版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
北京日壇中學(xué)分校中考數(shù)學(xué)幾何綜合壓軸題模擬專題一、中考幾何壓軸題1.問題提出(1)如圖(1),在等邊三角形ABC中,點M是BC上的任意一點(不含端點B、C),連接AM,以AM為邊作等邊三角形AMN,連接CN,則∠ACN=°.類比探究(2)如圖(2),在等邊三角形ABC中,點M是BC延長線上的任意一點(不含端點C),其他條件不變,(1)中的結(jié)論還成立嗎?請說明理由.拓展延伸(3)如圖(3),在等腰三角形ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連接AM,以AM為邊作等腰三角形AMN,使AM=MN,連接CN.添加一個條件,使得∠ABC=∠ACN仍成立,寫出你所添加的條件,并說明理由.2.如圖,已知和均為等腰三角形,AC=BC,DE=AE,將這兩個三角形放置在一起.(1)問題發(fā)現(xiàn):如圖①,當(dāng)時,點B、D、E在同一直線上,連接CE,則=°,線段BD、CE之間的數(shù)量關(guān)系是;(2)拓展探究:如圖②,當(dāng)時,點B、D、E在同一直線上,連接CE,請判斷的度數(shù)及線段BD、CE之間的數(shù)量關(guān)系,并說明理由;(3)解決問題:如圖③,,,AE=2,連接CE、BD,在繞點A旋轉(zhuǎn)的過程中,當(dāng)時,請直接寫出EC的長.3.(1)如圖1,在正的外角內(nèi)引射線,作點C關(guān)于的對稱點E(點E在內(nèi)),連接,、分別交于點F,G.則_______.(2)類比探究:如圖2,把上題中的“正”改為“正方形”,其余條件不變,請求出的度數(shù);通過以上兩例探索,請寫出一個關(guān)于與的數(shù)量關(guān)系的正確結(jié)論:_________________;(3)拓展延伸:如圖3,若以正方形的頂點O為原點,頂點A,D分別在x軸,y軸上,點A的坐標(biāo)為,設(shè)正方形的中心為P,平面上一點F到P的距離為.①直接寫出的度數(shù);②當(dāng)時,求點F的坐標(biāo);并探索是否有最大值?如果有,請求出;如果沒有,請說明理由.4.點E是矩形ABCD邊AB延長線上的一動點,在矩形ABCD外作Rt△ECF,其中∠ECF=90°,過點F作FG⊥BC,交BC的延長線于點G,連接DF,交CG于點H.(1)發(fā)現(xiàn):如圖1,若AB=AD,CE=CF,猜想線段DH與HF的數(shù)量關(guān)系是;(2)探究:如圖2,若AB=nAD,CF=nCE,則(1)中的猜想是否仍然成立?若成立,請給予證明;若不成立,請說明理由.(3)拓展:在(2)的基礎(chǔ)上,若射線FC過AD的三等分點,AD=3,AB=4,則直接寫出線段EF的長.5.(1)問題探究:如圖1,在正方形中,點、、分別是、、上的點,且,求證:;(2)類比應(yīng)用:如圖2,在矩形中,,,將矩形沿折疊使點落在點處,得到矩形.①若點為的中點,試探究與的數(shù)量關(guān)系;②拓展延伸:連,當(dāng)時,,,求的長.6.綜合與實踐(問題背景)如圖1,矩形中,.點E為邊上一點,沿直線將矩形折疊,使點C落在邊的點處.(問題解決)(1)填空:的長為______.(2)如圖2,將沿線段向右平移,使點與點B重合,得到與交于點F,與交于點G.求的長;(拓展探究)(3)在圖2中,連接,則四邊形是平行四邊形嗎?若是,請予以證明;若不是,請說明理由.7.(問題呈現(xiàn))下面是華師版八年級下冊數(shù)學(xué)教材第121頁的第1題,請結(jié)合圖①完成這道題的證明.如圖①,點是正方形的邊上的一點,點是的延長線上的一點,且.求證:.(拓展探究)如圖②,在中,,,,垂足為點,點是邊上的動點,點是邊上的一點,且.(1)直接寫出四邊形的面積.(2)若,則四邊形的周長為________.8.如圖1,已知和均為等腰直角三角形,點、分別在線段、上,.(1)觀察猜想:如圖2,將繞點逆時針旋轉(zhuǎn),連接、,的延長線交于點.當(dāng)?shù)难娱L線恰好經(jīng)過點時,點與點重合,此時,①的值為______;②∠BEC的度數(shù)為______度;(2)類比探究:如圖3,繼續(xù)旋轉(zhuǎn),點與點不重合時,上述結(jié)論是否仍然成立,請說明理由;(3)拓展延伸:若.,當(dāng)所在的直線垂直于時,請你直接寫出線段的長.9.已知:如圖1所示將一塊等腰三角板BMN放置與正方形ABCD的重合,連接AN、CM,E是AN的中點,連接BE.(觀察猜想)(1)CM與BE的數(shù)量關(guān)系是________;CM與BE的位置關(guān)系是________;(探究證明)(2)如圖2所示,把三角板BMN繞點B逆時針旋轉(zhuǎn),其他條件不變,線段CM與BE的關(guān)系是否仍然成立,并說明理由;(拓展延伸)(3)若旋轉(zhuǎn)角,且,求的值.10.探究:如圖1和圖2,四邊形ABCD中,已知AB=AD,∠BAD=90°,點E、F分別在BC、CD上,∠EAF=45°.(1)①如圖1,若∠B、∠ADC都是直角,把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,直接寫出線段BE、DF和EF之間的數(shù)量關(guān)系;②如圖2,若∠B、∠D都不是直角,但滿足∠B+∠D=180°,線段BE、DF和EF之間的結(jié)論是否仍然成立,若成立,請寫出證明過程;若不成立,請說明理由.(2)拓展:如圖3,在△ABC中,∠BAC=90°,AB=AC=2.點D、E均在邊BC邊上,且∠DAE=45°,若BD=1,求DE的長.11.將兩個完全相同的三角形紙片和重合放置,其中.(1)操作發(fā)現(xiàn):如圖2,固定使繞點旋轉(zhuǎn),設(shè)的面積為的面積為當(dāng)點恰好落在邊上時,則與的數(shù)量關(guān)系是;(2)猜想論證:當(dāng)繞點旋轉(zhuǎn)到如圖3所示的位置時,小明猜想中與的數(shù)量關(guān)系為相等,并嘗試分別作出了和中邊上的高請你證明小明的猜想,即證明:.(3)拓展探究:已知,點是角平分線上的一點,交于點(如圖4).若射線上存在點,使,請直接寫出相應(yīng)的的長.12.折紙是一種許多人熟悉的活動.近些年,經(jīng)過許多人的努力,已經(jīng)找到了多種將正方形折紙的一邊三等分的精確折法,下面探討其中的一種折法:(綜合與實踐)操作一:如圖1,將正方形紙片ABCD對折,使點A與點D重合,點B與點C重合,再將正方形紙片ABCD展開,得到折痕MN;操作二:如圖2,將正方形紙片ABCD的右上角沿MC折疊,得到點D的對應(yīng)的點為D′;操作三:如圖3,將正方形紙片ABCD的左上角沿MD′折疊再展開,折痕MD′與邊AB交于點P;(問題解決)請在圖3中解決下列問題:(1)求證:BP=D′P;(2)AP:BP=;(拓展探究)(3)在圖3的基礎(chǔ)上,將正方形紙片ABCD的左下角沿CD′折疊再展開,折痕CD′與邊AB交于點Q.再將正方形紙片ABCD過點D′折疊,使點A落在AD邊上,點B落在BC邊上,然后再將正方形紙片ABCD展開,折痕EF與邊AD交于點E,與邊BC交于點F,如圖4.試探究:點Q與點E分別是邊AB,AD的幾等分點?請說明理由.13.(1)問題探究:如圖1所示,有公共頂點A的兩個正方形ABCD和正方形AEFG.AE<AB,連接BE與DG,請判斷線段BE與線段DG之間有怎樣的數(shù)量關(guān)系和位置關(guān)系.并請說明理由.(2)理解應(yīng)用:如圖2所示,有公共頂點A的兩個正方形ABCD和正方形AEFG,AE<AB,AB=10,將正方形AEFG繞點A在平面內(nèi)任意旋轉(zhuǎn),當(dāng)∠ABE=15°,且點D、E、G三點在同一條直線上時,請直接寫出AE的長;(3)拓展應(yīng)用:如圖3所示,有公共頂點A的兩個矩形ABCD和矩形AEFG,AD=4,AB=4,AG=4,AE=4,將矩形AEFG繞點A在平面內(nèi)任意旋轉(zhuǎn),連接BD,DE,點M,N分別是BD,DE的中點,連接MN,當(dāng)點D、E、G三點在同一條直線上時,請直接寫出MN的長14.綜合與實踐問題情境:△ABC中,∠BAC=90°,AB=AC,AD⊥BC于點D,點E是射線AD上的一個動點(不與點A重合)將線段AE繞點A順時針旋轉(zhuǎn)90°得到線段AF,連接CF交線段AB于點G,交AD于點H、連接EG.特例分析:(1)如圖1,當(dāng)點E與點D重合時,“智敏”小組提出如下問題,請你解答:①求證:AF=CD;②用等式表示線段CG與EG之間的數(shù)量關(guān)系為:_______;拓展探究:(2)如圖2,當(dāng)點E在線段AD的延長線上,且DE=AD時,“博?!毙〗M發(fā)現(xiàn)CF=2EG.請你證明;(3)如圖3,當(dāng)點E在線段AD的延長線上,且AE=AB時,的值為_______;推廣應(yīng)用:(4)當(dāng)點E在射線AD上運動時,,則的值為______用含m.n的式子表示).15.(教材呈現(xiàn))下圖是華師版八年級下冊教材第89頁的部分內(nèi)容.例6:如圖18.2.12,G、H是平行四邊形ABCD對角線AC上的兩點,且AG=CH,E、F分別是邊AB和CD的中點.圖18.2.12求證:四邊形EHFG是平行四邊形.證明:連結(jié)EF交AC于點O.∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD.又∵E、F分別是AB、CD的中點,∴AE=CF.又∵AB∥CD,∴∠EAO=∠FCO.又∵∠AOE=∠COF,∴.請補(bǔ)全上述問題的證明過程.(探究)如圖①,在中,E,O分別是邊AB、AC的中點,D、F分別是線段AO、CO的中點,連結(jié)DE、EF,將繞點O旋轉(zhuǎn)180°得到,若四邊形DEFG的面積為8,則的面積為.(拓展)如圖②,GH是正方形ABCD對角線AC上的兩點,且AG=CH,GH=AB,E、F分別是AB和CD的中點.若正方形ABCD的面積為16,則四邊形EHFG的面積為.16.如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明:把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.17.定義:如圖1,點M、N把線段AB分割成AM、MN和BN,若以AM、MN、BN為邊的三角形是一個直角三角形,則稱點M、N是線段AB的勾股點.已知點M、N是線段AB的勾股點,若AM=1,MN=2,則BN=.(1)(類比探究)如圖2,DE是△ABC的中位線,M、N是AB邊的勾股點(AM<MN<NB),連接CM、CN分別交DE于點G、H.求證:G、H是線段DE的勾股點.(2)(知識遷移)如圖3,C,D是線段AB的勾股點,以CD為直徑畫⊙O,P在⊙O上,AC=CP,連結(jié)PA,PB,若∠A=2∠B,求∠B的度數(shù).(3)(拓展應(yīng)用)如圖4,點P(a,b)是反比例函數(shù)(x>0)上的動點,直線與坐標(biāo)軸分別交于A、B兩點,過點P分別向x、y軸作垂線,垂足為C、D,且交線段AB于E、F.證明:E、F是線段AB的勾股點.18.綜合與實踐——探究特殊三角形中的相關(guān)問題問題情境:某校學(xué)習(xí)小組在探究學(xué)習(xí)過程中,將兩塊完全相同的且含角的直角三角板和按如圖1所示位置放置,且的較短直角邊為2,現(xiàn)將繞點按逆時針方向旋轉(zhuǎn),如圖2,與交于點,與交于點,與交于點.(1)初步探究:勤思小組的同學(xué)提出:當(dāng)旋轉(zhuǎn)角時,是等腰三角形;(2)深入探究:敏學(xué)小組的同學(xué)提出在旋轉(zhuǎn)過程中,如果連接,,那么所在的直線是線段的垂直平分線.請幫他們證明;(3)再探究:在旋轉(zhuǎn)過程中,當(dāng)旋轉(zhuǎn)角時,求與重疊的面積;(4)拓展延伸:在旋轉(zhuǎn)過程中,是否能成為直角三角形?若能,直接寫出旋轉(zhuǎn)角的度數(shù);若不能,說明理由.19.[探索發(fā)現(xiàn)](1)如圖①,△ABC與△ADE為等腰三角形,且兩頂角∠ABC=∠ADE,連接BD與CE,則△ABD與△ACE的關(guān)系是;[操作探究](2)在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中點,在線段AD上任取一點P,連接PB,將線段PB繞點P按逆時針方向旋轉(zhuǎn)80°,點B的對應(yīng)點是點E,連接BE,得到△BPE,隨著點P在線段AD上位置的變化,點E的位置也在變化,點E可能在直線AD的左側(cè),也可能在直線AD上,還可能在直線AD的右側(cè).請你探究,當(dāng)點E在直線AD上時,如圖②所示,連接CE,判斷直線CE與直線AB的位置關(guān)系,并說明理由.[拓展應(yīng)用](3)在(2)的應(yīng)用下,請在圖③中畫出△BPE,使得點E在直線AD的右側(cè),連接CE,試求出點P在線段AD上運動時,AE的最小值.20.已知:,過平面內(nèi)一點分別向、、畫垂線,垂足分別為、、.(問題引入)如圖①,當(dāng)點在射線上時,求證:.(類比探究)(1)如圖②,當(dāng)點在內(nèi)部,點在射線上時,求證:.(2)當(dāng)點在內(nèi)部,點在射線的反向延長線上時,在圖③中畫出示意圖,并直接寫出線段、、之間的數(shù)量關(guān)系.(知識拓展)如圖④,、、是的三條弦,都經(jīng)過圓內(nèi)一點,且.判斷與的數(shù)量關(guān)系,并證明你的結(jié)論.【參考答案】***試卷處理標(biāo)記,請不要刪除一、中考幾何壓軸題1.(1)60;(2)見解析;(3)見解析【分析】(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,AM=AN,∠BAC=∠MAN=60°,進(jìn)而得到∠BAM=∠CAN,再利用SAS可證明≌,繼而得出結(jié)論;解析:(1)60;(2)見解析;(3)見解析【分析】(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,AM=AN,∠BAC=∠MAN=60°,進(jìn)而得到∠BAM=∠CAN,再利用SAS可證明≌,繼而得出結(jié)論;(2)也可以通過證明≌,得出結(jié)論,和(1)的思路完全一樣;(3)當(dāng)∠ABC=∠AMN時,∽,利用相似的性質(zhì)得到,又根據(jù)∠BAM=∠CAN,證得∽,即可得到答案.【詳解】(1)證明:∵、是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
∵在和中,,∴≌(SAS),∴∠ABC=∠ACN;∵是等邊三角形∴∠ABC=60°∴∠ACN=∠ABC=60°.(2)結(jié)論∠ACN=60°仍成立.理由如下:∵、都是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∴≌,∴∠ACN=∠ABM=60°.(3)添加條件:∠ABC=∠AMN.理由如下:∵BA=BC,MA=MN,∠ABC=∠AMN,∴∠BAC=∠MAN,∴∽,∴.又∠BAM=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,∴∠BAM=∠CAN,∴∽,∴∠ABC=∠ACN.【點睛】本題主要考查了等邊三角形的性質(zhì),以及全等三角形的判定與性質(zhì),解答本題的關(guān)鍵是仔細(xì)觀察圖形,找到全等的條件,利用全等的性質(zhì)證明結(jié)論.2.(1);(2),理由見解析;(3)CE的長為2或4,理由見解析.【分析】(1)證明,得出CE=BD,,即可得出結(jié)論;(2)證明,得出,,即可得出結(jié)論;(3)先判斷出,再求出:①當(dāng)點E在點D解析:(1);(2),理由見解析;(3)CE的長為2或4,理由見解析.【分析】(1)證明,得出CE=BD,,即可得出結(jié)論;(2)證明,得出,,即可得出結(jié)論;(3)先判斷出,再求出:①當(dāng)點E在點D上方時,先判斷出四邊形APDE是矩形,求出AP=DP=AE=2,再根據(jù)勾股定理求出,BP=6,得出BD=4;②當(dāng)點E在點D下方時,同①的方法得,AP=DP=AE=1,BP=6,進(jìn)而得出BD=BP+DP=8,即可得出結(jié)論.【詳解】解:(1)為等腰三角形,,∴是等邊三角形,同理可得是等邊三角形故答案為:.(2),理由如下:在等腰三角形ABC中,AC=BC,,,同理,,,,,,,,點B、D、E在同一條直線上:;(3)由(2)知,,,在中,,,①當(dāng)點E在點D上方時,如圖③,過點A作交BD的延長線于P,,,四邊形APDE是矩形,,矩形APDE是正方形,,在中,根據(jù)勾股定理得,,,;②當(dāng)點E在點D下方時,如圖④同①的方法得,AP=DP=AE=2,BP=6,BD=BP+DP=8,,綜上CE的長為2或4.【點睛】本題是幾何變換的綜合題,主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和定理,相似三角形的判定和性質(zhì),勾股定理,等邊三角形的性質(zhì),判斷出三角形ACE和三角形ABD相似是關(guān)鍵.3.(1);(2),理由見解析;(3)①;②有,【分析】(1)證明∠1=∠2,∠3=∠4,∠1+∠2+60°+∠3+∠4=180°得∠1+∠3=60°,進(jìn)一步可得結(jié)論;(2)連接,證明,再進(jìn)一步解析:(1);(2),理由見解析;(3)①;②有,【分析】(1)證明∠1=∠2,∠3=∠4,∠1+∠2+60°+∠3+∠4=180°得∠1+∠3=60°,進(jìn)一步可得結(jié)論;(2)連接,證明,再進(jìn)一步證明得,故可得結(jié)論;(3)①由題意可知,點F在以P為圓心,為半徑的圓上,由圓周角定理可得結(jié)論;②設(shè),根據(jù)三角形面積公式求出y的值,在中,,根據(jù)勾股定理得,列出方程求出x的值即可得點F的坐標(biāo),當(dāng)軸時,面積最大,求值即可.【詳解】解:(1)如圖1中,∵點E是點C關(guān)于AM的對稱點,∴∠AGE=90°,AE=AC,∠1=∠2.∵正△ABC中,∠BAC=60°,AB=AC,∴AE=AB,得∠3=∠4.在△ABE中,∠1+∠2+60°+∠3+∠4=180°,∴∠1+∠2+∠3+∠4=120°,∴∠1+∠3=60°.在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG=30°.故答案為:;(2)連接∵C,E關(guān)于對稱∴∴∴;在正方形中,∴,∴;在中,;即∵∴∴∴結(jié)論:(3)①由題意可知,點F在以P為圓心,為半徑的圓上,如圖,連接,則∴故答案為:②設(shè)則即,由題意得,∴由題意可知,點F在以P為圓心,為半徑的圓上;過點P作軸,過點F作軸,則在中,,根據(jù)勾股定理得即解得故或,當(dāng)軸時,面積最大,此時【點睛】本題屬于四邊形綜合題,考查了等腰三角形的性質(zhì),全等三角形的判定和性質(zhì),解直角三角形,圓周角定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.4.(1)DH=HF;(2)DH=HF仍然成立,理由見解析;(3)或.【分析】(1)證明,得,則,則證,得出即可;(2)證,則,由矩形的性質(zhì)得出,證,即可得出;(3)根據(jù)矩形的性質(zhì)和已知得,則解析:(1)DH=HF;(2)DH=HF仍然成立,理由見解析;(3)或.【分析】(1)證明,得,則,則證,得出即可;(2)證,則,由矩形的性質(zhì)得出,證,即可得出;(3)根據(jù)矩形的性質(zhì)和已知得,則,分兩種情況,根據(jù)勾股定理和平行線的性質(zhì)進(jìn)行解答即可.【詳解】解:(1),理由如下:∵四邊形ABCD是矩形,,∴四邊形ABCD是正方形,∴,,∵,,∴,,∴,∵,∴,在和中,,∴,∴,∴,∴,,在和中,,∴,∴,故答案為,(2)仍然成立,理由如下:∵四邊形ABCD是矩形,,,∴∴,∵,∴,∴,∴,∴四邊形ABCD是矩形,,∴,∴,∴,∵四邊形ABCD是矩形,∴,∵,∴,∴,,在和中,,∴,∴,(3)如圖所示,延長FC交AD于R,∵四邊形ABCD是矩形,∴,,,,∵,,∴,∴,分兩種情況:①當(dāng)時,∵,∴,,在中,由勾股定理得:,∵,,∴,∴,由勾股定理得:EF=;②當(dāng)時,同理可得:,,,,由勾股定理得:,綜上所說,若射線FC過AD的三等分點,,,則線段EF的長為或.【點睛】本題主要考查了正方形的判定與性質(zhì)、矩形的性質(zhì)、平行線的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)等知識,熟練掌握平行線的性質(zhì)和相似三角形的判定與性質(zhì)是解題的關(guān)鍵.5.(1)見解析;(2)①;②【分析】(1)過點作于,證,即可證得;(2)①設(shè),則,利用勾股定理求得,再利用勾股定理表示出,再證明,可得,由此可得,進(jìn)而可求得答案;②過點P作于點,先由①得,再證解析:(1)見解析;(2)①;②【分析】(1)過點作于,證,即可證得;(2)①設(shè),則,利用勾股定理求得,再利用勾股定理表示出,再證明,可得,由此可得,進(jìn)而可求得答案;②過點P作于點,先由①得,再證明∠BFE=∠CGP,可得,進(jìn)而利用勾股定理可求得,,,最后根據(jù),可得,計算即可.【詳解】(1)證明:如圖,過點作于,則∠AHG=∠FHG=90°,∵在正方形中,∴∠HAD=∠D=∠B=90°,AD=AB,∴四邊形AHGD為矩形,∴AD=HG,∴AB=HG,∵,∴∠FQA=90°,∴∠AFQ+∠BAE=90°,∵∠FHG=90°,∴∠AFQ+∠FGH=90°,∴∠BAE=∠FGH,∴在與中∴(ASA),∴;①∵點為的中點,∴,∵折疊,∴設(shè),∴,在RtBFE中,BF2+BE2=EF2,∴,解得:,又∵,∴,如圖,過點作于,則∠AHG=∠FHG=90°,∵在矩形中,∴∠HAD=∠BCD=∠B=90°,∴四邊形AHGD為矩形,∴BC=HG,∵∠FHG=90°,∴∠AFQ+∠FGH=90°,∵,∴∠FQA=90°,∴∠AFQ+∠BAE=90°,∴∠BAE=∠FGH,又∵∠FHG=∠D=90°,∴,,,,,,又∵,,∴,∴;②如圖,過點P作于點,∵,,∴由①得,∵∠EPG=∠GCE=90°,∠EOC=∠GOP,∴∠CGP=∠OEC,∵∠FEP=∠B=90°,∴∠OEC+∠BEF=90°,∠BFE+∠BEF=90°,∴∠BFE=∠OEC,∴∠BFE=∠CGP,又∵,∴,∴設(shè),,則,,,解得:,,,,,,,,,,,,,,.【點睛】本題考查了正方形和矩形的性質(zhì),全等三角形和相似三角形的判定及性質(zhì),折疊的性質(zhì),勾股定理,題目綜合性較強(qiáng),有一定的難度,熟練掌握并靈活運用相關(guān)知識是解決本題的關(guān)鍵.6.(1)6;(2);(3)四邊形不是平行四邊形,理由見解析.【分析】(1)先根據(jù)已知條件和矩形的性質(zhì)可得CD=AB=10,AD=BC=8,再根據(jù)折疊的性質(zhì)可得DC'=DC=10,最后運用勾股定理解解析:(1)6;(2);(3)四邊形不是平行四邊形,理由見解析.【分析】(1)先根據(jù)已知條件和矩形的性質(zhì)可得CD=AB=10,AD=BC=8,再根據(jù)折疊的性質(zhì)可得DC'=DC=10,最后運用勾股定理解答即可;(2)先根據(jù)折疊的性質(zhì)和勾股定理可求得,進(jìn)而求得BE、EC,然后連接,根據(jù)平移的性質(zhì)可得,進(jìn)而說明,最后運用相似三角形的性質(zhì)解答即可;(3)先由折疊可得,再根據(jù)平移的性質(zhì)和等腰三角形的判定與性質(zhì)得到,過點作于點H,則且,根據(jù)相似三角形的性質(zhì)可得;設(shè),則,在中,運用勾股定理求得和DH;然后再在中求得,可以發(fā)現(xiàn)即,即可發(fā)現(xiàn)四邊形不可能是平行四邊形.【詳解】解:(1)如圖:∵矩形中,∴CD=AB=10,AD=BC=8根據(jù)折疊的性質(zhì)可得DC'=DC=10在直角三角形ADC'中,AC'=.(2)由折疊可知:.在中,根據(jù)勾股定理可求得,∴.在中,設(shè),根據(jù)勾股定理,得,解得,即.如圖:連接,則由平移可知,,且.于是可得,∴,又∵,∴.(3)四邊形不是平行四邊形,理由如下:由折疊可知;又∵平移可知,且,∴,∴,即是等腰三角形,∴.如圖,過點作于點H,則且,∴.設(shè),則,在中,根據(jù)勾股定理,得,解得,∴,∴.而在中,,根據(jù)勾股定理可求得,∴,即,故四邊形不可能是平行四邊形.【點睛】本題主要考查了矩形的性質(zhì)、勾股定理以及相似三角形的判定與性質(zhì),靈活運用相似三角形的判定與性質(zhì)成為解答本題的關(guān)鍵.7.問題呈現(xiàn):證明見解析;拓展探究:(1)3;(2).【分析】問題呈現(xiàn):由同角的余角相等可知,,由正方形的性質(zhì)知,,,則利用證可得,可得;拓展探究:(1)根據(jù),,可得是等腰直角三角形,,并可得,,解析:問題呈現(xiàn):證明見解析;拓展探究:(1)3;(2).【分析】問題呈現(xiàn):由同角的余角相等可知,,由正方形的性質(zhì)知,,,則利用證可得,可得;拓展探究:(1)根據(jù),,可得是等腰直角三角形,,并可得,,可求得,根據(jù)證可得,可得四邊形的面積=,據(jù)此求解即可;(2)過點作交于點,根據(jù)是等腰直角三角形,,是斜邊上的中垂線,的角平分線,可得:也是等腰直角三角形,,可得,再根據(jù),可求出,根據(jù),則四邊形的周長為:,據(jù)此求解即可.【詳解】證明:,,,,,在與中,,.【拓展探究】(1)在中,,,是等腰直角三角形,∴又,是斜邊上的中垂線,的角平分線,,;又∵∴在和中,,,∴四邊形的面積=(2)如下圖示,過點作交于點∵由(1)可知,是等腰直角三角形,,是斜邊上的中垂線,的角平分線,則可得:也是等腰直角三角形,,∴,若,則∴∵∴,,則四邊形的周長為:.故答案是:.【點睛】本題綜合考查了同角的余角相等、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì),已知正弦,正切求邊長,解直角三角形等知識點,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.8.(1)①;②45;(2)成立,理由見解析;(3)或【分析】(1)①如圖,設(shè)AC交BE于點O.證明△DAB∽△EAC,推出=,∠ABD=∠ACE,②再證明∠BAO=∠CEO=45°,可得結(jié)論.(解析:(1)①;②45;(2)成立,理由見解析;(3)或【分析】(1)①如圖,設(shè)AC交BE于點O.證明△DAB∽△EAC,推出=,∠ABD=∠ACE,②再證明∠BAO=∠CEO=45°,可得結(jié)論.(2)如圖(3)中,設(shè)AC交BF于點O.證明△DAB∽△EAC,可得結(jié)論.(3)分兩種情形:如圖,當(dāng)CE⊥AD于O時,如圖(4)-2中,當(dāng)EC⊥AD時,延長CE交AD于O.分別求出EC,可得結(jié)論.【詳解】解:(1)如圖(2)中,設(shè)AC交BE于點O.∵△AED,△ABC都是等腰直角三角形,∴∠EAD=∠CAB=45°,AD=AE,AB=AC,∴∠EAC=∠DAB,∴=,∴△DAB∽△EAC,∴=;②由△DAB∽△EAC,∴∠ABD=∠ACE,∵∠AOB=∠EOC,∴∠BAO=∠CEO=45°,∴∠CEB=45°,故答案為:,45;(2)如圖(3)中,設(shè)AC交BF于點O.∵△AED,△ABC都是等腰直角三角形,∴∠EAD=∠CAB=45°,AD=AE,AB=AC,∴∠EAC=∠DAB,=,∴△DAB∽△EAC,∴=,∠ABD=∠ACE,∵∠AOB=∠FOC,∴∠BAO=∠CFO=45°,∴=,∠BFC=45°;(3)如圖(4)-1中,當(dāng)CE⊥AD于O時,∵AE=DE=,AC=BC=,∠AED=∠ACB=90°,∴AD=AE=2,∵EO⊥AD,∴OD=OA=OE=1,∴OC==3,∴EC=OE+OC=4,∵BD=EC,∴BD=4;如圖(4)-2中,當(dāng)EC⊥AD時,延長CE交AD于O.同法可得OD=OA=OE=1,OC=3,EC=3-1=2,∴BD=EC=2,綜上所述,BD的長為4或2.【點睛】本題屬于幾何變換綜合題,考查了等腰直角三角形的性質(zhì),相似三角形的判定和性質(zhì),解直角三角形等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,屬于中考壓軸題.9.(1);;(2)成立,理由見解析;(3)【分析】(1)【觀察猜想】根據(jù)正方形ABCD,得到AB=CB,由等腰三角形BMN,得到BM=BN,可證明Rt△BAN≌Rt△BCM(HL),又根據(jù)E是A解析:(1);;(2)成立,理由見解析;(3)【分析】(1)【觀察猜想】根據(jù)正方形ABCD,得到AB=CB,由等腰三角形BMN,得到BM=BN,可證明Rt△BAN≌Rt△BCM(HL),又根據(jù)E是AN的中點,即可證明CM=2BE,根據(jù)等邊對等角得到∠ABE=∠BCM,∠ABE+∠BMC=90°即可證明CM⊥BE.(2)【探究證明】延長BE至F使EF=BE,連接AF,先證明△AEF≌△NEB,再證明△FAB≌MBC,得到CM=BF=2BE,∠BCM=∠ABF,得到∠ABF+∠FBC=90°,進(jìn)而求得∠BCM+∠EBC=90°,即可證明EB⊥CM;(3)[拓展延伸]由a=45°得到∠ABE=15°,由前面可得∠BMC=30°,過C作CG⊥MB于G,設(shè)CG為m,則BC=m,MG=m,所以MB=BN=m-m,最后求得的值.【詳解】解:【觀察猜想】(1)CM=2BE;CM⊥BE;如圖1所示圖1∵正方形ABCD,∴AB=CB,∵等腰三角形BMN,∴BM=BN,∴Rt△BAN≌Rt△BCM(HL),∴∠BAN=∠BCM,又∵E是AN的中點,∴BE=AE=NE=AN,∴CM=2BE,∵BE=AE,∴∠BAN=∠ABE,∴∠ABE=∠BCM,∴∠ABE+∠BMC=∠BCM+∠BMC=90°∴∠BPM=90°∴CM⊥BE.【探究證明】(2)CM=2BE,CM⊥BE仍然成立.如圖2所示,延長BE至F使EF=BE,連接AF,∵AE=EN,∠AEF=∠NEB,EF=BE,∴△AEF≌△NEB∴AF=BN,∠F=∠EBN,∴AF//BN,AF=BM,∴∠FAB+∠ABN=180°,∵∠MBN=∠ABC=90°,∴∠NBC+∠ABN=90°,∴∠NBA+∠FAD=90°,∴∠CBN=∠FAD∴∠FAB=∠MBC,∵AB=BC,∴△FAB≌MBC,∴CM=BF=2BE,∠BCM=∠ABF,∵∠ABF+∠FBC=90°∴∠BCM+∠EBC=90°,∴EB⊥CM;[拓展延伸](3)由a=45°得∠MBA=∠ABN=45°,∵∠NBE=2∠ABE,∴∠ABE=15°,由前面可得∠MCB=∠ABE=15°,∠MBC=135°,∴∠BMC=180°-15°-135°=30°,如圖3所示,過C作CG⊥MB于G,圖3設(shè)CG為m則BC=m,MG=m,所以MB=BN=m-m,∴.【點睛】本題考查了正方形的性質(zhì),全等三角形的性質(zhì)和判定,等腰直角三角形的性質(zhì),直角三角形的性質(zhì),解題的關(guān)鍵是靈活運用以上性質(zhì)解決問題.10.(1)①EF=BE+DF;②成立,理由詳見解析;(2)DE=.【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF解析:(1)①EF=BE+DF;②成立,理由詳見解析;(2)DE=.【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;②根據(jù)旋轉(zhuǎn)的性質(zhì)作輔助線,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一條直線上,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;(2)如圖3,同理作旋轉(zhuǎn)三角形,根據(jù)等腰直角三角形性質(zhì)和勾股定理求出∠ABC=∠C=45°,BC=4,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,證△FAD≌△EAD,根據(jù)全等得出DF=DE,設(shè)DE=x,則DF=x,BF=CE=3﹣x,根據(jù)勾股定理得出方程,求出x即可.【詳解】解:(1)∵把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共線,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案為:EF=BE+DF;②成立,理由:如圖2,把△ABE繞A點旋轉(zhuǎn)到△ADG,使AB和AD重合,則AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一條直線上,與①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC==4,如圖3,把△AEC繞A點旋轉(zhuǎn)到△AFB,使AB和AC重合,連接DF,則AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中,∴△FAD≌△EAD(SAS),∴DF=DE,設(shè)DE=x,則DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=,即DE=.【點睛】本題考查了四邊形的綜合題,旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,勾股定理的應(yīng)用,此題是開放性試題,運用類比的思想;首先在特殊圖形中找到規(guī)律,然后再推廣到一般圖形中,對學(xué)生的分析問題,解決問題的能力要求比較高.11.(1);(2)詳見解析;(3)或【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求解析:(1);(2)詳見解析;(3)或【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC=AB,然后求出AC=BD,再根據(jù)等邊三角形的性質(zhì)求出點C到AB的距離等于點D到AC的距離,然后根據(jù)等底等高的三角形的面積相等解答;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據(jù)全等三角形對應(yīng)邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明;
(3)過點D作//BE,求出四邊形是菱形,根據(jù)菱形的對邊相等可得BE=,然后根據(jù)等底等高的三角形的面積相等可知點為所求的點,過點D作⊥BD,求出∠=60°,從而得到△是等邊三角形,然后求出,再求出∠=∠,利用“邊角邊”證明△和全等,根據(jù)全等三角形的面積相等可得點也是所求的點,根據(jù)菱形和等邊三角形的性質(zhì)可得結(jié)論.【詳解】解:(1)∵△DEC繞點C旋轉(zhuǎn),點D恰好落在AB邊上,∴AC=CD,∵∠BAC=90°?∠B=90°?30°=60°,∴△ACD是等邊三角形,
∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根據(jù)等邊三角形的性質(zhì),△ACD的邊AC、AD上的高相等,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即;如圖3.是由繞點旋轉(zhuǎn)得到,..在和中.的面積和的面積相等(等底等高的三角形的面積相等)即(3)如圖4,過點D作//BE,∵BD平分∠ABC,
∠ABD=∠DBC,
∵D//BE,DE//B,∴四邊形BED是平行四邊形,∠ABD=∠BDE,∴∠DBC=∠BDE,
∴BE=DE,
∴四邊形BED是菱形,∴BE=D,且BE、D上的高相等,此時;過點D作D⊥BD,∵∠ABC=60°,D//BE,∴∠D=∠ABC=60°,∵B=D,∠BD=∠ABC=30°,∠DB=90°,∴∠D=∠ABC=60°,∴△D是等邊三角形,∴D=D,∵BD=CD,∠ABC=60°,點D是角平分線上一點,
∴∠DBC=∠DCB=×60°=30°,∴∠CD=180°?∠BCD=180°?30°=150°,∠CD=360°?150°?60°=150°,∴∠CD=∠CD∵在△CD和△CD中,D=D,∠CD=∠CD,CD=CD,∴△CD≌△CD(SAS),∴點也是所求的點,又∵BE=4=B=D,△D是等邊三角形,∴B=4=,∴B=8,綜上所述:當(dāng)BF=4或8時,.【點睛】本題考查了全等三角形的判定與性質(zhì)、三角形的面積、等邊三角形的判定與性質(zhì)、直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),熟練掌握等底等高的三角形的面積相等,以及全等三角形的面積相等是解題的關(guān)鍵,還要注意(3)中符合條件的點F有兩個.12.(1)見解析;(2)2:1;(3)點Q是AB邊的四等分點,點E是AD邊的五等分點,理由見解析【分析】(1)如圖1,連接PC,根據(jù)正方形的性質(zhì)、HL定理證明△CD′P≌△CBP,根據(jù)全等三角形的性解析:(1)見解析;(2)2:1;(3)點Q是AB邊的四等分點,點E是AD邊的五等分點,理由見解析【分析】(1)如圖1,連接PC,根據(jù)正方形的性質(zhì)、HL定理證明△CD′P≌△CBP,根據(jù)全等三角形的性質(zhì)得出結(jié)論;(2)設(shè)BP=x,根據(jù)翻轉(zhuǎn)變換的性質(zhì)、勾股定理列出方程,解方程即可;(3)如圖2,連接QM,證明Rt△AQM≌Rt△D′QM(HL),得到AQ=D′Q,設(shè)正方形ABCD的邊長為1,AQ=QD′=y(tǒng),根據(jù)勾股定理列出方程,解方程即可.【詳解】(1)證明:如圖1,連接PC.∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∴∠MD′C=∠D=90°,∴∠CD′P=∠B=90°,在Rt△CD′P和Rt△CBP中,,∴Rt△CD′P≌Rt△CBP(HL),∴BP=D′P;(2)解:設(shè)正方形紙片ABCD的邊長為1.則AM=DM=D′M=.設(shè)BP=x,則MP=MD′+D′P=DM+BP=+x,AP=1﹣x,在Rt△AMP中,根據(jù)勾股定理得AM2+AP2=MP2.∴()2+(1﹣x)2=(+x)2,解得x=,∴BP=,AP=,∴AP:BP=2:1,故答案為:2:1.(3)解:點Q是AB邊的四等分點,點E是AD邊的五等分點.理由:如圖2,連接QM.∴∠QD′M=180°﹣∠MD′C=90°,∴∠QD′M=∠A=90°.在Rt△AQM和Rt△D′QM中,,∴Rt△AQM≌Rt△D′QM(HL),∴AQ=D′Q,設(shè)正方形ABCD的邊長為1,AQ=QD′=y(tǒng),則QP=AP﹣AQ=﹣y.在Rt△QPD′中,根據(jù)勾股定理得QD′2+D′P2=QP2.∵D′P=BP=,∴y2+()2=(﹣y)2,解得y=.∴AQ:AB=1:4,即點Q是AB邊的四等分點,∵EF∥AB,∴,即,解得AE=.∴點E為AD的五等分點.【點睛】本題是四邊形綜合題,考查了正方形的性質(zhì),折疊的性質(zhì),翻轉(zhuǎn)變換的性質(zhì)全等三角形的判定和性質(zhì),勾股定理等知識,熟練掌握折疊的性質(zhì)及方程思想是解題的關(guān)鍵.13.(1)BE=DG,BE⊥DG,見解析;(2)5﹣5;(3)6或8【分析】(1)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE,由直角三角形的性質(zhì)可得BE⊥DG;(2)由解析:(1)BE=DG,BE⊥DG,見解析;(2)5﹣5;(3)6或8【分析】(1)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE,由直角三角形的性質(zhì)可得BE⊥DG;(2)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE=15°,可得∠DEB=90°,由直角三角形的性質(zhì)可求解;(3)分兩種情況討論,通過證明△AGD∽△AEB,可得,∠DGA=∠AEB,由勾股定理和三角形中位線定理可求解.【詳解】解:(1)BE=DG,BE⊥DG,理由如下:如圖1:延長BE交AD于N,交DG于H,∵四邊形ABCD是正方形,四邊形AEFG是正方形,∴AG=AE,AB=AD,∠GAE=∠DAB=90°,∴∠GAD=∠EAB,∴△GAD≌△EAB(SAS),∴BE=DG,∠ADG=∠ABE,∵∠ABE+∠ANB=90°,∴∠ADG+∠DNH=90°,∴∠DHN=90°,∴BE⊥DG;(2)如圖,當(dāng)點G在線段DE上時,連接BD,∵四邊形ABCD是正方形,四邊形AEFG是正方形,∴AG=AE,AB=AD=10,∠GAE=∠DAB=90°,∠ADB=45°=∠ABD,BD=AB=10,GE=AE,∴∠GAD=∠EAB,∴△GAD≌△EAB(SAS),∴BE=DG,∠ADG=∠ABE=15°,∴∠BDE=45°﹣15°=30°,∠DBE=45°+15°=60°,∴∠DEB=90°,∴BE=BD=5=DG,DE=BE=5,∴GE=5﹣5,∴AE==5﹣5,當(dāng)點E在線段DG上時,同理可求AE=5﹣5,故答案為:5﹣5;(3)如圖,若點G在線段DE上時,∵AD=4,AB=4,AG=4,AE=4,∴DB===8,GE===8,∠DAB=∠GAE=90°,∴∠DAG=∠BAE,又∵,∴△AGD∽△AEB,∴,∠DGA=∠AEB,∴BE=DG,∵∠DGA=∠GAE+∠DEA,∠AEB=∠DEB+∠AED,∴∠GAE=∠DEB=90°,∵DB2=DE2+BE2,∴64×13=(DG+8)2+3DG2,∴DG=12或DG=﹣16(舍去),∴BE=12,∵點M,N分別是BD,DE的中點,∴MN=BE=6;如圖,當(dāng)點E在線段DG上時,同理可求:BE=16,∵點M,N分別是BD,DE的中點,∴MN=BE=8,綜上所述:MN為6或8,故答案為:6或8.【點睛】本題是四邊形綜合題,考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),矩形的性質(zhì),勾股定理的應(yīng)用,相似三角形的判定和性質(zhì),利用分類討論思想解決問題是本題的關(guān)鍵.14.(1)①見解析;②CG=2EG;(2)見解析;(3);(4)【分析】(1)①根據(jù)等腰直角三角形的性質(zhì)證得AD=CD,再證明△AFG△ADG,即可證明結(jié)論;②根據(jù)①得到BC=2AF,F(xiàn)G=GD,解析:(1)①見解析;②CG=2EG;(2)見解析;(3);(4)【分析】(1)①根據(jù)等腰直角三角形的性質(zhì)證得AD=CD,再證明△AFG△ADG,即可證明結(jié)論;②根據(jù)①得到BC=2AF,F(xiàn)G=GD,再證明△AFG△BCG,即可得到CG=2EG;(2)先證得四邊形ABEC為正方形,同理得△AFG△AEG和△AFG△BCG,即可得證;(3)根據(jù)等腰直角三角形的性質(zhì)得到,證得△AFG△BCG,即可求解;(4)根據(jù)等腰直角三角形的性質(zhì)得到BC=2AD,繼而得到,由△AFG△BCG,即可求解.【詳解】(1)①△ABC中,∠BAC=90°,AB=AC,AD⊥BC于點D,∴AD=BD=CD=BC,∠BAD=∠CAD=45°,根據(jù)旋轉(zhuǎn)的性質(zhì)得:AF=AD,∠DAF=90°,∴∠GAF=∠GAD=45°,在△AFG和△ADG中,,∴△AFG△ADG,∴AF=AD,∴AF=CD;②CG=2EG,理由如下:由①得:∠GAF=∠B=45°,AF=BC,∴AF∥BC,2AF=BC,∴△AFG△BCG,∴,∴CG=2FG,∵△AFG△ADG,∴FG=DG,即FG=EG,∴CG=2EG;(2)連接EB、EC,∵∠BAC=90°,AB=AC,AD⊥BC于點D,DE=AD,∴DE=AD=BD=CD,且AE⊥BC,∠BAC=90°,∴四邊形ABEC為正方形,∴BC=AE,根據(jù)旋轉(zhuǎn)的性質(zhì)得:AF=AE,∠EAF=90°,∴∠GAF=∠GAE=45°,在△AFG和△AEG中,,∴△AFG△AEG,∴AF=AE=BC,F(xiàn)G=EG,在△AFG和△BCG中,,∴△AFG△BCG,∴FG=CG,∴FG=CG=EG,∴CF=2EG;(3)同理得:FG=EG,△ABC中,∠BAC=90°,AB=AC,∴,即,同理得:△AFG△BCG,∴,∴,∴,∴;(4)同理可得:FG=EG,BC=2AD,AF=AE,∵,∴,同理可得:△AFG△BCG,∴,∴,∴,∴;【點睛】本題考查了全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、正方形的判定和性質(zhì)以及旋轉(zhuǎn)變換的性質(zhì),掌握全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)是解題的關(guān)鍵.15.教材呈現(xiàn):見解析;探究:16;拓展:.【分析】教材呈現(xiàn):先根據(jù)三角形全等的性質(zhì)可得,再根據(jù)線段的和差可得,然后根據(jù)平行四邊形的判定即可得證;探究:先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)等底同高可得,從而解析:教材呈現(xiàn):見解析;探究:16;拓展:.【分析】教材呈現(xiàn):先根據(jù)三角形全等的性質(zhì)可得,再根據(jù)線段的和差可得,然后根據(jù)平行四邊形的判定即可得證;探究:先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)等底同高可得,從而可得,然后根據(jù)三角形中位線定理即可得;拓展:先根據(jù)正方形的性質(zhì)和面積可得,從而可得,再根據(jù)相似三角形的判定與性質(zhì)可得,從而可得,然后利用三角形的面積公式可得,最后利用平行四邊形的性質(zhì)即可得.【詳解】教材呈現(xiàn):補(bǔ)充完整證明過程如下:,又∵,∴,即,∴四邊形EHFG是平行四邊形;探究:如圖,連接OE,由旋轉(zhuǎn)的性質(zhì)得:,點O是AC的中點,點D是AO的中點,點F是CO的中點,,由等底同高得:,,又點E是AB的中點,點O是AC的中點,是的中位線,,故答案為:16;拓展:如圖,過點E作于點O,四邊形ABCD是面積為16的正方形,,,,,點E是AB的中點,,在和中,,,,即,解得,,由教材呈現(xiàn)可知,四邊形EHFG是平行四邊形,則四邊形EHFG的面積為,故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、三角形中位線定理、平行四邊形的判定與性質(zhì)、正方形的性質(zhì)、相似三角形的判定與性質(zhì)等知識點,較難的是拓展,通過作輔助線,構(gòu)造相似三角形是解題關(guān)鍵.16.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由見解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位線得出,,即可得出數(shù)量關(guān)系,再利用三角形的中位線得出得解析:(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由見解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位線得出,,即可得出數(shù)量關(guān)系,再利用三角形的中位線得出得出,最后用互余即可得出位置關(guān)系;(2)先判斷出,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出結(jié)論;(3)方法1:先判斷出最大時,的面積最大,進(jìn)而求出,,即可得出最大,最后用面積公式即可得出結(jié)論.方法2:先判斷出最大時,的面積最大,而最大是,即可得出結(jié)論.【詳解】解:(1)點,是,的中點,,,點,是,的中點,,,,,,,,,,,,,,,故答案為:,;(2)是等腰直角三角形.由旋轉(zhuǎn)知,,,,,,,利用三角形的中位線得,,,,是等腰三角形,同(1)的方法得,,,同(1)的方法得,,,,,,,,是等腰直角三角形;(3)方法1:如圖2,同(2)的方法得,是等腰直角三角形,最大時,的面積最大,且在頂點上面,最大,連接,,在中,,,,在中,,,,.方法2:由(2)知,是等腰直角三角形,,最大時,面積最大,點在的延長線上,,,.【點睛】此題屬于幾何變換綜合題,主要考查了三角形的中位線定理,等腰直角三角形的判定和性質(zhì),全等三角形的判斷和性質(zhì),直角三角形的性質(zhì)的綜合運用;解(1)的關(guān)鍵是判斷出,,解(2)的關(guān)鍵是判斷出,解(3)的關(guān)鍵是判斷出最大時,的面積最大.17.BN=或;(1)見解析;(2)∠B=15°;(3)見解析.【分析】定義:根據(jù)勾股點的定理,即可求出BN的長;(1)根據(jù)已知條件可得到CG=GM,CH=HN,得到DG=AM,GH=MN,EH=B解析:BN=或;(1)見解析;(2)∠B=15°;(3)見解析.【分析】定義:根據(jù)勾股點的定理,即可求出BN的長;(1)根據(jù)已知條件可得到CG=GM,CH=HN,得到DG=AM,GH=MN,EH=BN,根據(jù)條件求出(BN)2=(MN)2+(AM)2,即可得到結(jié)果;(2)連接PD,根據(jù)已知條件可得PC2+BD2=CD2,進(jìn)而求出∠PDC=∠A,在Rt△PCD中,得到2∠A+∠A=90°,即可得到結(jié)果;(3)根據(jù)已知條件先求得點F的坐標(biāo)為(2﹣,),即可求得BF、EF,根據(jù)已知條件可得BF2+AE2=16+2a2﹣8a+﹣=EF2,即可求得結(jié)果;【詳解】定義:∵點M、N是線段AB的勾股點,∴或,∴BN=.(1)如圖,∵CD=DA,CE=EB,∴DE∥AB,∴CG=GM,CH=HN,∴DG=AM,GH=MN,EH=BN,∵BN2=MN2+AM2,∴BN2=MN2+AM2,∴(BN)2=(MN)2+(AM)2,∴EH2=GH2+DG2,∴G、H是線段DE的勾股點.(2)如圖所示,連接PD,∵AC=PC,∴∠A=∠APC,∴∠PCD=2∠A,∵C,D是線段AB的勾股點,∴AC2+BD2=CD2,∴PC2+BD2=CD2,∵CD是⊙O的直徑,∴∠CPD=90°,∴PC2+PD2=CD2,∴PD=BD,∴∠PDC=2∠B,∵∠A=2∠B,∴∠PDC=∠A,在Rt△PCD中,∵∠PCD+∠PDC=90°,∴2∠A+∠A=90°,解得∠A=30°,則∠B=∠A=15°.(3)∵點P(a,b)是反比例函數(shù)y=(x>0)上的動點,∴b=.∵直線y=﹣x+2與坐標(biāo)軸分別交于A、B兩點,∴點B的坐標(biāo)為(0,2),點A的坐標(biāo)為(2,0);當(dāng)x=a時,y=﹣x+2=2﹣a,∴點E的坐標(biāo)為(a,2﹣a);當(dāng)y=時,有﹣x+2=,解得:x=2﹣,∴點F的坐標(biāo)為(2﹣,).∴BF==(2﹣),EF=,=|2﹣a﹣|,AE==(2﹣a).∵BF2+AE2=16+2a2﹣8a+﹣=EF2,∴以BF、AE、EF為邊的三角形是一個直角三角形,∴E、F是線段AB的勾股點.【點睛】本題主要考查了勾股定理的擴(kuò)展應(yīng)用,結(jié)合中位線定理、圓周角定理等知識點解題是關(guān)鍵.18.(1)15o或60o;(2)見解析;(3);(4)能,30o或60o【分析】(1)分三種情況討論:當(dāng)時,當(dāng)當(dāng)利用三角形的內(nèi)角和定理與旋轉(zhuǎn)的旋轉(zhuǎn)從而可得答案;(2)先證明,得到證明,再證明,解析:(1)15o或60o;(2)見解析;(3);(4)能,30o或60o【分析】(1)分三種情況討論:當(dāng)時,當(dāng)當(dāng)利用三角形的內(nèi)角和定理與旋轉(zhuǎn)的旋轉(zhuǎn)從而可得答案;(2)先證明,得到證明,再證明,得到結(jié)合從而可得結(jié)論;(3)先求解的面積,再證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030汽車零部件制造業(yè)技術(shù)升級路徑與行業(yè)競爭格局研究分析
- 2025-2030汽車銷售連鎖行業(yè)市場現(xiàn)狀投資評估發(fā)展趨勢規(guī)劃分析研究報告
- 2025-2030汽車智能座駕市場全面分析及未來潛力與業(yè)財評估報告
- 2025-2030汽車后市場行業(yè)市場發(fā)展現(xiàn)狀及投資前景深度研究報告
- 2025-2030汽車變速箱生產(chǎn)設(shè)備行業(yè)市場供需解析及投資發(fā)展趨勢評估規(guī)劃報告
- 2025-2030汽車制造行業(yè)市場前景深度剖析與投資機(jī)遇解析研究報告
- 2025-2030汽車制造產(chǎn)業(yè)市場深度分析及前景規(guī)劃投資報告書
- 2025-2030汽車制造業(yè)供需分析及產(chǎn)能擴(kuò)張戰(zhàn)略規(guī)劃研究
- 2025-2030汽車S店行業(yè)市場供需現(xiàn)狀分析及投資規(guī)劃方案
- 2026年跨境營銷策劃公司海外合作伙伴篩選與管理制度
- 設(shè)備、管道、鋼結(jié)構(gòu)施工方案
- 2021-2026年中國沉香木行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃研究報告
- 數(shù)學(xué)-華中師大一附中2024-2025高一上學(xué)期期末試卷和解析
- 2024-2030年中國海南省廢水污染物處理資金申請報告
- 新能源汽車技術(shù) SL03維修手冊(第4章)-電氣-4.2.2~4.2.12電器集成
- 教科版科學(xué)教材培訓(xùn)
- 甲狀腺的中醫(yī)護(hù)理
- 商住樓項目總體規(guī)劃方案
- 2022儲能系統(tǒng)在電網(wǎng)中典型應(yīng)用
- 互聯(lián)網(wǎng)+物流平臺項目創(chuàng)辦商業(yè)計劃書(完整版)
- IABP主動脈球囊反搏課件
評論
0/150
提交評論