廣西防城港市上思縣2026屆數(shù)學(xué)八上期末學(xué)業(yè)水平測試試題含解析_第1頁
廣西防城港市上思縣2026屆數(shù)學(xué)八上期末學(xué)業(yè)水平測試試題含解析_第2頁
廣西防城港市上思縣2026屆數(shù)學(xué)八上期末學(xué)業(yè)水平測試試題含解析_第3頁
廣西防城港市上思縣2026屆數(shù)學(xué)八上期末學(xué)業(yè)水平測試試題含解析_第4頁
廣西防城港市上思縣2026屆數(shù)學(xué)八上期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西防城港市上思縣2026屆數(shù)學(xué)八上期末學(xué)業(yè)水平測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,AB=AC,CF⊥AB于F,BE⊥AC于E,CF與BE交于點D.有下列結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③點D在∠BAC的平分線上;④點C在AB的中垂線上.以上結(jié)論正確的有()個.A.1 B.2 C.3 D.42.若等腰三角形一腰上的高與另一腰的夾角為36°,則它的頂角為()A.36° B.54° C.72°或36° D.54°或126°3.在△ABC中,AB=AC,∠A=80°,進行如下操作:①以點B為圓心,以小于AB長為半徑作弧,分別交BA、BC于點E、F;②分別以E、F為圓心,以大于12③作射線BM交AC于點D,則∠BDC的度數(shù)為().A.100° B.65° C.75° D.105°4.將數(shù)據(jù)0.0000025用科學(xué)記數(shù)法表示為()A. B. C. D.5.下列圖形中具有穩(wěn)定性的是()A.正方形 B.長方形 C.等腰三角形 D.平行四邊形6.下列各圖中,,,為三角形的邊長,則甲,乙,丙三個三角形中和左側(cè)全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙7.已知點A(m+2,﹣3),B(﹣2,n﹣4)關(guān)于y軸對稱,則m﹣n的值為()A.4 B.﹣1 C.1 D.08.一組數(shù)據(jù)3、-2、0、1、4的中位數(shù)是()A.0 B.1 C.-2 D.49.在函數(shù)中,自變量的取值范圍是()A. B. C. D.且10.以下列各組線段的長為邊,能組成三角形的是()A.2、4、7 B.3、5、2 C.7、7、3 D.9、5、311.已知△ABC(如圖1),按圖2圖3所示的尺規(guī)作圖痕跡,(不需借助三角形全等)就能推出四邊形ABCD是平行四邊形的依據(jù)是()A.兩組對邊分別平行的四邊形是平行四邊形 B.對角線互相平分的四邊形是平行四邊形C.一組對邊平行且相等的四邊形是平行四邊形 D.兩組對邊分別相等的四邊形是平行四邊形12.如圖,小明從地出發(fā),沿直線前進15米后向左轉(zhuǎn)18°,再沿直線前進15米,又向左轉(zhuǎn)18°??,照這樣走下去,他第一次回到出發(fā)地地時,一共走的路程是()A.200米 B.250米 C.300米 D.350米二、填空題(每題4分,共24分)13.如圖,將沿著過中點的直線折疊,使點落在邊上的處,稱為第1次操作,折痕到的距離記為,還原紙片后,再將沿著過中點的直線折疊,使點落在邊上的處,稱為第2次操作,折痕到的距離記為,按上述方法不斷操作下去…經(jīng)過第2020次操作后得到的折痕到的距離記為,若,則的值為______.14.如圖,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分別找一點M、N,當(dāng)△AMN的周長最小時,∠AMN+∠ANM的度數(shù)是_____.15.如圖,直線y=﹣x+3與坐標軸分別交于點A、B,與直線y=x交于點C,線段OA上的點Q以每秒1個長度單位的速度從點O出發(fā)向點A作勻速運動,運動時間為t秒,連接CQ.若△OQC是等腰直角三角形,則t的值為_____.16.等腰三角形一腰上的高與另一腰的夾角為30°,則頂角的度數(shù)為__________.17.若關(guān)于x的分式方程有增根,則m的值為_____.18.如圖,已知中,,是高和的交點,,則線段的長度為_____.三、解答題(共78分)19.(8分)如圖,在?ABCD中,過B點作BM⊥AC于點E,交CD于點M,過D點作DN⊥AC于點F,交AB于點N.(1)求證:四邊形BMDN是平行四邊形;(2)已知AF=12,EM=5,求AN的長.20.(8分)先化簡再求值:,其中.21.(8分)某校為了培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,舉辦“我愛數(shù)學(xué)”比賽,現(xiàn)有甲、乙、丙三個小組進入決賽.評委從研究報告、小組展示、答辯三個方面為各小組打分,各項成績均按百分制記錄.甲、乙、丙三個小組各項得分如表:比賽項目比賽成績/分甲乙丙研究報告908379小組展示857982答辯748491(1)如果根據(jù)三個方面的平均成績確定名次,那么哪個小組獲得此次比賽的冠軍?(2)如果將研究報告、小組展示、答辯三項得分按4:3:3的比例確定各小組的成績,此時哪個小組獲得此次比賽的冠軍?22.(10分)化簡分式,并在、、、、中選一個你喜歡的數(shù)作為的值,求代數(shù)式的值23.(10分)問題原型:如圖①,在銳角△ABC中,∠ABC=45°,AD⊥BC于點D,在AD上取點E,使DE=CD,連結(jié)BE.求證:BE=AC.問題拓展:如圖②,在問題原型的條件下,F(xiàn)為BC的中點,連結(jié)EF并延長至點M,使FM=EF,連結(jié)CM.(1)判斷線段AC與CM的大小關(guān)系,并說明理由.(2)若AC=,直接寫出A、M兩點之間的距離.24.(10分)已知:點C為∠AOB內(nèi)一點.(1)在OA上求作點D,在OB上求作點E,使△CDE的周長最小,請畫出圖形;(不寫做法,保留作圖痕跡)(2)在(1)的條件下,若∠AOB=30°,OC=10,求△CDE周長的最小值.25.(12分)已知:如圖,,點是的中點,平分,.(1)求證:;(2)若,試判斷的形狀,并說明理由.26.如圖1,是直角三角形,,的角平分線與的垂直平分線相交于點.(1)如圖2,若點正好落在邊上.①求的度數(shù);②證明:.(2)如圖3,若點滿足、、共線.線段、、之間是否滿足,若滿足請給出證明;若不滿足,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、C【詳解】解:∵BE⊥AC,CF⊥AB,∴∠AEB=∠AFC=∠CED=∠DFB=90°.在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴AE=AF.∵AC=AB,∴CE=BF.在△CDE和△BDF中,,∴△CDE≌△BDF(AAS)∴DE=DF.∵BE⊥AC于E,CF⊥AB,∴點D在∠BAC的平分線上.根據(jù)已知條件無法證明AF=FB.綜上可知,①②③正確,④錯誤,故選C.【點睛】本題考查了全等三角形的判定及性質(zhì)、角平分線的判定等知識點,要求學(xué)生要靈活運用,做題時要由易到難,不重不漏.2、D【解析】根據(jù)題意畫出圖形,一種情況等腰三角形為銳角三角形,即可推出頂角的度數(shù)為50°.另一種情況等腰三角形為鈍角三角形,由題意,即可推出頂角的度數(shù)為130°.【詳解】①如圖1,等腰三角形為銳角三角形,

∵BD⊥AC,∠ABD=36°,

∴∠A=54°,

即頂角的度數(shù)為54°.

②如圖2,等腰三角形為鈍角三角形,

∵BD⊥AC,∠DBA=36°,

∴∠BAD=54°,

∴∠BAC=126°.

故選D.【點睛】本題考查了直角三角形的性質(zhì)、等腰三角形的性質(zhì),解題的關(guān)鍵在于正確的畫出圖形,結(jié)合圖形,利用數(shù)形結(jié)合思想求解.3、D【解析】利用等腰三角形的性質(zhì)結(jié)合三角形內(nèi)角和定理得出∠ABC=∠C=50°,再利用角平分線的性質(zhì)與作法得出即可.【詳解】∵AB=AC,∠A=80°,∴∠ABC=∠C=50°,由題意可得:BD平分∠ABC,則∠ABD=∠CBD=25°,∴∠BDC的度數(shù)為:∠A+∠ABD=105°.故選D.【點睛】此題主要考查了基本作圖以及等腰三角形的性質(zhì),得出BD平分∠ABC是解題關(guān)鍵.4、D【分析】絕對值小于1的負數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:.故選:.【點睛】此題考查科學(xué)記數(shù)法,解題關(guān)鍵在于掌握其一般形式.5、C【分析】根據(jù)三角形具有穩(wěn)定性可得答案.【詳解】解:根據(jù)“三角形具有穩(wěn)定性”可知等腰三角形有穩(wěn)定性.故C項符合題意.故本題正確答案為C.【點睛】本題主要考查三角形的基本性質(zhì):穩(wěn)定性.6、B【分析】根據(jù)全等三角形的判定定理逐圖判定即可.【詳解】解:∵甲圖為不能全等;乙圖為;丙圖為∴乙、丙兩圖都可以證明.故答案為B.【點睛】本題考查了全等三角形的判定定理,牢記AAS、SAS、ASA、SSS可證明三角形全等,AAA、SSA不能證明三角形全等是解答本題的關(guān)鍵.7、B【分析】直接利用關(guān)于y軸對稱的點的性質(zhì)得出m,n的值,進而得出答案.【詳解】∵點A(m+2,﹣3),B(﹣2,n-4)關(guān)于y軸對稱,∴m+2=2,n-4=﹣3解得:m=0,n=1則m-n=﹣1故選:B【點睛】本題考查關(guān)于y軸對稱的點的坐標特征:關(guān)于y軸對稱的兩點,縱坐標相同,橫坐標互為相反數(shù).掌握關(guān)于y軸對稱的點的坐標特征是解題的關(guān)鍵.8、B【分析】將這組數(shù)據(jù)從小到大重新排列后為-2、0、1、3、4;最中間的那個數(shù)1即中位數(shù).【詳解】解:將這組數(shù)據(jù)從小到大重新排列后為-2、0、1、3、4;最中間的那個數(shù)1即中位數(shù).故選:B【點睛】本題考查中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).9、D【分析】二次根號下的數(shù)為非負數(shù),二次根式有意義;分式的分母不為0,分式有意義.【詳解】解:由題意得,解得故選D.【點睛】本題考查二次根式、分式有意義的條件,本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握二次根式、分式有意義的條件,即可完成.10、C【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.即可求解.【詳解】解:根據(jù)三角形任意兩邊的和大于第三邊,可知

A、2+4<7,不能夠組成三角形,故A錯誤;

B、2+3=5,不能組成三角形,故B錯誤;

C、7+3>7,能組成三角形,故C正確;

D、3+5<9,不能組成三角形,故D錯誤;

故選:C.【點睛】本題考查了能夠組成三角形三邊的條件,熟練掌握構(gòu)成三角形的條件是解題的關(guān)鍵.11、B【分析】根據(jù)尺規(guī)作圖可知AC,BD互相平分,即可判斷.【詳解】根據(jù)尺規(guī)作圖可得直線垂直平分AC,再可得到AC,BD互相平分,故選B.【點睛】此題主要考查平行四邊形的判定,解題的關(guān)鍵是熟知尺規(guī)作圖的特點.12、C【分析】由題意可知小明所走的路線為一個正多邊形,根據(jù)多邊形的外角和進行分析即可求出答案.【詳解】解:正多邊形的邊數(shù)為:360°÷18°=20,∴路程為:15×20=300(米).故選:C.【點睛】本題主要考查多邊形的外角和定理,熟練掌握任何一個多邊形的外角和都是360°是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)中點的性質(zhì)及折疊的性質(zhì)可得DA=DA?=DB,從而可得∠ADA?=2∠B,結(jié)合折疊的性質(zhì)可得.,∠ADA?=2∠ADE,可得∠ADE=∠B,繼而判斷DE//

BC,得出DE是△ABC的中位線,證得AA?⊥BC,AA?=2,由此發(fā)現(xiàn)規(guī)律:同理…于是經(jīng)過第n次操作后得到的折痕Dn-1

En-1到BC的距離,據(jù)此求得的值.【詳解】解:如圖連接AA?,由折疊的性質(zhì)可得:AA?⊥DE,DA=

DA?

,A?、A?…均在AA?上又∵

D是AB中點,∴DA=

DB

,

∵DB=

DA?

,

∴∠BA?D=∠B

,

∴∠ADA?=∠B+∠BA?D=2∠B,

又∵∠ADA?

=2∠ADE

,

∴∠ADE=∠B

∵DE//BC,

∴AA?⊥BC

,

∵h?=1

∴AA?

=2,

同理:;

∴經(jīng)過n次操作后得到的折痕Dn-1En-1到BC的距離∴【點睛】本題考查了中點性質(zhì)和折疊的性質(zhì),本題難度較大,要從每次折疊發(fā)現(xiàn)規(guī)律,求得規(guī)律的過程是難點.14、160°.【解析】分析:根據(jù)要使△AMN的周長最小,即利用點的對稱,使三角形的三邊在同一直線上,作出A關(guān)于BC和CD的對稱點A′,A″,即可得出∠AA′M+∠A″=∠AA″A′=80°,進而得出∠AMN+∠ANM=2(∠AA′M+∠A″),即可得出答案.詳解:作A關(guān)于BC和CD的對稱點A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長最小值.∵∠DAB=100°,∴∠AA′M+∠A″=80°.由軸對稱圖形的性質(zhì)可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160°.故答案為:160°.點睛:本題考查的是軸對稱-最短路線問題,涉及到平面內(nèi)最短路線問題求法以及三角形的外角的性質(zhì)和垂直平分線的性質(zhì)等知識,根據(jù)已知得出M,N的位置是解題關(guān)鍵.15、2或4【解析】先求出點C坐標,然后分為兩種情況,畫出圖形,根據(jù)等腰三角形的性質(zhì)求出即可.【詳解】∵由,得,∴C(2,2);如圖1,當(dāng)∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2;如圖2,當(dāng)∠OCQ=90°,OC=CQ,過C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值為2或4,故答案為2或4.【點睛】本題考查了一次函數(shù)與二元一次方程組、等腰直角三角形等知識,綜合性比較強,熟練掌握相關(guān)知識、運用分類討論以及數(shù)形結(jié)合思想是解題的關(guān)鍵.16、60°或120°【分析】分別從△ABC是銳角三角形與鈍角三角形去分析求解即可求得答案.【詳解】解:如圖(1),∵AB=AC,BD⊥AC,∴∠ADB=90°,∵∠ABD=30°,∴∠A=60°;如圖(2),∵AB=AC,BD⊥AC,∴∠BDC=90°,∵∠ABD=30°,∴∠BAD=60°,∴∠BAC=120°;綜上所述,它的頂角度數(shù)為:60°或120°.【點睛】此題考查了等腰三角形的性質(zhì).此題難度適中,注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.17、1【解析】試題分析:增根是化為整式方程后產(chǎn)生的不適合分式方程的根,所以應(yīng)先增根的可能值,讓最簡公分母x-1=0,得到x=1,然后代入化為整式方程的方程算出m的值.試題解析:方程兩邊都乘以(x-1),得x-2(x-1)=m∵原方程有增根∴最簡公分母x-1=0解得:x=1,當(dāng)x=1時,m=1故m的值是1.考點:分式方程的增根.18、1【分析】根據(jù)和得出為等腰直角三角形,從而有,通過等量代換得出,然后利用ASA可證,則有.【詳解】為等腰直角三角形在和中,故答案為:1.【點睛】本題主要考查等腰直角三角形的性質(zhì),全等三角形的判定及性質(zhì),掌握全等三角形的判定方法及性質(zhì)是解題的關(guān)鍵.三、解答題(共78分)19、(1)詳見解析;(2)1.【解析】(1)只要證明DN∥BM,DM∥BN即可;(2)只要證明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根據(jù)勾股定理AN=即可解決問題.【詳解】解:(1)∵四邊形ABCD是平行四邊形,∴CD∥AB,∵BM⊥AC,DN⊥AC,∴DN∥BM,∴四邊形BMDN是平行四邊形;(2)∵四邊形BMDN是平行四邊形,∴DM=BN,∵CD=AB,CD∥AB,∴CM=AN,∠MCE=∠NAF,∵∠CEM=∠AFN=90°,∴△CEM≌△AFN,∴FN=EM=5,在Rt△AFN中,AN===1.【點睛】本題考查平行四邊形的性質(zhì)和判定、全等三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.20、.【分析】先因式分解,再利用分式的除法性質(zhì):除以一個分式等于乘以這個分式的倒數(shù),約分、化簡,最后代入特殊值解題即可.【詳解】解:原式===a﹣2,當(dāng)a=2+時,原式=2+﹣2=.【點睛】本題考查分式的化簡求值,其中涉及因式分解:十字相乘法、平方差公式、完全平方公式等知識,是重要考點,掌握相關(guān)知識是解題關(guān)鍵.21、(1)丙小組獲得此次比賽的冠軍;(2)甲小組的成績最高,所以甲小組獲得冠軍.【分析】(1)分別按題目求出三組的平均分,再比較即可得出結(jié)論;(2)分別根據(jù)加權(quán)平均數(shù)的算法求解各組的平均值,再作出比較即可.【詳解】(1)∵甲=(90+85+74)=83(分)乙=(83+79+84)=82(分)丙=(79+82+91)=84(分)由于丙小組的平均成績最高,所以,此時丙小組獲得此次比賽的冠軍.(2)根據(jù)題意,三個小組的比賽成績?nèi)缦拢杭仔〗M的比賽成績?yōu)椋ǚ郑┮倚〗M的比賽成績?yōu)椋ǚ郑┍〗M的比賽成績?yōu)椋ǚ郑┐藭r甲小組的成績最高,所以甲小組獲得冠軍.【點睛】本題考查平均數(shù)與加權(quán)平均數(shù)的計算,熟記計算方法并理解它們的作用是解題關(guān)鍵.22、-3當(dāng)=1時,原式=-2【分析】先將分式進行約分,再將除法轉(zhuǎn)化為乘法進行約分,代值時,的取值不能使原式的分母,除式為0.【詳解】解:原式=-3=-3=-3當(dāng)=1時,原式=1-3=-2.【點睛】本題考查了分式的化簡求值.關(guān)鍵是根據(jù)分式混合運算的順序解題,代值時,字母的取值不能使分母,除式為0.23、問題原型:見解析;問題拓展:(1)AC=CM,理由見解析;(2)AM=.【解析】根據(jù)題意證出△BDE≌△ADC即可得出答案;證出△BEF≌△CMF即可得出答案;(2)連接AM,求出∠ACM=90°,即可求出A【詳解】問題原型:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°,∴∠ABC=∠BAD,∴AD=BD,在△BDE和△ADC中,∵,∴△BDE≌△ADC(SAS),∴BE=AC,問題拓展:(1)AC=CM,理由:∵點F是BC中點,∴BF=CF,在△BEF和△CMF中,∵,∴△BEF≌△CMF(SAS),∴BE=CM,由(1)知,BE=AC,∴AC=CM;(2)如圖②,連接AM,由(1)知,△BDE≌△ADC,∴∠BED=∠ACD,由(2)知,△BEF≌△CMF,∴∠EBF=∠BCM,∴∠ACM=∠ACD+∠BCM=∠BED+∠EBF=90°,∵AC=CM,∴AM=AC=.【點睛】本題考查的知識點是全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì).24、(1)見解析;(2)△CDE周長的最小值為1.【分析】(1)分別作C點關(guān)于OA、OB的對稱點M、N,然后連接MN分別交OA、OB于D、E,利用兩點之間線段最短可判斷此時△CDE的周長最??;(2)利用對稱的性質(zhì)得到OM=OC=1,∠MOA=∠COA,ON=OC=1,∠NOB=∠COB,則△DCE的周長為MN,再證明△OMN為等邊三角形,從而得到MN=OM=1,所以△CDE周長的最小值為1.【詳解】(1)如圖,△CDE為所作;(2)∵點M與點C關(guān)于OA對稱,∴OM=OC=1,∠MOA=∠COA,DM=DC.∵點N與點C關(guān)于OB對稱,∴ON=OC=1,∠NOB=∠COB,EC=EN,∴△DCE的周長為CD+CE+DE=DM+DE+EN=MN,∴此時△DCE的周長最?。摺螹OA+∠NOB=∠COA+∠COB=∠AOB=30°,∴∠MON=30°+30°=60°,∴△OMN為等邊三角形,∴MN=OM=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論