內(nèi)蒙古包頭市百靈廟中學(xué)2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第1頁(yè)
內(nèi)蒙古包頭市百靈廟中學(xué)2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第2頁(yè)
內(nèi)蒙古包頭市百靈廟中學(xué)2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第3頁(yè)
內(nèi)蒙古包頭市百靈廟中學(xué)2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第4頁(yè)
內(nèi)蒙古包頭市百靈廟中學(xué)2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

內(nèi)蒙古包頭市百靈廟中學(xué)2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)是空間一定點(diǎn),為空間內(nèi)任一非零向量,滿足條件的點(diǎn)構(gòu)成的圖形是()A.圓 B.直線C.平面 D.線段2.已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上的一點(diǎn),點(diǎn)是線段的中點(diǎn),為坐標(biāo)原點(diǎn),若,則()A.3 B.4C.6 D.113.已知,且直線始終平分圓的周長(zhǎng),則的最小值是()A.2 B.C.6 D.164.等差數(shù)列中,已知,則()A.36 B.27C.18 D.95.?dāng)?shù)列滿足,且,是函數(shù)的極值點(diǎn),則的值是()A.2 B.3C.4 D.56.已知兩條不同直線和平面,下列判斷正確的是()A.若則 B.若則C.若則 D.若則7.若雙曲線的漸近線方程為,則實(shí)數(shù)a的值為()A B.C.2 D.8.在正方體ABCD-A1B1C1D1中,棱長(zhǎng)為a,M,N分別為A1B和AC上的點(diǎn),A1M=AN=,則MN與平面BB1C1C的位置關(guān)系是()A.相交 B.平行C.垂直 D.不能確定9.若方程表示雙曲線,則此雙曲線的虛軸長(zhǎng)等于()A. B.C. D.10.已知空間向量,,且,則的值為()A. B.C. D.11.若是真命題,是假命題,則A.是真命題 B.是假命題C.是真命題 D.是真命題12.已知x是上的一個(gè)隨機(jī)的實(shí)數(shù),則使x滿足的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若一個(gè)球表面積為,則該球的半徑為____________14.設(shè)圓,圓,則圓有公切線___________條.15.已知數(shù)列滿足,,的前項(xiàng)和為,則______.16.若直線與直線平行,則實(shí)數(shù)m的值為____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:,的左右焦點(diǎn),是雙曲線的左右頂點(diǎn),的離心率為,的離心率為,點(diǎn)在上,過點(diǎn)E和,分別作直線交橢圓于,和,點(diǎn),如圖.(1)求,的方程;(2)求證:直線和的斜率之積為定值;(3)求證:為定值.18.(12分)已知為數(shù)列的前項(xiàng)和,且.(1)求的通項(xiàng)公式;(2)若,求的前項(xiàng)和.19.(12分)已知正項(xiàng)等差數(shù)列滿足:,且,,成等比數(shù)列(1)求的通項(xiàng)公式;(2)設(shè)的前n項(xiàng)和為,且,求的前n項(xiàng)和20.(12分)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.點(diǎn)E在PC上.(1)求證:平面BDE⊥平面PAC;(2)若E為PC的中點(diǎn),求直線PC與平面AED所成的角的正弦值.21.(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若在上有解,求實(shí)數(shù)a的取值范圍.22.(10分)已知拋物線:,直線過定點(diǎn).(1)若與僅有一個(gè)公共點(diǎn),求直線的方程;(2)若與交于A,B兩點(diǎn),直線OA,OB(其中О為坐標(biāo)原點(diǎn))的斜率分別為,,試探究在,,,中,運(yùn)算結(jié)果是否有為定值的?并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)法向量的定義可判斷出點(diǎn)所構(gòu)成的圖形.【詳解】是空間一定點(diǎn),為空間內(nèi)任一非零向量,滿足條件,所以,構(gòu)成的圖形是經(jīng)過點(diǎn),且以為法向量的平面.故選:C.【點(diǎn)睛】本題考查空間中動(dòng)點(diǎn)的軌跡,考查了法向量定義的理解,屬于基礎(chǔ)題.2、A【解析】利用橢圓的定義可得,再結(jié)合條件即求.【詳解】由橢圓的定義可知,因?yàn)椋?,因?yàn)辄c(diǎn)分別是線段,的中點(diǎn),所以是的中位線,所以.故選:A.3、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當(dāng)且僅當(dāng)時(shí)取等.故選:B.4、B【解析】直接利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)求解.【詳解】解:由題得.故選:B5、C【解析】利用導(dǎo)數(shù)即可求出函數(shù)的極值點(diǎn),再利用等差數(shù)列的性質(zhì)及其對(duì)數(shù)的運(yùn)算性質(zhì)求解即可【詳解】由,得,因?yàn)椋呛瘮?shù)的極值點(diǎn),所以,是方程兩個(gè)實(shí)根,所以,因?yàn)閿?shù)列滿足,所以,所以數(shù)列為等差數(shù)列,所以,所以,故選:C6、D【解析】根據(jù)線線、線面、面面的平行與垂直的位置關(guān)系即可判斷.【詳解】解:對(duì)于選項(xiàng)A:若,則與可能平行,可能相交,可能異面,故選項(xiàng)A錯(cuò)誤;對(duì)于選項(xiàng)B:若,則,故選項(xiàng)B錯(cuò)誤;對(duì)于選項(xiàng)C:當(dāng)時(shí)不滿足,故選項(xiàng)C錯(cuò)誤;綜上,可知選項(xiàng)D正確.故選:D.7、D【解析】由雙曲線的漸近線方程結(jié)合已知可得.【詳解】雙曲線方程為所以漸近線為,故,解得:.故選:D8、B【解析】建立空間直角坐標(biāo)系,求得平面BB1C1C的法向量和直線MN的方向向量,利用兩向量垂直,得到線面平行.【詳解】建立如圖所示的空間直角坐標(biāo)系,由圖可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故選:B.【點(diǎn)睛】該題考查的是有關(guān)立體幾何的問題,涉及到的知識(shí)點(diǎn)有利于空間向量判斷線面平行,屬于簡(jiǎn)單題目.9、B【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程直接判斷.【詳解】方程即為,由方程表示雙曲線,可得,所以,,所以虛軸長(zhǎng)為,故選:B.10、B【解析】根據(jù)向量垂直得,即可求出的值.【詳解】.故選:B.11、D【解析】因?yàn)槭钦婷},是假命題,所以是假命題,選項(xiàng)A錯(cuò)誤,是真命題,選項(xiàng)B錯(cuò)誤,是假命題,選項(xiàng)C錯(cuò)誤,是真命題,選項(xiàng)D正確,故選D.考點(diǎn):真值表的應(yīng)用.12、B【解析】先解不等式得到的范圍,再利用幾何概型的概率公式進(jìn)行求解.【詳解】由得,即,所以使x滿足的概率為故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)球的半徑為,代入球的表面積公式得答案【詳解】解:設(shè)球的半徑為,則,得,即或(舍去)故答案為:14、2【解析】將圓轉(zhuǎn)化成標(biāo)準(zhǔn)式,結(jié)合圓心距判斷兩圓位置關(guān)系,進(jìn)而求解.【詳解】由題意得,圓:,圓:,∴,∴與相交,有2條公切線.故答案為:215、【解析】分析出當(dāng)為正奇數(shù)時(shí),,可求得的值,再分析出當(dāng)為正偶數(shù)時(shí),,可求得的值,進(jìn)而可求得的值.【詳解】由題知,當(dāng)為正奇數(shù)時(shí),,于是,,,,,所以.又因?yàn)楫?dāng)為正偶數(shù)時(shí),,且,所以兩式相加可得,于是,兩式相減得.所以,故.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的解題關(guān)鍵在于分析出當(dāng)為正奇數(shù)時(shí),,以及當(dāng)為正偶數(shù)時(shí),,找出規(guī)律,結(jié)合并項(xiàng)求和法求出以及的值.16、【解析】利用兩條直線平行的充要條件,列式求解即可【詳解】解:因?yàn)橹本€與直線平行,所以,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1):;:(2)證明見解析(3)證明見解析【解析】(1)利用待定系數(shù)法,根據(jù)條件先求曲線的方程,再求曲線的方程;(2)首先設(shè),表示直線和的斜率之積,即可求解定值;(3)首先表示直線與方程聯(lián)立消,利用韋達(dá)定理表示弦長(zhǎng),以及利用直線和的斜率關(guān)系,表示弦長(zhǎng),并證明為定值.【小問1詳解】由題設(shè)知,橢圓離心率為解得∴,∵橢圓的左右焦點(diǎn),是雙曲線的左右頂點(diǎn),∴設(shè)雙曲線:∴的離心率為解得.∴::;【小問2詳解】證明:∵點(diǎn)在上∴設(shè)則,∴.∴直線和的斜率之積為定值1;【小問3詳解】證明:設(shè)直線和的斜率分別為,,則設(shè),:與方程聯(lián)立消得“*”則,是“*”的二根則則同理∴.18、(1)(2)【解析】(1)由與的關(guān)系結(jié)合等比數(shù)列的定義得出的通項(xiàng)公式;(2)由(1)得出,再由錯(cuò)位相減法得出的前項(xiàng)和.【小問1詳解】因?yàn)?,所以?dāng)時(shí),,所以.當(dāng)時(shí),,兩式相減,得,所以,所以,所以是以1為首項(xiàng),2為公比的等比數(shù)列,所以.【小問2詳解】由(1)得,所以,兩邊同乘以,得,兩式相減,得,所以.19、(1);(2).【解析】(1)利用等差數(shù)列的通項(xiàng)公式結(jié)合條件即求;(2)利用條件可得,然后利用錯(cuò)位相減法即求.【小問1詳解】設(shè)等差數(shù)列公差為d,由得,即,化簡(jiǎn)得,又,,成等比數(shù)列,則,即,將代入上式得,化簡(jiǎn)得,解得或-2(舍去),則,所以【小問2詳解】∵,當(dāng)時(shí),,當(dāng)時(shí),,符合上式,則,所以,令,則,,∴,化簡(jiǎn)得綜上,的前n項(xiàng)和20、(1)證明見解析;(2)【解析】(1)根據(jù)題意可判斷出ABCD是正方形,從而可得,再根據(jù),由線面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可證出;(2)由、、兩兩垂直可建立空間直角坐標(biāo)系,利用向量法即可求出直線PC與平面AED所成的角的正弦值.【小問1詳解】因?yàn)镻A⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小問2詳解】由題可知、、兩兩垂直,建系如圖,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,設(shè)平面的一個(gè)法向量為,則,,即,取,0,,所以直線與平面所成的角的正弦值為21、(1)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)有極小值,無(wú)極大值(2)【解析】(1)利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,然后由極值的定義求解即可;(2)分和兩種情況分析求解,當(dāng)時(shí),不等式變形為在,上有解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解的最小值,即可得到答案【小問1詳解】當(dāng)時(shí),,所以當(dāng)時(shí);當(dāng)時(shí),所以在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時(shí)函數(shù)有極小值,無(wú)極大值.【小問2詳解】因?yàn)樵谏嫌薪?,所以在上有解,?dāng)時(shí),不等式成立,此時(shí),當(dāng)時(shí)在上有解,令,則由(1)知時(shí),即,當(dāng)時(shí);當(dāng)時(shí),所以在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時(shí),,所以,綜上可知,實(shí)數(shù)a的取值范圍是.點(diǎn)睛】利用導(dǎo)數(shù)研究不等式恒成立問題或有解問題的策略為:通常構(gòu)造新函數(shù)或參變量分離,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值從而求得參數(shù)的取值范圍22、(1)或或(2)為定值,而,,均不為定值【解析】(1)過拋物線外一定點(diǎn)的直線恰好與該拋物線只有一個(gè)交點(diǎn),則分兩類分別討論,一是直線與拋物線的對(duì)稱軸平行,二是直線與拋物線相切;(2)聯(lián)立直線的方程與拋物線的方程,根據(jù)韋達(dá)定理,分別表示出,,,為直線斜率的形式,便可得出結(jié)果.【小問1詳解】過點(diǎn)的直線與拋物線僅有一個(gè)公共點(diǎn),則該直線可能與拋物線的對(duì)稱軸平行,也可能與拋物線相切,下面分兩種情況討論:當(dāng)直線可能與拋物線的對(duì)稱軸平行時(shí),則有:當(dāng)直線與拋物線相切時(shí),由于點(diǎn)在軸上方,且在拋物線外,則存在兩條直線與拋物線相切:易知:是其中一條直線另一條直線與拋物線上方相切時(shí),不妨設(shè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論