點的距離等于3的點的對應的數為-1或5∴方程的解為x=-1或x=5∴的解集為-1≤x≤5.(3)由絕對值的幾何意義可知,方程就是求在數軸上到4和-2對應的點的距離之和等于8的點對應的x的值.∵在數軸上4和-2對應的點的距離是6∴滿足方程的x的點在4的右邊或-2的左邊若x對應的點在4的右邊,可得x=5;若x對應的點在-2的左邊,可得x=-3∴方程的解為x=5或x=-3∴的解集為x>5或x<-3.故答案為(1)x=2或x=-8;(2)-1≤x≤5;(3)x>5或x<-3.【點睛】本題考查了絕對值及不等式的知識.解題的關鍵是理解表示在數軸上數與數對應的點之間的距離.17.(1)55°或35°;(2)①;②.【解析】【分析】(1)分兩種情況:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根據點在第二象限的角平分線上,得出∠POE=45°,對頂角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知條件,得出∠CEO=45°,又根據∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先設長方形向上平移個單位長,得到長方形,然后列出和的面積,即可得出兩者的數量關系;②首先根據已知條件判定四邊形是平行四邊形,經過等量轉化,即可得出和的面積,進而得出其面積之比.【詳解】(1)分兩種情況:①令PC交x軸于點E,延長CB至x軸,交于點F,如圖所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵點在第二象限的角平分線上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延長CB,交直線l于點E,由已知得,,∵點在第二象限的角平分線上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案為55°或35°.(2)如圖,①設長方形向上平移個單位長,得到長方形∴②∵長方形,∴∵,令交于E,則四邊形是平行四邊形,∴∴又∵由①得知,∴∴.【點睛】此題主要考查等量轉換和平行四邊形的判定以及性質,熟練掌握,即可解題.18.(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據圖形寫出對應點的坐標進而得出答案;(2)利用平移規(guī)律進而得出對應點坐標的變化規(guī)律:向上平移1個單位,縱坐標加1;向左平移2個單位,橫坐標減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內部有一點P的坐標為(a,b)寫點P的對應點P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點睛】此題主要考查了平移變換以及坐標系內四邊形面積求法,正確得出對應點位置是解題關鍵.19.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設白紙有噸,作業(yè)本有噸,根據共支出公路運費4200元,鐵路運費26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購進款與運輸費的和),進行計算即可.【詳解】解:(1)設白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多69520元.【點睛】本題考查了二元一次方程組的應用,解題的關鍵是找準等量關系,正確列出二元一次方程組.20.(1)每頭牛3兩銀子,每頭羊2兩銀子;(2)共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊【分析】(1)設每頭牛值x兩銀子,每只羊值y兩銀子,根據“5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子”,即可得出關于x,y的二元一次方程組,解之即可得出結論;(2)設購買a頭牛,b只羊,利用總價=單價×數量,即可得出關于a,b的二元一次方程,結合a,b均為正整數,即可得出各購買方案.【詳解】解:(1)設每頭牛x兩銀子,每頭羊y兩銀子,根據題意,得解得答:每頭牛3兩銀子,每頭羊2兩銀子.(含設)(2)設該商人購買了a頭牛,b頭羊,根據題意,得∵a、b均為正整數∴該方程的解為或或所以共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊.【點睛】本題考查了二元一次方程組的應用、數學常識以及二元一次方程的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)找準等量關系,正確列出二元一次方程.21.(1)60,40;(2)①甲:85;乙50;②27【分析】(1)由圖示列出關于a、b的二元一次方程組求解.(2)①根據已知和圖示計算出兩種裁法共產生甲型板材和乙型板材的張數;②根據豎式與橫式禮品盒所需要的甲、乙兩種型號板材的張數列出關于m、n的二元一次方程,求解,即可得出結論.【詳解】解:(1)依題意,得:解得:a=60b=40答:a、b的值分別為60,40.(2)①一共可裁剪出甲型板材40×2+5=85(張)乙型板材40+5×2=50(張).故答案是:85,50;②設可做成m個豎式無蓋裝飾盒,n個橫式無蓋裝飾盒.依題意得:,解得:m=4,n=23所以m+n=27,故答案為27個【點睛】本題考查的知識點是二元一次方程組的應用,關鍵是根據已知先列出二元一次方程組求出a、b的值,根據圖示列出算式以及關于m、n的二元一次方程.22.(1)=6;(2)a=3,b=78或a=7,b=78.【分析】(1)=(217-127)÷15=6;(2)分1≤a<5,a=5,5<a≤9三種情形討論計算.【詳解】(1)當,時,可以得到217,127.較大三位數減去較小三位數的差為,而,∴.(2)當,時,可以得a50,5a0.三位數分別為100a+50,500+10a,當1≤a<5時,(500+10a)-(100a+50)=450-90a,而,∴=,∴=;當a=5時,(500+10a)-(100a+50)=0,而,∴=0,∴=0;當5<a≤9時,(100a+50)-(500+10a)=90a-450,而,∴=,∴=a-5;當,時,可以得900+10x+8,100x+98.∵,∴(900+10x+8)-(100x+98)=810-90x,而,∴=,,∴=;當1≤a<5時,5-a+27-3x=8,∴a+3x=24,∴當a=1時,x=(舍去),當a=2時,x=(舍去),當a=3時,x=7,當a=4時,x=(舍去),∴a=3,b=78;當a=5時,則27-3x=8,∴x=(舍去),當5<a≤9時,則a-5+27-3x=8,∴3x-a=14,∴當a=6時,x=(舍去),當a=7時,x=7,當a=8時,x=(舍去),當a=9時,x=(舍去),∴a=7,b=78;綜上所述,a=3,b=78或a=7,b=78.【點睛】本題考查了新定義問題和二元一次方程的整數解,準確理解新定義的意義,靈活運用分類思想和枚舉法是解題的關鍵.23.(1)87和12是“黃金搭檔數”,62和49不是“黃金搭檔數”,理由見解析;(2)39或38【分析】(1)根據“黃金搭檔數”的定義分別判斷即可;(2)由已知設x,y為整數,x,z為整數,表示出,由s和t是一對“黃金搭檔數”,并且s與t的和能被7整除,綜合分析,列出方程組求解即可.【詳解】(1)解:∵∴87和12是一對“黃金搭檔數”;∵∴111與62,49數位不相同,∴62和49不是一對“黃金搭檔數”;故87和12是一對“黃金搭檔數”,62和49不是一對“黃金搭檔數”;(2)∵兩位數s和兩位數t的十位數字相同,∴設x,y為整數,x,z為整數,∴∵s和t是一對“黃金搭檔數”,∴是一個兩位數,且各個數位上的數相同,又∵s與t的和能被7整除,∴,共有兩種情況:①,解得,∵x為整數,∴不合題意,舍去;②,∵都是整數,且∴解得或,故s為39或38.【點睛】本題考查三元一次方程組的整數解,解題關鍵是理解題目中的定義,根據已知條件列出方程組.24.(1)新建一個地上停車位需0.1萬元,新建一個地下停車位需0.5萬元;(2)一共2種建造方案;(3)當地上建39個車位地下建21個車位投資最少,金額為14.4萬元.【分析】(1)設新建一個地上停車位需x萬元,新建一個地下停車位需y萬元,根據等量關系可列出方程組,解出即可得出答案.(2)設新建地上停車位m個,則地下停車位(60-m)個,根據投資金額超過14萬元而不超過15萬元,可得出不等式組,解出即可得出答案.(3)將m=38和m=39分別求得投資金額,然后比較大小即可得到答案.【詳解】解:(1)設新建一個地上停車位需萬元,新建一個地下停車位需萬元,由題意得:,解得,故新建一個地上停車位需萬元,新建一個地下停車位需萬元.(2)設新建個地上停車位,由題意得:,解得,因為為整數,所以或,對應的或,故一共種建造方案.(3)當時,投資(萬元),當時,投資(萬元),故當地上建個車位地下建個車位投資最少,金額為萬元.【點睛】本題考查了一元一次不等式組及二元一次方程組的應用,解答本題的關鍵是仔細審題,將實際問題轉化為數學方程或不等式的思想進行求解,有一定難度.25.(Ⅰ);(Ⅱ)當時,三角形的面積為;當時,三角形的面積為;(Ⅲ)或.【分析】(Ⅰ)先求出的長,再根據的長即可得;(Ⅱ)先分別求出點運動到點所需時間、點運動到點所需時間,從而可得,再分和兩種情況,分別利用三角形的面積公式、梯形的面積公式即可得;(Ⅲ)根據(Ⅱ)的結論,分和兩種情況,分別建立不等式,解不等式即可得.【詳解】解:(Ⅰ)軸,,,軸,,;(Ⅱ)∵點運動的路徑長為,所用時間為7秒;點運動的路徑長為,所用時間為秒,∴根據其中一點到達終點時運動停止可知,運動時間的取值范圍為,點運動到點所用時間為4秒,點運動到點所用時間為,因此,分以下兩種情況:①如圖,當時,,則三角形的面積為;②當時,如圖,過點作,交延長線于點,,,則三角形的面積為,,,綜上,當時,三角形的面積為;當時,三角形的面積為;(Ⅲ)①當時,則,解得,則此時的取值范圍為;②當時,則,解得,則此時的取值范圍為,綜上,當三角形的面積的范圍小于16時,或.【點睛】本題考查了坐標與圖形、三角形的面積公式、一元一次不等式的應用等知識點,較難的是題(Ⅱ),正確分兩種情況討論是解題關鍵.26.(1)①21;②9,m+n;(2)b=25,c=49;(3)3或4;(4)10<t≤12【分析】(1)①由“互異數”的定義可得;②根據定義計算可得;(2)由W(b)=7,W(c)=13,列出二元一次方程組,即可求x和y;(3)根據題意W(d)+W(e)<25可列出不等式,即可求x的值;(4)根據“互異數”f的十位數字是x+4,個位數字是x,分類討論f,根據滿足W(f)<t的互異數有且僅有3個,求出t的取值范圍.【詳解】解:(1)①∵如果一個兩位數a的十位數字為m,個位數字為n,且m≠n、m≠0、n≠0,那么這個兩位數叫做“互異數”,∴“互異數”為21,故答案為:21;②W(36)=(36+63)÷11=9,W(10m+n)=(10m+n+10n+m)÷11=m+n;故答案為:9,m+n;(2)∵W(10m+n)=(10m+n+10n+m)÷11=m+n,且W(b)=7,∴x+y=7①,∵W(c)=13,∴x+2+2y-1=13②,聯立①②解得,故b=10×2+5=25,c=10×(2+2)+2×5-1=49;(3)∵W(d)+W(e)<25,∴x+x+3+(x-2+3)<25,
解得x<7,∵x-2>0,x+3<9,∴2<x<6,∴2<x<6,且x為正整數,∴x=3,4,5,當x=5時e為33不是互異數,舍去,故答案為:3或4;(4)當x=0時,x+4=4,此時f為40不是互異數;當x=1時,x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 熱帶作物初制工安全生產能力競賽考核試卷含答案
- 醋酸裝置操作工安全宣貫知識考核試卷含答案
- 對(間、鄰)二甲苯裝置操作工8S考核試卷含答案
- 呼和浩特金堡鉑金精煉(二期)項目環(huán)境影響報告書
- 金融保安合同范本
- 扶溝縣天梭紡織年產 3000 萬米坯布項目報告表
- 開鎖證明合同范本
- 承租地合同協議書
- 鋼筋拆除合同范本
- 鉆芯取樣協議合同
- 2025年北京公共交通控股集團有限公司校園招聘筆試試題及答案
- AI智能生產平臺-AI+質量管理
- 農村山塘維修合同
- 量子點材料的發(fā)光性能研究與應用
- 6.3 梯形的面積 課件 2025-2026學年五年級上冊數學人教版
- 2025廣東廣州市衛(wèi)生健康委員會直屬事業(yè)單位廣州市紅十字會醫(yī)院招聘47人(第一次)筆試考試參考題庫及答案解析
- 中國外運招聘筆試題庫2025
- 建筑物拆除施工溝通協調方案
- 中央廚房市場分析
- 2025年攝像導演崗位招聘面試參考試題及參考答案
- 2026-2031中國野山參市場運營態(tài)勢報告
評論
0/150
提交評論