版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
備戰(zhàn)中考數(shù)學(xué)平行四邊形綜合試題及答案解析一、平行四邊形1.四邊形ABCD是正方形,AC與BD,相交于點(diǎn)O,點(diǎn)E、F是直線AD上兩動(dòng)點(diǎn),且AE=DF,CF所在直線與對(duì)角線BD所在直線交于點(diǎn)G,連接AG,直線AG交BE于點(diǎn)H.(1)如圖1,當(dāng)點(diǎn)E、F在線段AD上時(shí),①求證:∠DAG=∠DCG;②猜想AG與BE的位置關(guān)系,并加以證明;(2)如圖2,在(1)條件下,連接HO,試說明HO平分∠BHG;(3)當(dāng)點(diǎn)E、F運(yùn)動(dòng)到如圖3所示的位置時(shí),其它條件不變,請(qǐng)將圖形補(bǔ)充完整,并直接寫出∠BHO的度數(shù).【答案】(1)①證明見解析;②AG⊥BE.理由見解析;(2)證明見解析;(3)∠BHO=45°.【解析】試題分析:(1)①根據(jù)正方形的性質(zhì)得DA=DC,∠ADB=∠CDB=45°,則可根據(jù)“SAS”證明△ADG≌△CDG,所以∠DAG=∠DCG;②根據(jù)正方形的性質(zhì)得AB=DC,∠BAD=∠CDA=90°,根據(jù)“SAS”證明△ABE≌△DCF,則∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判斷AG⊥BE;(2)如答圖1所示,過點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,證明△AON≌△BOM,可得四邊形OMHN為正方形,因此HO平分∠BHG結(jié)論成立;(3)如答圖2所示,與(1)同理,可以證明AG⊥BE;過點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,構(gòu)造全等三角形△AON≌△BOM,從而證明OMHN為正方形,所以HO平分∠BHG,即∠BHO=45°.試題解析:(1)①∵四邊形ABCD為正方形,∴DA=DC,∠ADB=∠CDB=45°,在△ADG和△CDG中,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG;②AG⊥BE.理由如下:∵四邊形ABCD為正方形,∴AB=DC,∠BAD=∠CDA=90°,在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,∵∠DAG=∠DCG,∴∠DAG=∠ABE,∵∠DAG+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AHB=90°,∴AG⊥BE;(2)由(1)可知AG⊥BE.如答圖1所示,過點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,則四邊形OMHN為矩形.∴∠MON=90°,又∵OA⊥OB,∴∠AON=∠BOM.∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,∴∠OAN=∠OBM.在△AON與△BOM中,∴△AON≌△BOM(AAS).∴OM=ON,∴矩形OMHN為正方形,∴HO平分∠BHG.(3)將圖形補(bǔ)充完整,如答圖2示,∠BHO=45°.與(1)同理,可以證明AG⊥BE.過點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,與(2)同理,可以證明△AON≌△BOM,可得OMHN為正方形,所以HO平分∠BHG,∴∠BHO=45°.考點(diǎn):1、四邊形綜合題;2、全等三角形的判定與性質(zhì);3、正方形的性質(zhì)2.已知,在矩形ABCD中,AB=a,BC=b,動(dòng)點(diǎn)M從點(diǎn)A出發(fā)沿邊AD向點(diǎn)D運(yùn)動(dòng).(1)如圖1,當(dāng)b=2a,點(diǎn)M運(yùn)動(dòng)到邊AD的中點(diǎn)時(shí),請(qǐng)證明∠BMC=90°;(2)如圖2,當(dāng)b>2a時(shí),點(diǎn)M在運(yùn)動(dòng)的過程中,是否存在∠BMC=90°,若存在,請(qǐng)給與證明;若不存在,請(qǐng)說明理由;(3)如圖3,當(dāng)b<2a時(shí),(2)中的結(jié)論是否仍然成立?請(qǐng)說明理由.【答案】(1)見解析;(2)存在,理由見解析;(3)不成立.理由如下見解析.【解析】試題分析:(1)由b=2a,點(diǎn)M是AD的中點(diǎn),可得AB=AM=MD=DC=a,又由四邊形ABCD是矩形,即可求得∠AMB=∠DMC=45°,則可求得∠BMC=90°;(2)由∠BMC=90°,易證得△ABM∽△DMC,設(shè)AM=x,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可確定方程有兩個(gè)不相等的實(shí)數(shù)根,且兩根均大于零,符合題意;(3)由(2),當(dāng)b<2a,a>0,b>0,判定方程x2﹣bx+a2=0的根的情況,即可求得答案.試題解析:(1)∵b=2a,點(diǎn)M是AD的中點(diǎn),∴AB=AM=MD=DC=a,又∵在矩形ABCD中,∠A=∠D=90°,∴∠AMB=∠DMC=45°,∴∠BMC=90°.(2)存在,理由:若∠BMC=90°,則∠AMB+∠DMC=90°,又∵∠AMB+∠ABM=90°,∴∠ABM=∠DMC,又∵∠A=∠D=90°,∴△ABM∽△DMC,∴,設(shè)AM=x,則,整理得:x2﹣bx+a2=0,∵b>2a,a>0,b>0,∴△=b2﹣4a2>0,∴方程有兩個(gè)不相等的實(shí)數(shù)根,且兩根均大于零,符合題意,∴當(dāng)b>2a時(shí),存在∠BMC=90°,(3)不成立.理由:若∠BMC=90°,由(2)可知x2﹣bx+a2=0,∵b<2a,a>0,b>0,∴△=b2﹣4a2<0,∴方程沒有實(shí)數(shù)根,∴當(dāng)b<2a時(shí),不存在∠BMC=90°,即(2)中的結(jié)論不成立.考點(diǎn):1、相似三角形的判定與性質(zhì);2、根的判別式;3、矩形的性質(zhì)3.操作與證明:如圖1,把一個(gè)含45°角的直角三角板ECF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.(1)連接AE,求證:△AEF是等腰三角形;猜想與發(fā)現(xiàn):(2)在(1)的條件下,請(qǐng)判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.結(jié)論1:DM、MN的數(shù)量關(guān)系是;結(jié)論2:DM、MN的位置關(guān)系是;拓展與探究:(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說明理由.【答案】(1)證明參見解析;(2)相等,垂直;(3)成立,理由參見解析.【解析】試題分析:(1)根據(jù)正方形的性質(zhì)以及等腰直角三角形的知識(shí)證明出CE=CF,繼而證明出△ABE≌△ADF,得到AE=AF,從而證明出△AEF是等腰三角形;(2)DM、MN的數(shù)量關(guān)系是相等,利用直角三角形斜邊中線等于斜邊一半和三角形中位線定理即可得出結(jié)論.位置關(guān)系是垂直,利用三角形外角性質(zhì)和等腰三角形兩個(gè)底角相等性質(zhì),及全等三角形對(duì)應(yīng)角相等即可得出結(jié)論;(3)成立,連接AE,交MD于點(diǎn)G,標(biāo)記出各個(gè)角,首先證明出MN∥AE,MN=AE,利用三角形全等證出AE=AF,而DM=AF,從而得到DM,MN數(shù)量相等的結(jié)論,再利用三角形外角性質(zhì)和三角形全等,等腰三角形性質(zhì)以及角角之間的數(shù)量關(guān)系得到∠DMN=∠DGE=90°.從而得到DM、MN的位置關(guān)系是垂直.試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的數(shù)量關(guān)系是相等,DM、MN的位置關(guān)系是垂直;∵在Rt△ADF中DM是斜邊AF的中線,∴AF=2DM,∵M(jìn)N是△AEF的中位線,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的兩個(gè)結(jié)論還成立,連接AE,交MD于點(diǎn)G,∵點(diǎn)M為AF的中點(diǎn),點(diǎn)N為EF的中點(diǎn),∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵點(diǎn)M為AF的中點(diǎn),∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可證:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵M(jìn)N∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的兩個(gè)結(jié)論還成立.考點(diǎn):1.正方形的性質(zhì);2.全等三角形的判定與性質(zhì);3.三角形中位線定理;4.旋轉(zhuǎn)的性質(zhì).4.已知:在菱形ABCD中,E,F(xiàn)是BD上的兩點(diǎn),且AE∥CF.求證:四邊形AECF是菱形.【答案】見解析【解析】【分析】由菱形的性質(zhì)可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可證△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四邊形的判定和菱形的判定可得四邊形AECF是菱形.【詳解】證明:∵四邊形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四邊形AECF是平行四邊形又∵AF=CF,∴四邊形AECF是菱形【點(diǎn)睛】本題主要考查菱形的判定定理,首先要判定其為平行四邊形,這是菱形判定的基本判定.5.如圖,四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,點(diǎn)E為CD的中點(diǎn),射線BE交AD的延長(zhǎng)線于點(diǎn)F,連接CF.(1)求證:四邊形BCFD是菱形;(2)若AD=1,BC=2,求BF的長(zhǎng).【答案】(1)證明見解析(2)2【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵點(diǎn)E為CD的中點(diǎn),∴DE=EC,在△BCE與△FDE中,,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四邊形BCDF為平行四邊形,∵BD=BC,∴四邊形BCFD是菱形;(2)∵四邊形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF==2.6.在正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,且∠EAF=∠CEF=45°.(1)將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG(如圖①),求證:△AEG≌△AEF;(2)若直線EF與AB,AD的延長(zhǎng)線分別交于點(diǎn)M,N(如圖②),求證:EF2=ME2+NF2;(3)將正方形改為長(zhǎng)與寬不相等的矩形,若其余條件不變(如圖③),請(qǐng)你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.【答案】(1)證明見解析;(2)證明見解析;(3)EF2=2BE2+2DF2.【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可知AF=AG,∠EAF=∠GAE=45°,故可證△AEG≌△AEF;(2)將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.由(1)知△AEG≌△AEF,則EG=EF.再由△BME、△DNF、△CEF均為等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后證明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代換即可證明EF2=ME2+NF2;(3)將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADF≌△ABG,則DF=BG,再證明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代換得到EF=BE+DF.試題解析:(1)∵△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE與△AFE中,,∴△AGE≌△AFE(SAS);(2)設(shè)正方形ABCD的邊長(zhǎng)為a.將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.則△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均為等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如圖所示,延長(zhǎng)EF交AB延長(zhǎng)線于M點(diǎn),交AD延長(zhǎng)線于N點(diǎn),將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△AGH,連結(jié)HM,HE.由(1)知△AEH≌△AEF,則由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考點(diǎn):四邊形綜合題7.如圖,正方形ABCD的邊長(zhǎng)為8,E為BC上一定點(diǎn),BE=6,F(xiàn)為AB上一動(dòng)點(diǎn),把△BEF沿EF折疊,點(diǎn)B落在點(diǎn)B′處,當(dāng)△AFB′恰好為直角三角形時(shí),B′D的長(zhǎng)為?【答案】或【解析】【分析】分兩種情況分析:如圖1,當(dāng)∠AB′F=90°時(shí),此時(shí)A、B′、E三點(diǎn)共線,過點(diǎn)B′作B′M⊥AB,B′N⊥AD,由三角形的面積法則可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=;如圖2,當(dāng)∠AFB′=90°時(shí),由題意可知此時(shí)四邊形EBFB′是正方形,AF=2,過點(diǎn)B′作B′N⊥AD,則四邊形AFB′N為矩形,在Rt△CB′N中,由勾股定理得,B′D=;【詳解】如圖1,當(dāng)∠AB′F=90°時(shí),此時(shí)A、B′、E三點(diǎn)共線,∵∠B=90°,∴AE==10,∵B′E=BE=6,∴AB′=4,∵B′F=BF,AF+BF=AB=8,在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,∴AF=5,BF=3,過點(diǎn)B′作B′M⊥AB,B′N⊥AD,由三角形的面積法則可求得B′M=2.4,再由勾股定理可求得B′N=3.2,∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,在Rt△CB′N中,由勾股定理得,B′D==;如圖2,當(dāng)∠AFB′=90°時(shí),由題意可知此時(shí)四邊形EBFB′是正方形,∴AF=2,過點(diǎn)B′作B′N⊥AD,則四邊形AFB′N為矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2,在Rt△CB′N中,由勾股定理得,B′D==;綜上,可得B′D的長(zhǎng)為或.【點(diǎn)睛】本題主要考查正方形的性質(zhì)與判定,矩形有性質(zhì)判定、勾股定理、折疊的性質(zhì)等,能正確地畫出圖形并能分類討論是解題的關(guān)鍵.8.(問題情境)在△ABC中,AB=AC,點(diǎn)P為BC所在直線上的任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點(diǎn)C作CF⊥AB,垂足為F.當(dāng)P在BC邊上時(shí)(如圖1),求證:PD+PE=CF.證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.(不要證明)(變式探究)(1)當(dāng)點(diǎn)P在CB延長(zhǎng)線上時(shí),其余條件不變(如圖3),試探索PD、PE、CF之間的數(shù)量關(guān)系并說明理由;請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:(結(jié)論運(yùn)用)(2)如圖4,將長(zhǎng)方形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=16,CF=6,求PG+PH的值.(遷移拓展)(3)在直角坐標(biāo)系中,直線l1:y=-x+8與直線l2:y=﹣2x+8相交于點(diǎn)A,直線l1、l2與x軸分別交于點(diǎn)B、點(diǎn)C.點(diǎn)P是直線l2上一個(gè)動(dòng)點(diǎn),若點(diǎn)P到直線l1的距離為2.求點(diǎn)P的坐標(biāo).【答案】【變式探究】證明見解析【結(jié)論運(yùn)用】8【遷移拓展】(﹣1,6),(1,10)【解析】【變式探究】連接AP,同理利用△ABP與△ACP面積之差等于△ABC的面積可以證得;【結(jié)論運(yùn)用】過點(diǎn)E作EQ⊥BC,垂足為Q,根據(jù)勾股定理和矩形的性質(zhì)解答即可;【遷移拓展】分兩種情況,利用結(jié)論,求得點(diǎn)P到x軸的距離,再利用待定系數(shù)法可求出P的坐標(biāo).【詳解】變式探究:連接AP,如圖3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴AB?CF=AC?PE﹣AB?PD.∵AB=AC,∴CF=PD﹣PE;結(jié)論運(yùn)用:過點(diǎn)E作EQ⊥BC,垂足為Q,如圖④,∵四邊形ABCD是長(zhǎng)方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折疊可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC==8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四邊形EQCD是長(zhǎng)方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由問題情境中的結(jié)論可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值為8;遷移拓展:如圖,由題意得:A(0,8),B(6,0),C(﹣4,0)∴AB==10,BC=10.∴AB=BC,(1)由結(jié)論得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6即點(diǎn)P1的縱坐標(biāo)為6又點(diǎn)P1在直線l2上,∴y=2x+8=6,∴x=﹣1,即點(diǎn)P1的坐標(biāo)為(﹣1,6);(2)由結(jié)論得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10即點(diǎn)P1的縱坐標(biāo)為10又點(diǎn)P1在直線l2上,∴y=2x+8=10,∴x=1,即點(diǎn)P1的坐標(biāo)為(1,10)【點(diǎn)睛】本題考查了矩形的性質(zhì)與判定、等腰三角形的性質(zhì)與判定及勾股定理等知識(shí)點(diǎn),利用面積法列出等式是解決問題的關(guān)鍵.9.如圖所示,矩形ABCD中,點(diǎn)E在CB的延長(zhǎng)線上,使CE=AC,連接AE,點(diǎn)F是AE的中點(diǎn),連接BF、DF,求證:BF⊥DF.【答案】見解析.【解析】【分析】延長(zhǎng)BF,交DA的延長(zhǎng)線于點(diǎn)M,連接BD,進(jìn)而求證△AFM≌△EFB,得AM=BE,F(xiàn)B=FM,即可求得BC+BE=AD+AM,進(jìn)而求得BD=BM,根據(jù)等腰三角形三線合一的性質(zhì)即可求證BF⊥DF.【詳解】延長(zhǎng)BF,交DA的延長(zhǎng)線于點(diǎn)M,連接BD.∵四邊形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,F(xiàn)B=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE=BD=DM.∵FB=FM,∴BF⊥DF.【點(diǎn)睛】本題考查了矩形的性質(zhì),全等三角形的判定和對(duì)應(yīng)邊相等的性質(zhì),等腰三角形三線合一的性質(zhì),本題中求證DB=DM是解題的關(guān)鍵.10.菱形ABCD中、∠BAD=120°,點(diǎn)O為射線CA上的動(dòng)點(diǎn),作射線OM與直線BC相交于點(diǎn)E,將射線OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°,得到射線ON,射線ON與直線CD相交于點(diǎn)F.(1)如圖①,點(diǎn)O與點(diǎn)A重合時(shí),點(diǎn)E,F(xiàn)分別在線段BC,CD上,請(qǐng)直接寫出CE,CF,CA三條段段之間的數(shù)量關(guān)系;(2)如圖②,點(diǎn)O在CA的延長(zhǎng)線上,且OA=AC,E,F(xiàn)分別在線段BC的延長(zhǎng)線和線段CD的延長(zhǎng)線上,請(qǐng)寫出CE,CF,CA三條線段之間的數(shù)量關(guān)系,并說明理由;(3)點(diǎn)O在線段AC上,若AB=6,BO=2,當(dāng)CF=1時(shí),請(qǐng)直接寫出BE的長(zhǎng).【答案】(1)CA=CE+CF.(2)CF-CE=AC.(3)BE的值為3或5或1.【解析】【分析】(1)如圖①中,結(jié)論:CA=CE+CF.只要證明△ADF≌△ACE(SAS)即可解決問題;(2)結(jié)論:CF-CE=AC.如圖②中,如圖作OG∥AD交CF于G,則△OGC是等邊三角形.只要證明△FOG≌△EOC(ASA)即可解決問題;(3)分四種情形畫出圖形分別求解即可解決問題.【詳解】(1)如圖①中,結(jié)論:CA=CE+CF.理由:∵四邊形ABCD是菱形,∠BAD=120°∴AB=AD=DC=BC,∠BAC=∠DAC=60°∴△ABC,△ACD都是等邊三角形,∵∠DAC=∠EAF=60°,∴∠DAF=∠CAE,∵CA=AD,∠D=∠ACE=60°,∴△ADF≌△ACE(SAS),∴DF=CE,∴CE+CF=CF+DF=CD=AC,∴CA=CE+CF.(2)結(jié)論:CF-CE=AC.理由:如圖②中,如圖作OG∥AD交CF于G,則△OGC是等邊三角形.∵∠GOC=∠FOE=60°,∴∠FOG=∠EOC,∵OG=OC,∠OGF=∠ACE=120°,∴△FOG≌△EOC(ASA),∴CE=FG,∵OC=OG,CA=CD,∴OA=DG,∴CF-EC=CF-FG=CG=CD+DG=AC+AC=AC,(3)作BH⊥AC于H.∵AB=6,AH=CH=3,∴BH=3,如圖③-1中,當(dāng)點(diǎn)O在線段AH上,點(diǎn)F在線段CD上,點(diǎn)E在線段BC上時(shí).∵OB=2,∴OH==1,∴OC=3+1=4,由(1)可知:CO=CE+CF,∵OC=4,CF=1,∴CE=3,∴BE=6-3=3.如圖③-2中,當(dāng)點(diǎn)O在線段AH上,點(diǎn)F在線段DC的延長(zhǎng)線上,點(diǎn)E在線段BC上時(shí).由(2)可知:CE-CF=OC,∴CE=4+1=5,∴BE=1.如圖③-3中,當(dāng)點(diǎn)O在線段CH上,點(diǎn)F在線段CD上,點(diǎn)E在線段BC上時(shí).同法可證:OC=CE+CF,∵OC=CH-OH=3-1=2,CF=1,∴CE=1,∴BE=6-1=5.如圖③-4中,當(dāng)點(diǎn)O在線段CH上,點(diǎn)F在線段DC的延長(zhǎng)線上,點(diǎn)E在線段BC上時(shí).同法可知:CE-CF=OC,∴CE=2+1=3,∴BE=3,綜上所述,滿足條件的BE的值為3或5或1.【點(diǎn)睛】本題屬于四邊形綜合題,考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題,學(xué)會(huì)用分類討論的思想思考問題,屬于中考?jí)狠S題.11.如圖,現(xiàn)將平行四邊形ABCD沿其對(duì)角線AC折疊,使點(diǎn)B落在點(diǎn)B′處.AB′與CD交于點(diǎn)E.(1)求證:△AED≌△CEB′;(2)過點(diǎn)E作EF⊥AC交AB于點(diǎn)F,連接CF,判斷四邊形AECF的形狀并給予證明.【答案】(1)見解析(2)見解析【解析】【分析】(1)由題意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS證明全等,則結(jié)論可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根據(jù)等腰三角形的性質(zhì)可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,則可證四邊形AECF是菱形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形∴AD=BC,CD∥AB,∠B=∠D∵平行四邊形ABCD沿其對(duì)角線AC折疊∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四邊形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四邊形AECF是菱形【點(diǎn)睛】本題考查了折疊問題,全等三角形的判定和性質(zhì),平行四邊形的性質(zhì),菱形的判定,熟練掌握這些性質(zhì)和判定是解決問題的關(guān)鍵.12.如圖,在正方形ABCD中,點(diǎn)G在對(duì)角線BD上(不與點(diǎn)B,D重合),GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,連結(jié)AG.(1)寫出線段AG,GE,GF長(zhǎng)度之間的數(shù)量關(guān)系,并說明理由;(2)若正方形ABCD的邊長(zhǎng)為1,∠AGF=105°,求線段BG的長(zhǎng).【答案】(1)AG2=GE2+GF2(2)【解析】試題分析:(1)結(jié)論:AG2=GE2+GF2.只要證明GA=GC,四邊形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可證明;(2)作BN⊥AG于N,在BN上截取一點(diǎn)M,使得AM=BM.設(shè)AN=x.易證AM=BM=2x,MN=x,在Rt△ABN中,根據(jù)AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根據(jù)BG=BN÷cos30°即可解決問題.試題解析:(1)結(jié)論:AG2=GE2+GF2.理由:連接CG.∵四邊形ABCD是正方形,∴A、C關(guān)于對(duì)角線BD對(duì)稱,∵點(diǎn)G在BD上,∴GA=GC,∵GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,∴∠GEC=∠ECF=∠CFG=90°,∴四邊形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一點(diǎn)M,使得AM=BM.設(shè)AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.考點(diǎn):1、正方形的性質(zhì),2、矩形的判定和性質(zhì),3、勾股定理,4、直角三角形30度的性質(zhì)13.問題探究(1)如圖①,已知正方形ABCD的邊長(zhǎng)為4.點(diǎn)M和N分別是邊BC、CD上兩點(diǎn),且BM=CN,連接AM和BN,交于點(diǎn)P.猜想AM與BN的位置關(guān)系,并證明你的結(jié)論.(2)如圖②,已知正方形ABCD的邊長(zhǎng)為4.點(diǎn)M和N分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CD方向向終點(diǎn)C和D運(yùn)動(dòng).連接AM和BN,交于點(diǎn)P,求△APB周長(zhǎng)的最大值;問題解決(3)如圖③,AC為邊長(zhǎng)為2的菱形ABCD的對(duì)角線,∠ABC=60°.點(diǎn)M和N分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CA向終點(diǎn)C和A運(yùn)動(dòng).連接AM和BN,交于點(diǎn)P.求△APB周長(zhǎng)的最大值.【答案】(1)AM⊥BN,證明見解析;(2)△APB周長(zhǎng)的最大值4+4;(3)△PAB的周長(zhǎng)最大值=2+4.【解析】試題分析:根據(jù)全等三角形的判定SAS證明△ABM≌△BCN,即可證得AM⊥BN;(2)如圖②,以AB為斜邊向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,連接EP,證明PA+PB=2EF,求出EF的最大值即可;(3)如圖③,延長(zhǎng)DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB,證明PA+PB=PK,求出PK的最大值即可.試題解析:(1)結(jié)論:AM⊥BN.理由:如圖①中,∵四邊形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如圖②中,以AB為斜邊向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,連接EP.∵∠EFP=∠FPG=∠G=90°,∴四邊形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四邊形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周長(zhǎng)的最大值=4+4.(3)如圖③中,延長(zhǎng)DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四點(diǎn)共圓,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等邊三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大時(shí),△APB的周長(zhǎng)最大,∴當(dāng)PK是△ABK外接圓的直徑時(shí),PK的值最大,最大值為4,∴△PAB的周長(zhǎng)最大值=2+4.14.如圖,AB為⊙O的直徑,點(diǎn)E在⊙O上,過點(diǎn)E的切線與AB的延長(zhǎng)線交于點(diǎn)D,連接BE,過點(diǎn)O作BE的平行線,交⊙O于點(diǎn)F,交切線于點(diǎn)C,連接AC(1)求證:AC是⊙O的切線;(2)連接EF,當(dāng)∠D=°時(shí),四邊形FOBE是菱形.【答案】(1)見解析;(2)30.【解析】【分析】(1)由等角的轉(zhuǎn)換證明出,根據(jù)圓的位置關(guān)系證得AC是⊙O的切線.(2)根據(jù)四邊形FOBE是菱形,得到OF=OB=BF=EF,得證為等邊三角形,而得出,根據(jù)三角形內(nèi)角和即可求出答案.【詳解】(1)證明:∵CD與⊙O相切于點(diǎn)E,∴,∴,又∵,∴,∠OBE=∠COA∵OE=OB,∴,∴,又∵OC=OC,OA=OE,∴,∴,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)解:∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴為等邊三角形,∴,而,∴.故答案為30.【點(diǎn)睛】本題主要考查與圓有關(guān)的位置關(guān)系和圓中的計(jì)算問題,熟練掌握?qǐng)A的性質(zhì)是本題的解題關(guān)鍵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46919-2025基于12.5 kHz信道的時(shí)分多址(TDMA)專用數(shù)字集群通信系統(tǒng)移動(dòng)臺(tái)技術(shù)規(guī)范
- 企業(yè)商務(wù)合作流程規(guī)范制度
- 公章的管理制度
- 2026年公務(wù)員考試行政職業(yè)能力測(cè)驗(yàn)題集
- 2026年環(huán)境工程職稱考試水污染治理與水資源保護(hù)實(shí)務(wù)題
- 2026年IT設(shè)備室日常維護(hù)與6S管理的資格認(rèn)證考試題目
- 2026年金融衍生品市場(chǎng)風(fēng)險(xiǎn)監(jiān)控策略題
- 2026年委托硬膠囊合同
- 2026年委托具喉合同
- 北京市石景山區(qū)2025-2026學(xué)年上學(xué)期期末考試高一思想政治試題(含答案)
- 工程勞務(wù)服務(wù)方案(3篇)
- 護(hù)士職業(yè)素養(yǎng)課件講課視頻
- 《人民調(diào)解員培訓(xùn)》課件
- 出租車春節(jié)應(yīng)急預(yù)案
- 華羅庚數(shù)學(xué)課本六年級(jí)
- DB12-T885-2019-植物提取物中原花青素的測(cè)定紫外-可見分光光度法-天津市
- 董氏奇穴針灸學(xué)(楊維杰)
- 日間手術(shù)病人術(shù)前的護(hù)理
- 1000張隱患辨識(shí)圖
- 智能水務(wù)管理基礎(chǔ)知識(shí)單選題100道及答案
- 《職業(yè)院校與本科高校對(duì)口貫通分段培養(yǎng)協(xié)議書》
評(píng)論
0/150
提交評(píng)論