2023年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題培優(yōu)(附答案)_第1頁(yè)
2023年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題培優(yōu)(附答案)_第2頁(yè)
2023年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題培優(yōu)(附答案)_第3頁(yè)
2023年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題培優(yōu)(附答案)_第4頁(yè)
2023年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題培優(yōu)(附答案)_第5頁(yè)
已閱讀5頁(yè),還剩29頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題培優(yōu)(附答案)一、解答題1.如圖,用兩個(gè)面積為的小正方形紙片剪拼成一個(gè)大的正方形.(1)大正方形的邊長(zhǎng)是________;(2)請(qǐng)你探究是否能將此大正方形紙片沿著邊的方向裁出一個(gè)面積為的長(zhǎng)方形紙片,使它的長(zhǎng)寬之比為,若能,求出這個(gè)長(zhǎng)方形紙片的長(zhǎng)和寬,若不能,請(qǐng)說(shuō)明理由.2.如圖,用兩個(gè)面積為的小正方形拼成一個(gè)大的正方形.(1)則大正方形的邊長(zhǎng)是___________;(2)若沿著大正方形邊的方向裁出一個(gè)長(zhǎng)方形,能否使裁出的長(zhǎng)方形紙片的長(zhǎng)寬之比為5:4,且面積為?3.(1)如圖,分別把兩個(gè)邊長(zhǎng)為的小正方形沿一條對(duì)角線裁成個(gè)小三角形拼成一個(gè)大正方形,則大正方形的邊長(zhǎng)為_(kāi)______;(2)若一個(gè)圓的面積與一個(gè)正方形的面積都是,設(shè)圓的周長(zhǎng)為,正方形的周長(zhǎng)為,則_____(填“”或“”或“”號(hào));(3)如圖,若正方形的面積為,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為的長(zhǎng)方形紙片,使它的長(zhǎng)和寬之比為,他能裁出嗎?請(qǐng)說(shuō)明理由?4.喜歡探究的亮亮同學(xué)拿出形狀分別是長(zhǎng)方形和正方形的兩塊紙片,其中長(zhǎng)方形紙片的長(zhǎng)為,寬為,且兩塊紙片面積相等.(1)亮亮想知道正方形紙片的邊長(zhǎng),請(qǐng)你幫他求出正方形紙片的邊長(zhǎng);(結(jié)果保留根號(hào))(2)在長(zhǎng)方形紙片上截出兩個(gè)完整的正方形紙片,面積分別為和,亮亮認(rèn)為兩個(gè)正方形紙片的面積之和小于長(zhǎng)方形紙片的總面積,所以一定能截出符合要求的正方形紙片來(lái),你同意亮亮的見(jiàn)解嗎?為什么?(參考數(shù)據(jù):,)5.小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長(zhǎng)方形紙片.(1)請(qǐng)幫小麗設(shè)計(jì)一種可行的裁剪方案;(2)若使長(zhǎng)方形的長(zhǎng)寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請(qǐng)幫小麗設(shè)計(jì)一種裁剪方案,若不能,請(qǐng)簡(jiǎn)要說(shuō)明理由.二、解答題6.已知直線AB//CD,點(diǎn)P、Q分別在AB、CD上,如圖所示,射線PB按逆時(shí)針?lè)较蛞悦棵?2°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時(shí)針?lè)较蛎棵?°旋轉(zhuǎn)至QD停止,此時(shí)射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時(shí)開(kāi)始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時(shí)間10秒時(shí),PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開(kāi)始轉(zhuǎn)動(dòng),當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為多少秒時(shí),PB′//QC′.7.如圖1,點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在,之間,且滿足.(1)證明:;(2)如圖2,若,,點(diǎn)在線段上,連接,且,試判斷與的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖3,若(為大于等于的整數(shù)),點(diǎn)在線段上,連接,若,則______.8.汛期即將來(lái)臨,防汛指揮部在某水域一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看河水及兩岸河堤的情況.如圖1,燈射出的光束自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射出的光束自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈射出的光束轉(zhuǎn)動(dòng)的速度是/秒,燈射出的光束轉(zhuǎn)動(dòng)的速度是/秒,且、滿足.假定這一帶水域兩岸河堤是平行的,即,且.(1)求、的值;(2)如圖2,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈射出的光束到達(dá)之前,若兩燈射出的光束交于點(diǎn),過(guò)作交于點(diǎn),若,求的度數(shù);(3)若燈射線先轉(zhuǎn)動(dòng)30秒,燈射出的光束才開(kāi)始轉(zhuǎn)動(dòng),在燈射出的光束到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?9.直線AB∥CD,點(diǎn)P為平面內(nèi)一點(diǎn),連接AP,CP.(1)如圖①,點(diǎn)P在直線AB,CD之間,當(dāng)∠BAP=60°,∠DCP=20°時(shí),求∠APC的度數(shù);(2)如圖②,點(diǎn)P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖③,點(diǎn)P在直線CD下方,當(dāng)∠BAK=∠BAP,∠DCK=∠DCP時(shí),寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說(shuō)明理由.10.已知,.點(diǎn)在上,點(diǎn)在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請(qǐng)說(shuō)明理由,若不變化,求出么的度數(shù).三、解答題11.如圖1,由線段組成的圖形像英文字母,稱為“形”.(1)如圖1,形中,若,則______;(2)如圖2,連接形中兩點(diǎn),若,試探求與的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖3,在(2)的條件下,且的延長(zhǎng)線與的延長(zhǎng)線有交點(diǎn),當(dāng)點(diǎn)在線段的延長(zhǎng)線上從左向右移動(dòng)的過(guò)程中,直接寫出與所有可能的數(shù)量關(guān)系.12.已知:三角形ABC和三角形DEF位于直線MN的兩側(cè)中,直線MN經(jīng)過(guò)點(diǎn)C,且,其中,,,點(diǎn)E、F均落在直線MN上.(1)如圖1,當(dāng)點(diǎn)C與點(diǎn)E重合時(shí),求證:;聰明的小麗過(guò)點(diǎn)C作,并利用這條輔助線解決了問(wèn)題.請(qǐng)你根據(jù)小麗的思考,寫出解決這一問(wèn)題的過(guò)程.(2)將三角形DEF沿著NM的方向平移,如圖2,求證:;(3)將三角形DEF沿著NM的方向平移,使得點(diǎn)E移動(dòng)到點(diǎn),畫出平移后的三角形DEF,并回答問(wèn)題,若,則________.(用含的代數(shù)式表示)13.如圖1,,E是、之間的一點(diǎn).(1)判定,與之間的數(shù)量關(guān)系,并證明你的結(jié)論;(2)如圖2,若、的兩條平分線交于點(diǎn)F.直接寫出與之間的數(shù)量關(guān)系;(3)將圖2中的射線沿翻折交于點(diǎn)G得圖3,若的余角等于的補(bǔ)角,求的大?。?4.已知點(diǎn)A,B,O在一條直線上,以點(diǎn)O為端點(diǎn)在直線AB的同一側(cè)作射線,,使.(1)如圖①,若平分,求的度數(shù);(2)如圖②,將繞點(diǎn)O按逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)到某個(gè)位置時(shí),使得所在射線把分成兩個(gè)角.①若,求的度數(shù);②若(n為正整數(shù)),直接用含n的代數(shù)式表示.15.如圖所示,已知,點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分和,分別交射線AM于點(diǎn)C、D,且(1)求的度數(shù).(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),與之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說(shuō)明理由;若變化,請(qǐng)寫出變化規(guī)律.(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使時(shí),求的度數(shù).四、解答題16.在△ABC中,射線AG平分∠BAC交BC于點(diǎn)G,點(diǎn)D在BC邊上運(yùn)動(dòng)(不與點(diǎn)G重合),過(guò)點(diǎn)D作DE∥AC交AB于點(diǎn)E.(1)如圖1,點(diǎn)D在線段CG上運(yùn)動(dòng)時(shí),DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(2)點(diǎn)D在線段BG上運(yùn)動(dòng)時(shí),∠BDE的角平分線所在直線與射線AG交于點(diǎn)F試探究∠AFD與∠B之間的數(shù)量關(guān)系,并說(shuō)明理由17.如圖,直線m與直線n互相垂直,垂足為O、A、B兩點(diǎn)同時(shí)從點(diǎn)O出發(fā),點(diǎn)A沿直線m向左運(yùn)動(dòng),點(diǎn)B沿直線n向上運(yùn)動(dòng).(1)若∠BAO和∠ABO的平分線相交于點(diǎn)Q,在點(diǎn)A,B的運(yùn)動(dòng)過(guò)程中,∠AQB的大小是否會(huì)發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值,若發(fā)生變化,請(qǐng)說(shuō)明理由.(2)若AP是∠BAO的鄰補(bǔ)角的平分線,BP是∠ABO的鄰補(bǔ)角的平分線,AP、BP相交于點(diǎn)P,AQ的延長(zhǎng)線交PB的延長(zhǎng)線于點(diǎn)C,在點(diǎn)A,B的運(yùn)動(dòng)過(guò)程中,∠P和∠C的大小是否會(huì)發(fā)生變化?若不發(fā)生變化,請(qǐng)求出∠P和∠C的度數(shù);若發(fā)生變化,請(qǐng)說(shuō)明理由.18.己知:如圖①,直線直線,垂足為,點(diǎn)在射線上,點(diǎn)在射線上(、不與點(diǎn)重合),點(diǎn)在射線上且,過(guò)點(diǎn)作直線.點(diǎn)在點(diǎn)的左邊且(1)直接寫出的面積;(2)如圖②,若,作的平分線交于,交于,試說(shuō)明;(3)如圖③,若,點(diǎn)在射線上運(yùn)動(dòng),的平分線交的延長(zhǎng)線于點(diǎn),在點(diǎn)運(yùn)動(dòng)過(guò)程中的值是否變化?若不變,求出其值;若變化,求出變化范圍.19.如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1.(1)當(dāng)∠A為70°時(shí),∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BC與A2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,請(qǐng)寫出∠A與∠An的數(shù)量關(guān)系______;(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構(gòu)成的角,若∠A+∠D=230度,則∠F=______.(4)如圖3,若E為BA延長(zhǎng)線上一動(dòng)點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動(dòng)時(shí)有下面兩個(gè)結(jié)論:①∠Q+∠A1的值為定值;②∠Q-∠A1的值為定值.其中有且只有一個(gè)是正確的,請(qǐng)寫出正確的結(jié)論,并求出其值.20.已知,,點(diǎn)為射線上一點(diǎn).(1)如圖1,寫出、、之間的數(shù)量關(guān)系并證明;(2)如圖2,當(dāng)點(diǎn)在延長(zhǎng)線上時(shí),求證:;(3)如圖3,平分,交于點(diǎn),交于點(diǎn),且:,,,求的度數(shù).【參考答案】一、解答題1.(1)4;(2)不能,理由見(jiàn)解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長(zhǎng)即可;(2)先設(shè)未知數(shù)根據(jù)面積=14(cm2)列方程,求出長(zhǎng)方形的邊長(zhǎng),將長(zhǎng)方形的長(zhǎng)與正方形邊長(zhǎng)比較大小再解析:(1)4;(2)不能,理由見(jiàn)解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長(zhǎng)即可;(2)先設(shè)未知數(shù)根據(jù)面積=14(cm2)列方程,求出長(zhǎng)方形的邊長(zhǎng),將長(zhǎng)方形的長(zhǎng)與正方形邊長(zhǎng)比較大小再判斷即可.【詳解】解:(1)兩個(gè)正方形面積之和為:2×8=16(cm2),∴拼成的大正方形的面積=16(cm2),∴大正方形的邊長(zhǎng)是4cm;故答案為:4;(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為2xcm,寬為xcm,則2x?x=14,解得:,2x=2>4,∴不存在長(zhǎng)寬之比為且面積為的長(zhǎng)方形紙片.【點(diǎn)睛】本題考查了算術(shù)平方根,能夠根據(jù)題意列出算式是解此題的關(guān)鍵.2.(1);(2)不能剪出長(zhǎng)寬之比為5:4,且面積為的大長(zhǎng)方形,理由詳見(jiàn)解析【分析】(1)根據(jù)已知得到大正方形的面積為400,求出算術(shù)平方根即為大正方形的邊長(zhǎng);(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為,寬為,根據(jù)解析:(1);(2)不能剪出長(zhǎng)寬之比為5:4,且面積為的大長(zhǎng)方形,理由詳見(jiàn)解析【分析】(1)根據(jù)已知得到大正方形的面積為400,求出算術(shù)平方根即為大正方形的邊長(zhǎng);(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為,寬為,根據(jù)面積列得,求出,得到,由此判斷不能裁出符合條件的大正方形.【詳解】(1)∵用兩個(gè)面積為的小正方形拼成一個(gè)大的正方形,∴大正方形的面積為400,∴大正方形的邊長(zhǎng)為故答案為:20cm;(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為,寬為,,解得:,,答:不能剪出長(zhǎng)寬之比為5:4,且面積為的大長(zhǎng)方形.【點(diǎn)睛】此題考查利用算術(shù)平方根解決實(shí)際問(wèn)題,利用平方根解方程,正確理解題意是解題的關(guān)鍵.3.(1);(2);(3)不能裁剪出,詳見(jiàn)解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長(zhǎng);(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長(zhǎng),進(jìn)而可求得圓和正方形解析:(1);(2);(3)不能裁剪出,詳見(jiàn)解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長(zhǎng);(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長(zhǎng),進(jìn)而可求得圓和正方形的周長(zhǎng),利用作商法比較這兩數(shù)大小即可;(3)利用方程思想求出長(zhǎng)方形的長(zhǎng)邊,與正方形邊長(zhǎng)比較大小即可;【詳解】解:(1)∵小正方形的邊長(zhǎng)為1cm,∴小正方形的面積為1cm2,∴兩個(gè)小正方形的面積之和為2cm2,即所拼成的大正方形的面積為2cm2,∴大正方形的邊長(zhǎng)為cm,(2)∵,∴,∴,設(shè)正方形的邊長(zhǎng)為a∵,∴,∴,∴故答案為:<;(3)解:不能裁剪出,理由如下:∵長(zhǎng)方形紙片的長(zhǎng)和寬之比為,∴設(shè)長(zhǎng)方形紙片的長(zhǎng)為,寬為,則,整理得:,∴,∵450>400,∴,∴,∴長(zhǎng)方形紙片的長(zhǎng)大于正方形的邊長(zhǎng),∴不能裁出這樣的長(zhǎng)方形紙片.【點(diǎn)睛】本題通過(guò)圓和正方形的面積考查了對(duì)算術(shù)平方根的應(yīng)用,主要是對(duì)學(xué)生無(wú)理數(shù)運(yùn)算及比較大小進(jìn)行了考查.4.(1);(2)不同意,理由見(jiàn)解析【分析】(1)設(shè)正方形邊長(zhǎng)為,根據(jù)兩塊紙片面積相等列出方程,再根據(jù)算術(shù)平方根的意義即可求出x的值;(2)根據(jù)兩個(gè)正方形紙片的面積計(jì)算出兩個(gè)正方形的邊長(zhǎng),計(jì)算兩個(gè)解析:(1);(2)不同意,理由見(jiàn)解析【分析】(1)設(shè)正方形邊長(zhǎng)為,根據(jù)兩塊紙片面積相等列出方程,再根據(jù)算術(shù)平方根的意義即可求出x的值;(2)根據(jù)兩個(gè)正方形紙片的面積計(jì)算出兩個(gè)正方形的邊長(zhǎng),計(jì)算兩個(gè)正方形邊長(zhǎng)的和,并與3比較即可解答.【詳解】解:(1)設(shè)正方形邊長(zhǎng)為,則,由算術(shù)平方根的意義可知,所以正方形的邊長(zhǎng)是.(2)不同意.因?yàn)椋簝蓚€(gè)小正方形的面積分別為和,則它們的邊長(zhǎng)分別為和.,即兩個(gè)正方形邊長(zhǎng)的和約為,所以,即兩個(gè)正方形邊長(zhǎng)的和大于長(zhǎng)方形的長(zhǎng),所以不能在長(zhǎng)方形紙片上截出兩個(gè)完整的面積分別為和的正方形紙片.【點(diǎn)睛】本題考查了算術(shù)平方根的應(yīng)用,解題的關(guān)鍵是讀懂題意并熟知算術(shù)平方根的概念.5.(1)可以以正方形一邊為長(zhǎng)方形的長(zhǎng),在其鄰邊上截取長(zhǎng)為15cm的線段作為寬即可裁出符合要求的長(zhǎng)方形;(2)不能,理由見(jiàn)解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長(zhǎng)為acm∴解析:(1)可以以正方形一邊為長(zhǎng)方形的長(zhǎng),在其鄰邊上截取長(zhǎng)為15cm的線段作為寬即可裁出符合要求的長(zhǎng)方形;(2)不能,理由見(jiàn)解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長(zhǎng)為acm∴a2=400又∵a>0∴a=20又∵要裁出的長(zhǎng)方形面積為300cm2∴若以原正方形紙片的邊長(zhǎng)為長(zhǎng)方形的長(zhǎng),則長(zhǎng)方形的寬為:300÷20=15(cm)∴可以以正方形一邊為長(zhǎng)方形的長(zhǎng),在其鄰邊上截取長(zhǎng)為15cm的線段作為寬即可裁出符合要求的長(zhǎng)方形(2)∵長(zhǎng)方形紙片的長(zhǎng)寬之比為3:2∴設(shè)長(zhǎng)方形紙片的長(zhǎng)為3xcm,則寬為2xcm∴6x2=300∴x2=50又∵x>0∴x=∴長(zhǎng)方形紙片的長(zhǎng)為又∵>202即:>20∴小麗不能用這塊紙片裁出符合要求的紙片二、解答題6.(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時(shí),∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過(guò)O作OE∥AB,根解析:(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時(shí),∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過(guò)O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時(shí),②當(dāng)15<t≤30時(shí),③當(dāng)30<t<45時(shí),根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時(shí)間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時(shí)間30秒時(shí),由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過(guò)O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時(shí),如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時(shí),如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時(shí),如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運(yùn)用方程思想解決幾何問(wèn)題.7.(1)見(jiàn)解析;(2)見(jiàn)解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設(shè)∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)解析:(1)見(jiàn)解析;(2)見(jiàn)解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設(shè)∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)AD∥BC,得到∠DAC=120°,求出∠CAE即可得到結(jié)論;(3)作CF∥ST,設(shè)∠CBT=β,得到∠CBT=∠BCF=β,分別表示出∠CAN和∠CAE,即可得到比值.【詳解】解:(1)如圖,連接,,,,,(2),理由:作,則如圖,設(shè),則.,,,,.即.(3)作,則如圖,設(shè),則.,,,,,故答案為.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和判定,解題關(guān)鍵是角度的靈活轉(zhuǎn)換,構(gòu)建數(shù)量關(guān)系式.8.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據(jù),用含t的式子表示出,根據(jù)(2)中給出的條件得出方程式,求出t的值,進(jìn)而求出的度數(shù);(3)根據(jù)燈B的解析:(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據(jù),用含t的式子表示出,根據(jù)(2)中給出的條件得出方程式,求出t的值,進(jìn)而求出的度數(shù);(3)根據(jù)燈B的要求,t<150,在這個(gè)時(shí)間段內(nèi)A可以轉(zhuǎn)3次,分情況討論.【詳解】解:(1).又,.,;(2)設(shè)燈轉(zhuǎn)動(dòng)時(shí)間為秒,如圖,作,而,,,,,,(3)設(shè)燈轉(zhuǎn)動(dòng)秒,兩燈的光束互相平行.依題意得①當(dāng)時(shí),兩河岸平行,所以兩光線平行,所以所以,即:,解得;②當(dāng)時(shí),兩光束平行,所以兩河岸平行,所以所以,,解得;③當(dāng)時(shí),圖大概如①所示,解得(不合題意)綜上所述,當(dāng)秒或82.5秒時(shí),兩燈的光束互相平行.【點(diǎn)睛】這道題考察的是平行線的性質(zhì)和一元一次方程的應(yīng)用.根據(jù)平行線的性質(zhì)找到對(duì)應(yīng)角列出方程是解題的關(guān)鍵.9.(1)80°;(2)∠AKC=∠APC,理由見(jiàn)解析;(3)∠AKC=∠APC,理由見(jiàn)解析【分析】(1)先過(guò)P作PE∥AB,根據(jù)平行線的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠解析:(1)80°;(2)∠AKC=∠APC,理由見(jiàn)解析;(3)∠AKC=∠APC,理由見(jiàn)解析【分析】(1)先過(guò)P作PE∥AB,根據(jù)平行線的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進(jìn)行計(jì)算即可;(2)過(guò)K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進(jìn)而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進(jìn)而得到∠AKC=∠APC;(3)過(guò)K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進(jìn)而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據(jù)已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進(jìn)而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過(guò)P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過(guò)K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過(guò)P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點(diǎn)K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過(guò)K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過(guò)P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點(diǎn)睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是作出平行線構(gòu)造內(nèi)錯(cuò)角相等計(jì)算.10.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.【分析】(1)過(guò)E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)解析:(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.【分析】(1)過(guò)E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過(guò)E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過(guò)F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.三、解答題11.(1)50°;(2)∠A+∠C=30°+α,理由見(jiàn)解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過(guò)M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長(zhǎng)BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由見(jiàn)解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過(guò)M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長(zhǎng)BA,DC交于E,應(yīng)用四邊形的內(nèi)角和定理與平角的定義即可解決問(wèn)題.(3)分兩種情形分別求解即可;【詳解】解:(1)過(guò)M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案為:50°;(2)∠A+∠C=30°+α,延長(zhǎng)BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下圖所示:延長(zhǎng)BA、DC使之相交于點(diǎn)E,延長(zhǎng)MC與BA的延長(zhǎng)線相交于點(diǎn)F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的內(nèi)外角之間的關(guān)系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如圖所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α.綜上所述,∠A-∠DCM=30°+α或30°-α.【點(diǎn)睛】本題考查了平行線的性質(zhì).解答該題時(shí),通過(guò)作輔助線準(zhǔn)確作出輔助線l∥AB,利用平行線的性質(zhì)(兩直線平行內(nèi)錯(cuò)角相等)將所求的角∠M與已知角∠A、∠C的數(shù)量關(guān)系聯(lián)系起來(lái),從而求得∠M的度數(shù).12.(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析;.【分析】(1)過(guò)點(diǎn)C作,得到,再根據(jù),,得到,進(jìn)而得到,最后證明;(2)先證明,再證明,得到,問(wèn)題得證;(3)根據(jù)題意得到,根據(jù)(2)結(jié)論得到∠D解析:(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析;.【分析】(1)過(guò)點(diǎn)C作,得到,再根據(jù),,得到,進(jìn)而得到,最后證明;(2)先證明,再證明,得到,問(wèn)題得證;(3)根據(jù)題意得到,根據(jù)(2)結(jié)論得到∠DEF=∠ECA=,進(jìn)而得到,根據(jù)三角形內(nèi)角和即可求解.【詳解】解:(1)過(guò)點(diǎn)C作,,,,,,,,,;(2)解:,,又,,,,,,;(3)如圖三角形DEF即為所求作三角形.∵,∴,由(2)得,DE∥AC,∴∠DEF=∠ECA=,∵,∴∠ACB=,∴,∴∠A=180°-=.故答案為為:.【點(diǎn)睛】本題考查了平行線的判定,三角形的內(nèi)角和等知識(shí),綜合性較強(qiáng),熟練掌握相關(guān)知識(shí),根據(jù)題意畫出圖形是解題關(guān)鍵.13.(1),見(jiàn)解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,解析:(1),見(jiàn)解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,由(1)的結(jié)論得∠AFD=∠BAF+∠CDF,根據(jù)角平分線的定義得到∠BAF=∠BAE,∠CDF=∠CDE,則∠AFD=(∠BAE+∠CDE),加上(1)的結(jié)論得到∠AFD=∠AED;(3)由(1)的結(jié)論得∠AGD=∠BAF+∠CDG,利用折疊性質(zhì)得∠CDG=4∠CDF,再利用等量代換得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,從而可計(jì)算出∠BAE的度數(shù).【詳解】解:(1)理由如下:作,如圖1,,.,,;(2)如圖2,由(1)的結(jié)論得,、的兩條平分線交于點(diǎn)F,,,,,;(3)由(1)的結(jié)論得,而射線沿翻折交于點(diǎn)G,,,,,.【點(diǎn)睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.14.(1);(2)①;②.【分析】(1)依據(jù)角平分線的定義可求得,再依據(jù)角的和差依次可求得和,根據(jù)鄰補(bǔ)角的性質(zhì)可求得結(jié)論;(2)①根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關(guān)系可得,最解析:(1);(2)①;②.【分析】(1)依據(jù)角平分線的定義可求得,再依據(jù)角的和差依次可求得和,根據(jù)鄰補(bǔ)角的性質(zhì)可求得結(jié)論;(2)①根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關(guān)系可得,最后依據(jù)角的和差和鄰補(bǔ)角的性質(zhì)可求得結(jié)論;②根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關(guān)系可得,最后依據(jù)角的和差和鄰補(bǔ)角的性質(zhì)可求得結(jié)論.【詳解】解:(1)∵平分,,∴,∴,∴,∴;(2)①∵,∴∠EOC+∠COD=∠BOD+∠COD,∴∠EOC=∠BOD,∵,,∴,∴,∴,∴;②∵,∴∠EOC+∠COD=∠BOD+∠COD,∴∠EOC=∠BOD,∵,,∴,∴,∴,∴.【點(diǎn)睛】本題考查鄰補(bǔ)角的計(jì)算,角的和差,角平分線的有關(guān)計(jì)算.能正確識(shí)圖,利用角的和差求得相應(yīng)角的度數(shù)是解題關(guān)鍵.15.(1);(2)不變化,,理由見(jiàn)解析;(3)【分析】(1)結(jié)合題意,根據(jù)角平分線的性質(zhì),得;再根據(jù)平行線的性質(zhì)計(jì)算,即可得到答案;(2)根據(jù)平行線的性質(zhì),得,;結(jié)合角平分線性質(zhì),得,即可完成求解解析:(1);(2)不變化,,理由見(jiàn)解析;(3)【分析】(1)結(jié)合題意,根據(jù)角平分線的性質(zhì),得;再根據(jù)平行線的性質(zhì)計(jì)算,即可得到答案;(2)根據(jù)平行線的性質(zhì),得,;結(jié)合角平分線性質(zhì),得,即可完成求解;(3)根據(jù)平行線的性質(zhì),得;結(jié)合,推導(dǎo)得;再結(jié)合(1)的結(jié)論計(jì)算,即可得到答案.【詳解】(1)∵BC,BD分別評(píng)分和,∴,∴又∵,∴∵,∴∴;(2)∵,∴,又∵BD平分∴,∴;∴與之間的數(shù)量關(guān)系保持不變;(3)∵,∴又∵,∴,∵∴由(1)可得,∴.【點(diǎn)睛】本題考查了角平分線、平行線的知識(shí);解題的關(guān)鍵是熟練掌握角平分線、平行線的性質(zhì),從而完成求解.四、解答題16.(1)①115°;110°;②;理由見(jiàn)解析;(2);理由見(jiàn)解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見(jiàn)解析;(2);理由見(jiàn)解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質(zhì)得出∠DGF=100°,再由三角形的外角性質(zhì)即可得出結(jié)果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質(zhì)即可得出結(jié)果;②由①得:∠EDB=∠C,,,由三角形的外角性質(zhì)得出∠DGF=∠B+∠BAG,再由三角形的外角性質(zhì)即可得出結(jié)論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、三角形的外角性質(zhì)、平行線的性質(zhì)等知識(shí);熟練掌握三角形內(nèi)角和定理和三角形的外角性質(zhì)是解題的關(guān)鍵.17.(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BA解析:(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BAQ與∠ABQ的和,最后在△ABQ中,根據(jù)三角形的內(nèi)角各定理可求∠AQB的大?。?2)題求∠P的大小,用鄰補(bǔ)角、角平分線、平角、直角和三角形內(nèi)角和定理等知識(shí)求解.【詳解】解:(1)∠AQB的大小不發(fā)生變化,如圖1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分別是∠BAO和∠ABO的角平分線,∴∠BAQ=∠BAC,∠ABQ=∠ABO,∴∠BAQ+∠ABQ=(∠ABO+∠BAO)=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如圖2所示:①∠P的大小不發(fā)生變化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分別是∠BAE和∠ABP的角平分線,∴∠PAB=∠EAB,∠PBA=∠ABF,∴∠PAB+∠PBA=(∠EAB+∠ABF)=×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不變,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【點(diǎn)睛】本題考查三角形內(nèi)角和定理,垂直,角平分線,平角,直角和角的和差等知識(shí)點(diǎn),同時(shí),也是一個(gè)以靜求動(dòng)的一個(gè)點(diǎn)型題目,有益于培養(yǎng)學(xué)生的思維幾何綜合題.18.(1)3;(2)見(jiàn)解析;(3)見(jiàn)解析【詳解】分析:(1)因?yàn)椤鰾CD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3;(2)見(jiàn)解析;(3)見(jiàn)解析【詳解】分析:(1)因?yàn)椤鰾CD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.詳解:(1)S△BCD=CD?OC=×3×2=3.(2)如圖②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直線MN⊥直線PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分線,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如圖③,∵直線l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分線,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.點(diǎn)睛:本題主要考查垂線,角平分線和三角形面積,解題的關(guān)鍵是找準(zhǔn)相等的角求解.19.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分別平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出規(guī)律;(3)先根據(jù)四邊形內(nèi)角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根據(jù)內(nèi)角與外角的關(guān)系和角平分線的定義得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,從而得出結(jié)論;(4)依然要用三角形的外角性質(zhì)求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形內(nèi)角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的關(guān)系.【詳解】解:(1)當(dāng)∠A為70°

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論