版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
蘇科版數(shù)學(xué)七年級(jí)下冊(cè)期末試卷測(cè)試卷附答案一、解答題1.如圖,直線HDGE,點(diǎn)A在直線HD上,點(diǎn)C在直線GE上,點(diǎn)B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大??;(3)如圖3,點(diǎn)P是線段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說(shuō)明理由.2.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點(diǎn),點(diǎn)為上一點(diǎn),連接,若的平分線交線段于點(diǎn),連接,若,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),且,求的度數(shù).3.已知:直線AB∥CD,直線MN分別交AB、CD于點(diǎn)E、F,作射線EG平分∠BEF交CD于G,過(guò)點(diǎn)F作FH⊥MN交EG于H.(1)當(dāng)點(diǎn)H在線段EG上時(shí),如圖1①當(dāng)∠BEG=時(shí),則∠HFG=.②猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.(2)當(dāng)點(diǎn)H在線段EG的延長(zhǎng)線上時(shí),請(qǐng)先在圖2中補(bǔ)全圖形,猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.4.已知,點(diǎn)在與之間.(1)圖1中,試說(shuō)明:;(2)圖2中,的平分線與的平分線相交于點(diǎn),請(qǐng)利用(1)的結(jié)論說(shuō)明:.(3)圖3中,的平分線與的平分線相交于點(diǎn),請(qǐng)直接寫出與之間的數(shù)量關(guān)系.5.已知:AB∥CD,截線MN分別交AB、CD于點(diǎn)M、N.(1)如圖①,點(diǎn)B在線段MN上,設(shè)∠EBM=α°,∠DNM=β°,且滿足+(β﹣60)2=0,求∠BEM的度數(shù);(2)如圖②,在(1)的條件下,射線DF平分∠CDE,且交線段BE的延長(zhǎng)線于點(diǎn)F;請(qǐng)寫出∠DEF與∠CDF之間的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖③,當(dāng)點(diǎn)P在射線NT上運(yùn)動(dòng)時(shí),∠DCP與∠BMT的平分線交于點(diǎn)Q,則∠Q與∠CPM的比值為(直接寫出答案).二、解答題6.如圖1,由線段組成的圖形像英文字母,稱為“形”.(1)如圖1,形中,若,則______;(2)如圖2,連接形中兩點(diǎn),若,試探求與的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖3,在(2)的條件下,且的延長(zhǎng)線與的延長(zhǎng)線有交點(diǎn),當(dāng)點(diǎn)在線段的延長(zhǎng)線上從左向右移動(dòng)的過(guò)程中,直接寫出與所有可能的數(shù)量關(guān)系.7.如圖1,,在、內(nèi)有一條折線.(1)求證:;(2)在圖2中,畫的平分線與的平分線,兩條角平分線交于點(diǎn),請(qǐng)你補(bǔ)全圖形,試探索與之間的關(guān)系,并證明你的結(jié)論;(3)在(2)的條件下,已知和均為鈍角,點(diǎn)在直線、之間,且滿足,,(其中為常數(shù)且),直接寫出與的數(shù)量關(guān)系.8.已知,交AC于點(diǎn)E,交AB于點(diǎn)F.(1)如圖1,若點(diǎn)D在邊BC上,①補(bǔ)全圖形;②求證:.(2)點(diǎn)G是線段AC上的一點(diǎn),連接FG,DG.①若點(diǎn)G是線段AE的中點(diǎn),請(qǐng)你在圖2中補(bǔ)全圖形,判斷,,之間的數(shù)量關(guān)系,并證明;②若點(diǎn)G是線段EC上的一點(diǎn),請(qǐng)你直接寫出,,之間的數(shù)量關(guān)系.9.綜合與探究綜合與實(shí)踐課上,同學(xué)們以“一個(gè)含角的直角三角尺和兩條平行線”為背景開展數(shù)學(xué)活動(dòng),如圖,已知兩直線,,且,三角形是直角三角形,,,操作發(fā)現(xiàn):(1)如圖1.,求的度數(shù);(2)如圖2.創(chuàng)新小組的同學(xué)把直線向上平移,并把的位置改變,發(fā)現(xiàn),請(qǐng)說(shuō)明理由.實(shí)踐探究:(3)填密小組在創(chuàng)新小組發(fā)現(xiàn)的結(jié)論的基礎(chǔ)上,將圖2中的圖形繼續(xù)變化得到圖3,平分,此時(shí)發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請(qǐng)寫出與的數(shù)量關(guān)系并說(shuō)明理由.10.如圖1,在平面直角坐標(biāo)系中,,且滿足,過(guò)作軸于(1)求三角形的面積.(2)發(fā)過(guò)作交軸于,且分別平分,如圖2,若,求的度數(shù).(3)在軸上是否存在點(diǎn),使得三角形和三角形的面積相等?若存在,求出點(diǎn)坐標(biāo);若不存在;請(qǐng)說(shuō)明理由.三、解答題11.如圖所示,已知射線.點(diǎn)E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動(dòng)AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個(gè)比值;(3)在平行移動(dòng)AB的過(guò)程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請(qǐng)說(shuō)明理由.12.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).小明的思路是:如圖2,過(guò)P作PE∥AB,通過(guò)平行線性質(zhì),可得∠APC=50°+60°=110°.問題遷移:(1)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.13.Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:;(3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長(zhǎng)線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說(shuō)明理由.(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為:.14.【問題探究】如圖1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC與α、β之間有何數(shù)量關(guān)系?并說(shuō)明理由;【問題遷移】如圖2,DF∥CE,點(diǎn)P在三角板AB邊上滑動(dòng),∠PCE=∠α,∠PDF=∠β.(1)當(dāng)點(diǎn)P在E、F兩點(diǎn)之間運(yùn)動(dòng)時(shí),如果α=30°,β=40°,則∠DPC=°.(2)如果點(diǎn)P在E、F兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、E、F四點(diǎn)不重合),寫出∠DPC與α、β之間的數(shù)量關(guān)系,并說(shuō)明理由.(圖1)(圖2)15.如圖,△ABC和△ADE有公共頂點(diǎn)A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,則∠EAC=;(2)如圖1,過(guò)AC上一點(diǎn)O作OG⊥AC,分別交AB、AD、AE于點(diǎn)G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求線段OF的長(zhǎng);②如圖2,∠AFO的平分線和∠AOF的平分線交于點(diǎn)M,∠FHD的平分線和∠OGB的平分線交于點(diǎn)N,∠N+∠M的度數(shù)是否發(fā)生變化?若不變,求出其度數(shù);若改變,請(qǐng)說(shuō)明理由.【參考答案】一、解答題1.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過(guò)點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過(guò)點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過(guò)B作BPHDGE,過(guò)F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過(guò)P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過(guò)點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過(guò)B作BPHDGE,過(guò)F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過(guò)P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).2.(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的解析:(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,,,AF平分FH平分設(shè),.【點(diǎn)睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進(jìn)行推理是解此題的關(guān)鍵.3.(1)①18°;②2∠BEG+∠HFG=90°,證明見解析;(2)2∠BEG-∠HFG=90°證明見解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結(jié)論.②利用平行線的性質(zhì)證明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,證明見解析;(2)2∠BEG-∠HFG=90°證明見解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結(jié)論.②利用平行線的性質(zhì)證明即可.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.利用平行線的性質(zhì)證明即可.【詳解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案為:18°.②結(jié)論:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.4.(1)說(shuō)明過(guò)程請(qǐng)看解答;(2)說(shuō)明過(guò)程請(qǐng)看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過(guò)點(diǎn)E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,解析:(1)說(shuō)明過(guò)程請(qǐng)看解答;(2)說(shuō)明過(guò)程請(qǐng)看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過(guò)點(diǎn)E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進(jìn)而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,結(jié)合(1)的結(jié)論即可說(shuō)明:∠BED=2∠BFD;(3)圖3中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過(guò)點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合(1)的結(jié)論即可說(shuō)明∠BED與∠BFD之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,過(guò)點(diǎn)E作EG∥AB,則∠BEG=∠ABE,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因?yàn)锽F平分∠ABE,所以∠ABE=2∠ABF,因?yàn)镈F平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因?yàn)锳B∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過(guò)點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因?yàn)锽F平分∠ABE,所以∠ABE=2∠ABF,因?yàn)镈F平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因?yàn)锳B∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點(diǎn)睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).5.(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過(guò)點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過(guò)點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行線的性質(zhì)可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的數(shù)量可求解;(3)由平行線的性質(zhì)和外角性質(zhì)可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【詳解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:過(guò)點(diǎn)E作直線EH∥AB,∵DF平分∠CDE,∴設(shè)∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如圖3,設(shè)MQ與CD交于點(diǎn)E,∵M(jìn)Q平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q與∠CPM的比值為,故答案為:.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì),準(zhǔn)確計(jì)算是解題的關(guān)鍵.二、解答題6.(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過(guò)M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長(zhǎng)BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過(guò)M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長(zhǎng)BA,DC交于E,應(yīng)用四邊形的內(nèi)角和定理與平角的定義即可解決問題.(3)分兩種情形分別求解即可;【詳解】解:(1)過(guò)M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案為:50°;(2)∠A+∠C=30°+α,延長(zhǎng)BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下圖所示:延長(zhǎng)BA、DC使之相交于點(diǎn)E,延長(zhǎng)MC與BA的延長(zhǎng)線相交于點(diǎn)F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的內(nèi)外角之間的關(guān)系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如圖所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α.綜上所述,∠A-∠DCM=30°+α或30°-α.【點(diǎn)睛】本題考查了平行線的性質(zhì).解答該題時(shí),通過(guò)作輔助線準(zhǔn)確作出輔助線l∥AB,利用平行線的性質(zhì)(兩直線平行內(nèi)錯(cuò)角相等)將所求的角∠M與已知角∠A、∠C的數(shù)量關(guān)系聯(lián)系起來(lái),從而求得∠M的度數(shù).7.(1)見解析;(2);見解析;(3)【分析】(1)過(guò)點(diǎn)作,根據(jù)平行線性質(zhì)可得;(2)由(1)結(jié)論可得:,,再根據(jù)角平分線性質(zhì)可得;(3)由(2)結(jié)論可得:.【詳解】(1)證明:如圖1,過(guò)解析:(1)見解析;(2);見解析;(3)【分析】(1)過(guò)點(diǎn)作,根據(jù)平行線性質(zhì)可得;(2)由(1)結(jié)論可得:,,再根據(jù)角平分線性質(zhì)可得;(3)由(2)結(jié)論可得:.【詳解】(1)證明:如圖1,過(guò)點(diǎn)作,∵,∴,∴,,又∵,∴;(2)如圖2,由(1)可得:,,∵的平分線與的平分線相交于點(diǎn),∴,∴;(3)由(2)可得:,,∵,,∴,∴;【點(diǎn)睛】考核知識(shí)點(diǎn):平行線性質(zhì)和判定的綜合運(yùn)用.熟練運(yùn)用平行線性質(zhì)和判定是關(guān)鍵.8.(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠解析:(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,進(jìn)而得出∠EDF=∠A;(2)①過(guò)G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②過(guò)G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【詳解】解:(1)①如圖,②∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如圖2所示,過(guò)G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如圖所示,過(guò)G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等.正確的作出輔助線是解題的關(guān)鍵.9.(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過(guò)點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠解析:(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過(guò)點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC?∠DBC=60°?∠1,進(jìn)而得出結(jié)論;(3)過(guò)點(diǎn)C作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)如圖1,,,,;圖1(2)理由如下:如圖2.過(guò)點(diǎn)作,圖2,,,,,,;(3),圖3理由如下:如圖3,過(guò)點(diǎn)作,平分,,,又,,,,,又,,.【點(diǎn)睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識(shí);本題綜合性強(qiáng),熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.10.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)得到a=?b,a?b+4=0,解得a=?2,b=2,則A(?2,0),B(2,0),C(2,2),即可計(jì)算出解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)得到a=?b,a?b+4=0,解得a=?2,b=2,則A(?2,0),B(2,0),C(2,2),即可計(jì)算出三角形ABC的面積=4;(2)由于CB∥y軸,BD∥AC,則∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,過(guò)E作EF∥AC,則BD∥AC∥EF,然后利用角平分線的定義可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根據(jù)待定系數(shù)法確定直線AC的解析式為y=x+1,則G點(diǎn)坐標(biāo)為(0,1),然后利用S△PAC=S△APG+S△CPG進(jìn)行計(jì)算.【詳解】解:(1)由題意知:a=?b,a?b+4=0,解得:a=?2,b=2,∴A(?2,0),B(2,0),C(2,2),∴S△ABC=;(2)∵CB∥y軸,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,過(guò)E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分別平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:設(shè)P點(diǎn)坐標(biāo)為(0,t),直線AC的解析式為y=kx+b,把A(?2,0)、C(2,2)代入得:,解得,∴直線AC的解析式為y=x+1,∴G點(diǎn)坐標(biāo)為(0,1),∴S△PAC=S△APG+S△CPG=|t?1|?2+|t?1|?2=4,解得t=3或?1,∴P點(diǎn)坐標(biāo)為(0,3)或(0,?1).【點(diǎn)睛】本題考查了絕對(duì)值、平方的非負(fù)性,平行線的判定與性質(zhì):內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等.三、解答題11.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設(shè)∠AOB=x,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當(dāng)平行移動(dòng)AB至∠OBA=60°時(shí),∠OEC=∠OBA.設(shè)∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點(diǎn)睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.12.(1),理由見解析;(2)當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),;當(dāng)點(diǎn)P在射線AM上時(shí),.【分析】(1)過(guò)P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:(1),理由見解析;(2)當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),;當(dāng)點(diǎn)P在射線AM上時(shí),.【分析】(1)過(guò)P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分兩種情況:①點(diǎn)P在A、M兩點(diǎn)之間,②點(diǎn)P在B、O兩點(diǎn)之間,分別畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出結(jié)論.【詳解】解:(1)∠CPD=∠α+∠β,理由如下:如圖,過(guò)P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)當(dāng)點(diǎn)P在A、M兩點(diǎn)之間時(shí),∠CPD=∠β-∠α.理由:如圖,過(guò)P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),∠CPD=∠α-∠β.理由:如圖,過(guò)P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【點(diǎn)睛】本題考查了平行線的性質(zhì)的運(yùn)用,主要考核了學(xué)生的推理能力,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,利用平行線的性質(zhì)進(jìn)行推導(dǎo).解題時(shí)注意:?jiǎn)栴}(2)也可以運(yùn)用三角形外角性質(zhì)來(lái)解決.13.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2=∠C+∠α,進(jìn)而得出即可;(2)利用(1)中所求的結(jié)論得出∠α、∠1、∠2之間的關(guān)系即可;(3)利用三角外角的性質(zhì),得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補(bǔ)角的性質(zhì)可得出∠α、∠1、∠2之間的關(guān)系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設(shè)DP與BE的交點(diǎn)為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設(shè)PE與AC的交點(diǎn)為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點(diǎn)睛:本題考查了三角形內(nèi)角和定理和外角的性質(zhì)、對(duì)頂角相等的性質(zhì),
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北省邯鄲市肥鄉(xiāng)區(qū)固中學(xué)、北高鎮(zhèn)中心校聯(lián)考2026屆九年級(jí)上學(xué)期10月期中考試數(shù)學(xué)試卷(含答案)
- 廣東省廣州市荔灣區(qū)2025-2026學(xué)年第一學(xué)期四年級(jí)數(shù)學(xué)期末試卷(無(wú)答案)
- 五年級(jí)數(shù)學(xué)上冊(cè)期中測(cè)試卷及答案
- 解讀教育部《中小學(xué)生健康體檢管理辦法(2021年版)》全文解讀
- 22春北京語(yǔ)言大學(xué)《漢語(yǔ)寫作》在線作業(yè)一答案參考8
- 七年級(jí)下語(yǔ)文課堂作業(yè)本答案第一單元
- 新部編人教版一年級(jí)數(shù)學(xué)上冊(cè)期末知識(shí)點(diǎn)及答案(三套)
- 電氣工程造價(jià)管理技術(shù)方法
- 深圳職工考試題庫(kù)及答案
- 人文地理常識(shí)試題及答案
- 2026年年長(zhǎng)租公寓市場(chǎng)分析
- 生態(tài)環(huán)境監(jiān)測(cè)數(shù)據(jù)分析報(bào)告
- 2025年下半年四川成都溫江興蓉西城市運(yùn)營(yíng)集團(tuán)有限公司第二次招聘人力資源部副部長(zhǎng)等崗位5人考試參考試題及答案解析
- 煤炭裝卸施工方案(3篇)
- 八年級(jí)歷史上冊(cè)小論文觀點(diǎn)及范文
- 重慶康德卷2025-2026學(xué)年高一數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析
- 浙江省杭州市蕭山區(qū)2024-2025學(xué)年六年級(jí)上學(xué)期語(yǔ)文期末試卷(含答案)
- 設(shè)備隱患排查培訓(xùn)
- 2025至2030磷酸二氫鈉行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢(shì)及投資規(guī)劃深度研究報(bào)告
- 國(guó)家事業(yè)單位招聘2025中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所招聘12人筆試歷年參考題庫(kù)附帶答案詳解
- 裝載機(jī)安全培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論