版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
秦皇島市重點中學(xué)2026屆數(shù)學(xué)九上期末預(yù)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.函數(shù)與()在同一坐標系中的圖象可能是()A. B. C. D.2.如圖,菱形ABCD的邊AB=20,面積為320,∠BAD<90°,⊙O與邊AB,AD都相切,AO=10,則⊙O的半徑長等于()A.5 B.6 C.2 D.33.函數(shù)在同一直角坐標系內(nèi)的圖象大致是()A. B. C. D.4.下列方程中,有兩個不相等的實數(shù)根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=05.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.6.如圖,在?ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是()A.①②③④ B.①④ C.②③④ D.①②③7.如圖,已知OB為⊙O的半徑,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,則CD長為()A.3cm B.6cm C.12cm D.24cm8.一元二次方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.無實數(shù)根 D.無法確定9.如圖,中,,,,則的長為()A. B. C.5 D.10.如圖,OA是⊙O的半徑,弦BC⊥OA,D是優(yōu)弧上一點,如果∠AOB=58o,那么∠ADC的度數(shù)為()A.32o B.29o C.58o D.116o11.下列關(guān)系式中,y是x的反比例函數(shù)的是()A.y=4x B. C. D.12.如圖,一個透明的玻璃正方體表面嵌有一根黑色的鐵絲.這根鐵絲在正方體俯視圖中的形狀是()A. B. C. D.二、填空題(每題4分,共24分)13.在矩形ABCD中,P為CD邊上一點(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD'P,PD'的延長線交邊AB于點M,過點B作BN∥MP交DC于點N,連接AC,分別交PM,PB于點E,F(xiàn).現(xiàn)有以下結(jié)論:①連接DD',則AP垂直平分DD';②四邊形PMBN是菱形;③AD2=DP?PC;④若AD=2DP,則;其中正確的結(jié)論是_____(填寫所有正確結(jié)論的序號)14.函數(shù)是關(guān)于反比例函數(shù),則它的圖象不經(jīng)過______的象限.15.如圖,在某一時刻,太陽光線與地面成的角,一只皮球在太陽光的照射下的投影長為,則皮球的直徑是______.16.若圓錐的母線長為,底面半徑為,則圓錐的側(cè)面展開圖的圓心角應(yīng)為_________________度.17.如圖,菱形ABCD的對角線AC,BD相交于點O,過點A作AH⊥BC于點H,連接OH.若OB=4,S菱形ABCD=24,則OH的長為______________.18.點是二次函數(shù)圖像上一點,則的值為__________三、解答題(共78分)19.(8分)已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是;(3)△A2B2C2的面積是平方單位.20.(8分)箱子里有4瓶牛奶,其中有一瓶是過期的.現(xiàn)從這4瓶牛奶中任意抽取牛奶飲用,抽取任意一瓶都是等可能的.(1)若小芳任意抽取1瓶,抽到過期的一瓶的概率是;(2)若小芳任意抽取2瓶,請用畫樹狀圖或列表法求,抽出的2瓶牛奶中恰好抽到過期牛奶的概率.21.(8分)閱讀理解:如圖,在紙面上畫出了直線l與⊙O,直線l與⊙O相離,P為直線l上一動點,過點P作⊙O的切線PM,切點為M,連接OM、OP,當(dāng)△OPM的面積最小時,稱△OPM為直線l與⊙O的“最美三角形”.解決問題:(1)如圖1,⊙A的半徑為1,A(0,2),分別過x軸上B、O、C三點作⊙A的切線BM、OP、CQ,切點分別是M、P、Q,下列三角形中,是x軸與⊙A的“最美三角形”的是.(填序號)①ABM;②AOP;③ACQ(2)如圖2,⊙A的半徑為1,A(0,2),直線y=kx(k≠0)與⊙A的“最美三角形”的面積為,求k的值.(3)點B在x軸上,以B為圓心,為半徑畫⊙B,若直線y=x+3與⊙B的“最美三角形”的面積小于,請直接寫出圓心B的橫坐標的取值范圍.22.(10分)如圖,已知⊙O的半徑為5cm,弦AB的長為8cm,P是AB延長線上一點,BP=2cm,求cosP的值.23.(10分)如圖,在四邊形中,,,對角線,交于點,平分,過點作交的延長線于點,連接.(1)求證:四邊形是菱形;(2)若,,求的長.24.(10分)如圖,在△ABC中,CD⊥AB,DE⊥AC,DF⊥BC,垂足分別為D,E,F(xiàn).(1)求證:CE?CA=CF?CB;(2)EF交CD于點O,求證:△COE∽△FOD;25.(12分)如圖,是內(nèi)接三角形,點D是BC的中點,請僅用無刻度的直尺,分別按下列要求畫圖.(1)如圖1,畫出弦AE,使AE平分∠BAC;(2)如圖2,∠BAF是的一個外角,畫出∠BAF的平分線.26.解方程:-2(x+1)=3
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)反比例函數(shù)與一次函數(shù)的圖象特點解答即可.【詳解】時,,在一、二、四象限,在一、三象限,無選項符合.時,,在一、三、四象限,()在二、四象限,只有D符合;故選:D.本題主要考查了反比例函數(shù)的圖象性質(zhì)和一次函數(shù)的圖象性質(zhì),關(guān)鍵是由的取值確定函數(shù)所在的象限.2、C【詳解】試題解析:如圖作DH⊥AB于H,連接BD,延長AO交BD于E.∵菱形ABCD的邊AB=20,面積為320,∴AB?DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD=,設(shè)⊙O與AB相切于F,連接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴,∴,∴OF=2.故選C.考點:1.切線的性質(zhì);2.菱形的性質(zhì).3、C【分析】根據(jù)a、b的符號,針對二次函數(shù)、一次函數(shù)的圖象位置,開口方向,分類討論,逐一排除.【詳解】當(dāng)a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象經(jīng)過一、三或一、二、三或一、三、四象限,故A、D不正確;由B、C中二次函數(shù)的圖象可知,對稱軸x=->0,且a>0,則b<0,但B中,一次函數(shù)a>0,b>0,排除B.故選C.4、A【分析】逐項計算方程的判別式,根據(jù)根的判別式進行判斷即可.【詳解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故該方程有兩個不相等的實數(shù)根,故A符合題意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故該方程無實數(shù)根,故B不符合題意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故該方程無實數(shù)根,故C不符合題意;在x2+2x+1=0中,△=22﹣4×1×1=0,故該方程有兩個相等的實數(shù)根,故D不符合題意;故選:A.本題考查根的判別式,解題的關(guān)鍵是記住判別式,△>0有兩個不相等實數(shù)根,△=0有兩個相等實數(shù)根,△<0沒有實數(shù)根,屬于中考??碱}型.5、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點睛】考查的是銳角三角函數(shù)的定義、等腰三角形的性質(zhì)及勾股定理.6、D【詳解】∵在?ABCD中,AO=AC,∵點E是OA的中點,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正確;∵S△AEF=4,=()2=,∴S△BCE=36;故②正確;∵=,∴=,∴S△ABE=12,故③正確;∵BF不平行于CD,∴△AEF與△ADC只有一個角相等,∴△AEF與△ACD不一定相似,故④錯誤,故選D.7、C【分析】根據(jù)OB=10cm,OM:MB=4:1,可求得OM的長,再根據(jù)垂徑定理和勾股定理可計算出答案.【詳解】∵弦CD⊥OB于M,∴CM=DM=CD,∵OM:MB=4:1,∴OM=OB=8cm,∴CM=(cm),∴CD=2CM=12cm,故選:C.本題考查了垂徑定理和勾股定理,垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條?。?、A【解析】先求出△的值,再根據(jù)一元二次方程根的情況與判別式△的關(guān)系即可得出答案.【詳解】解:一元二次方程中,△,則原方程有兩個不相等的實數(shù)根.故選:A.本題考查了根的判別式,一元二次方程根的情況與判別式△的關(guān)系:(1)△方程有兩個不相等的實數(shù)根;(2)△方程有兩個相等的實數(shù)根;(3)△方程沒有實數(shù)根9、C【解析】過C作CD⊥AB于D,根據(jù)含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【詳解】過C作CD⊥AB于D,則∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故選C.本題考查解直角三角形.10、B【分析】根據(jù)垂徑定理可得,根據(jù)圓周角定理可得∠AOB=2∠ADC,進而可得答案.【詳解】解:∵OA是⊙O的半徑,弦BC⊥OA,∴,∴∠ADC=∠AOB=29°.故選B.此題主要考查了圓周角定理和垂徑定理,關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.11、C【解析】根據(jù)反比例函數(shù)的定義判斷即可.【詳解】A、y=4x是正比例函數(shù);B、=3,可以化為y=3x,是正比例函數(shù);C、y=﹣是反比例函數(shù);D、y=x2﹣1是二次函數(shù);故選C.本題考查的是反比例函數(shù)的定義,形如y=(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù).12、A【解析】從上面看得到的圖形是A表示的圖形,故選A.二、填空題(每題4分,共24分)13、①②③【分析】根據(jù)折疊的性質(zhì)得出AP垂直平分DD',判斷出①正確.過點P作PG⊥AB于點G,易知四邊形DPGA,四邊形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易證△APG∽△PBG,所以PG2=AG?GB,即AD2=DP?PC判斷出③正確;DP∥AB,所以∠DPA=∠PAM,由題意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,從而可知PM=MB=AM,又易證四邊形PMBN是平行四邊形,所以四邊形PMBN是菱形;判斷出②正確;由于,可設(shè)DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,從而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,從而可證△PCF∽△BAF,△PCE∽△MAE,從而可得,,從而可求出EF=AF﹣AE=AC﹣=AC,從而可得,判斷出④錯誤.【詳解】解:∵將△ADP沿AP翻折得到△AD'P,∴AP垂直平分DD',故①正確;解法一:過點P作PG⊥AB于點G,∴易知四邊形DPGA,四邊形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG?GB,即AD2=DP?PC;解法二:易證:△ADP∽△PCB,∴,由于AD=CB,∴AD2=DP?PC;故③正確;∵DP∥AB,∴∠DPA=∠PAM,由題意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易證四邊形PMBN是平行四邊形,∴四邊形PMBN是菱形;故②正確;由于,可設(shè)DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG?GB,∴4=1?GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴,∴又易證:△PCE∽△MAE,AM=AB=∴,∴,∴EF=AF﹣AE=AC﹣=AC∴,故④錯誤,即:正確的有①②③,故答案為:①②③.本題是一道關(guān)于矩形折疊的綜合題目,考查的知識點有折疊的性質(zhì),矩形的性質(zhì),相似三角形的性質(zhì),菱形的判定等,此題充分考查了學(xué)生對所學(xué)知識點的掌握情況以及綜合利用能力,是一道很好的題目.14、第一、三象限【解析】試題解析:函數(shù)是關(guān)于的反比例函數(shù),解得:比例系數(shù)它的圖象在第二、四象限,不經(jīng)過第一、三象限.故答案為第一、三象限.15、15【分析】由圖可得AC即為投影長,過點A作于點B,由光線平行這一性質(zhì)可得,且AB即為圓的半徑,利用三角函數(shù)可得AB長.【詳解】解:如圖,過點A作于點B,由光線平行這一性質(zhì)可得,且AB即為圓的半徑,AC即為投影長.在中,,所以皮球的直徑是15cm.故答案為:15.本題考查了三角函數(shù)的應(yīng)用,由圖確定圓的投影長及直徑是解題的關(guān)鍵.16、【分析】根據(jù)圓錐側(cè)面展開圖的弧長等于圓錐底面圓的周長列式計算,弧長公式為,圓周長公式為.【詳解】解:圓錐的側(cè)面展開圖的圓心角度數(shù)為n°,根據(jù)題意得,,∴n=144∴圓錐的側(cè)面展開圖的圓心角度數(shù)為144°.故答案為:144°.本題考查圓錐的側(cè)面展開圖公式;用到的知識點為,圓錐的側(cè)面展開圖的弧長等于圓錐的底面圓周長.記準公式及有空間想象力是解答此題的關(guān)鍵.17、3【分析】由四邊形ABCD是菱形,OB=4,根據(jù)菱形的性質(zhì)可得BD=8,在根據(jù)菱形的面積等于兩條對角線乘積的一半求得AC=6,再根據(jù)直角三角形斜邊的中線等于斜邊的一半即可求得OH的長.【詳解】∵四邊形ABCD是菱形,OB=4,∴OA=OC,BD=2OB=8;∵S菱形ABCD=24,∴AC=6;∵AH⊥BC,OA=OC,∴OH=AC=3.故答案為3.本題考查了菱形的性質(zhì)及直角三角形斜邊的中線等于斜邊的一半的性質(zhì),根據(jù)菱形的面積公式(菱形的面積等于兩條對角線乘積的一半)求得AC=6是解題的關(guān)鍵.18、1【分析】把點代入即可求得值,將變形,代入即可.【詳解】解:∵點是二次函數(shù)圖像上,
∴則.∴
故答案為:1.本題考查了二次函數(shù)圖象上點的坐標特征,根據(jù)點坐標求待定系數(shù)是解題的關(guān)鍵.三、解答題(共78分)19、(1)(2,﹣2);(2)(1,0);(3)1.【解析】試題分析:(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點的坐標;(2)根據(jù)位似圖形的性質(zhì)得出對應(yīng)點位置,從而得到點的坐標;(3)利用等腰直角三角形的性質(zhì)得出△A2B2C2的面積.試題解析:(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面積是:××=1平方單位.故答案為1.考點:1、平移變換;2、位似變換;3、勾股定理的逆定理20、(1);(2)抽出的2瓶牛奶中恰好抽到過期牛奶的概率為.【分析】(1)直接根據(jù)概率公式計算可得;
(2)設(shè)這四瓶牛奶分別記為A、B、C、D,其中過期牛奶為A,畫樹狀圖可得所有等可能結(jié)果,從所有等可能結(jié)果中找到抽出的2瓶牛奶中恰好抽到過期牛奶的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】(1):(1)小芳任意抽取1瓶,抽到過期的一瓶的概率是,故答案為:.(2)設(shè)這四瓶牛奶分別記為、、、,其中過期牛奶為畫樹狀圖如圖所示,由圖可知,共有12種等可能結(jié)果;由樹狀圖知,所抽取的12種等可能結(jié)果中,抽出的2瓶牛奶中恰好抽到過期牛奶的有6種結(jié)果,所以抽出的2瓶牛奶中恰好抽到過期牛奶的概率為.本題考查了列表法與樹狀圖法,以及概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)②;(2)±1;(3)<<或<<【分析】(1)本題先利用切線的性質(zhì),結(jié)合勾股定理以及三角形面積公式將面積最值轉(zhuǎn)化為線段最值,了解最美三角形的定義,根據(jù)圓心到直線距離最短原則解答本題.(2)本題根據(jù)k的正負分類討論,作圖后根據(jù)最美三角形的定義求解EF,利用勾股定理求解AF,進一步確定∠AOF度數(shù),最后利用勾股定理確定點F的坐標,利用待定系數(shù)法求k.(3)本題根據(jù)⊙B在直線兩側(cè)不同位置分類討論,利用直線與坐標軸的交點坐標確定∠NDB的度數(shù),繼而按照最美三角形的定義,分別以△BND,△BMN為媒介計算BD長度,最后與OD相減求解點B的橫坐標范圍.【詳解】(1)如下圖所示:∵PM是⊙O的切線,∴∠PMO=90°,當(dāng)⊙O的半徑OM是定值時,,∵,∴要使面積最小,則PM最小,即OP最小即可,當(dāng)OP⊥時,OP最小,符合最美三角形定義.故在圖1三個三角形中,因為AO⊥x軸,故△AOP為⊙A與x軸的最美三角形.故選:②.(2)①當(dāng)k<0時,按題意要求作圖并在此基礎(chǔ)作FM⊥x軸,如下所示:按題意可得:△AEF是直線y=kx與⊙A的最美三角形,故△AEF為直角三角形且AF⊥OF.則由已知可得:,故EF=1.在△AEF中,根據(jù)勾股定理得:.∵A(0,2),即OA=2,∴在直角△AFO中,,∴∠AOF=45°,即∠FOM=45°,故根據(jù)勾股定理可得:MF=MO=1,故F(-1,1),將F點代入y=kx可得:.②當(dāng)k>0時,同理可得k=1.故綜上:.(3)記直線與x、y軸的交點為點D、C,則,,①當(dāng)⊙B在直線CD右側(cè)時,如下圖所示:在直角△COD中,有,,故,即∠ODC=60°.∵△BMN是直線與⊙B的最美三角形,∴MN⊥BM,BN⊥CD,即∠BND=90°,在直角△BDN中,,故.∵⊙B的半徑為,∴.當(dāng)直線CD與⊙B相切時,,因為直線CD與⊙B相離,故BN>,此時BD>2,所以O(shè)B=BD-OD>.由已知得:<,故MN<1.在直角△BMN中,<,此時可利用勾股定理算得BD<,<=,則<<.②當(dāng)⊙B在直線CD左側(cè)時,同理可得:<<.故綜上:<<或<<.本題考查圓與直線的綜合問題,屬于創(chuàng)新題目,此類型題目解題關(guān)鍵在于了解題干所給示例,涉及動點問題時必須分類討論,保證不重不漏,題目若出現(xiàn)最值問題,需要利用轉(zhuǎn)化思想將面積或周長最值轉(zhuǎn)化為線段最值以降低解題難度,求解幾何線段時勾股定理極為常見.22、【分析】作OCAB于C點,根據(jù)垂徑定理可得AC、CP的長度,在OCA和OCP中,運用勾股定理分別求出OC、OP的長度,即可算得的值.【詳解】解:作OCAB于C點,根據(jù)垂徑定理,AC=BC=4cm,∴CP=4+2=6cm,在OCA中,根據(jù)勾股定理,得,在OCP中,根據(jù)勾股定理,得,故.本題主要考察了垂徑定理、勾股定理、求角的余弦值,解題的關(guān)鍵在于運用勾股定理求出圖形中部分線段的長度.23、(1)證明見解析;(2)2.【解析】分析:(1)根據(jù)一組對邊相等的平行四邊形是菱形進行判定即可.(2)根據(jù)菱形的性質(zhì)和勾股定理求出.根據(jù)直角三角形斜邊的中線等于斜邊的一半即可求解.詳解:(1)證明:∵∥,∴∵平分∴,∴∴又∵∴又∵∥,∴四邊形是平行四邊形又∵∴是菱形(2)解:∵四邊形是菱形,對角線、交于點.∴.,,∴.在中,.∴.∵,∴.在中,.為中點.∴.點睛:本題考查了平行四邊形的性質(zhì)和判定,菱形的判定與性質(zhì),直角三角形的性質(zhì),勾股定理等,熟練掌握菱形的判定方法以及直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.24、(1)證明見解析;(2)證明見解析【分析】(1)本題首先根據(jù)垂直性質(zhì)以及公共角分別求證△CED∽△CDA,△CDF∽△CBD,繼而以為中間變量進行等量替換證明本題.(2)本題以第一問結(jié)論為前提證明△CEF∽△CBA,繼而根據(jù)垂直性質(zhì)證明∠OFD=∠ECO,最后利用“角角”判定證明相似.【詳解】(1)由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物標志物在糖尿病分型中的臨床應(yīng)用
- 生物標志物與藥物臨床前研究的轉(zhuǎn)化銜接
- 生物制品穩(wěn)定性試驗風(fēng)險評估策略應(yīng)用
- 核燃料元件制造工程師培訓(xùn)考核標準
- 電視臺節(jié)目策劃崗位的應(yīng)聘面試題參考
- 廈門建發(fā)信息技術(shù)部工程師崗位面試題庫含答案
- 求職知識產(chǎn)權(quán)管理崗位面試題庫
- 汽車制造質(zhì)量工程師面試題集及答案解析
- 考試題運輸調(diào)度經(jīng)理專業(yè)能力測試
- 瓣膜介入器械術(shù)后康復(fù)方案
- 幼兒園小班音樂歌唱《碰一碰》課件
- 中醫(yī)診療技術(shù)操作規(guī)程
- CJT 340-2016 綠化種植土壤
- 二年級上冊口算練習(xí)1000道
- 2023年11月浙江省慈溪技師學(xué)院(慈溪杭州灣中等職業(yè)學(xué)校)公開招聘1名派遣制工作人員筆試歷年高頻考點-難、易錯點薈萃附答案帶詳解
- 農(nóng)業(yè)水價綜合改革
- 23秋國家開放大學(xué)《液壓氣動技術(shù)》形考任務(wù)1-3參考答案
- 廣東省通用安裝工程綜合定額(2018)Excel版
- 21ZJ111 變形縫建筑構(gòu)造
- 2023-2024學(xué)年四川省涼山州小學(xué)語文五年級期末高分試卷詳細參考答案解析
- GB/T 1443-2016機床和工具柄用自夾圓錐
評論
0/150
提交評論