版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年四川省眉山市仁壽一中南校區(qū)高二數(shù)學第一學期期末統(tǒng)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在上可導,且,則與的大小關系為A. B.C. D.不確定2.圓與圓的公切線的條數(shù)為()A.1 B.2C.3 D.43.數(shù)學家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知的頂點,,若其歐拉線的方程為,則頂點的坐標為()A. B.C. D.4.在中,角A,B,C的對邊分別為a,b,c,若,且,則為()A.等腰三角形 B.直角三角形C.銳角三角形 D.鈍角三角形5.已知,若,則的取值范圍為()A. B.C. D.6.已知是橢圓上的一點,則點到兩焦點的距離之和是()A.6 B.9C.14 D.107.已知在一次降雨過程中,某地降雨量(單位:mm)與時間t(單位:min)的函數(shù)關系可表示為,則在時的瞬時降雨強度為()mm/min.A. B.C.20 D.4008.在平面上有一系列點,對每個正整數(shù),點位于函數(shù)的圖象上,以點為圓心的與軸都相切,且與彼此外切.若,且,,的前項之和為,則()A. B.C. D.9.已知函數(shù),則曲線在點處的切線方程為()A. B.C. D.10.三個實數(shù)構成一個等比數(shù)列,則圓錐曲線的離心率為()A. B.C.或 D.或11.已知△的頂點B,C在橢圓上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC邊上,則△的周長是()A. B.C.8 D.1612.雙曲線的漸近線的斜率是()A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.給定點、、與點,求點到平面的距離______.14.曲線圍成的圖形的面積為___________.15.一道數(shù)學難題,在半小時內,甲能解決的概率是,乙能解決的概率是,兩人試圖獨立地在半小時內解決它,則問題得到解決的概率是________.16.若函數(shù)在區(qū)間上單調遞減,則實數(shù)的取值范圍是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓.(1)求過點M(2,1)的圓的切線方程;(2)直線過點且被圓截得的弦長為2,求直線的方程;(3)已知圓的圓心在直線y=1上,與y軸相切,且與圓相外切,求圓的標準方程.18.(12分)如圖,三棱錐中,,,,,,點是PA的中點,點D是AC的中點,點N在PB上,且.(1)證明:平面CMN;(2)求平面MNC與平面ABC所成角的余弦值.19.(12分)如圖,在多面體中,和均為等邊三角形,D是的中點,.(1)證明:;(2)若,求多面體的體積.20.(12分)已知函數(shù),若函數(shù)處取得極值(1)求,的值;(2)求函數(shù)在上的最大值和最小值21.(12分)已知數(shù)列中,.(1)證明是等比數(shù)列,并求通項公式;(2)設,記數(shù)列的前n項和為,求使恒成立的最小的整數(shù)k.22.(10分)已知曲線:.(1)若曲線是雙曲線,求的取值范圍;(2)設,已知過曲線的右焦點,傾斜角為的直線交曲線于A,B兩點,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由,所以.2、D【解析】公切線條數(shù)與圓與圓的位置關系是相關的,所以第一步需要判斷圓與圓的位置關系.【詳解】圓的圓心坐標為,半徑為3;圓的圓心坐標為,半徑為1,所以兩圓的心心距為,所以兩圓相離,公切線有4條.故選:D.3、A【解析】設,計算出重心坐標后代入歐拉方程,再求出外心坐標,根據外心的性質列出關于的方程,最后聯(lián)立解方程即可.【詳解】設,由重心坐標公式得,三角形的重心為,,代入歐拉線方程得:,整理得:①的中點為,,的中垂線方程為,即聯(lián)立,解得的外心為則,整理得:②聯(lián)立①②得:,或,當,時,重合,舍去頂點的坐標是故選:A【點睛】關鍵點睛:解決本題的關鍵一是求出外心,二是根據外心的性質列方程.4、B【解析】由余弦定理可得,再利用可得答案.【詳解】因為,所以,由余弦定理,因為,所以,又,∴,故為直角三角形.故選:B.5、C【解析】根據題意,由為原點到直線上點的距離的平方,再根據點到直線垂線段最短,即可求得范圍.【詳解】由,,視為原點到直線上點的距離的平方,根據點到直線垂線段最短,可得,所有的取值范圍為,故選:C.6、A【解析】根據橢圓的定義,可求得答案.【詳解】由可知:,由是橢圓上的一點,則點到兩焦點的距離之和為,故選:A7、B【解析】對題設函數(shù)求導,再求時對應的導數(shù)值,即可得答案.【詳解】由題設,,則,所以在時的瞬時降雨強度為mm/min.故選:B8、C【解析】根據兩圓的幾何關系及其圓心在函數(shù)的圖象上,即可得到遞推關系式,通過構造等差數(shù)列求得的通項公式,得出,最后利用裂項相消,求出數(shù)列前項和,即可求出.詳解】由與彼此外切,則,,,又∵,∴,故為等差數(shù)列且,,則,,則,即,故答案選:.9、A【解析】求出函數(shù)的導函數(shù),再求出,然后利用導數(shù)的幾何意義求解作答.【詳解】函數(shù),求導得:,則,而,于是得:,即,所以曲線在點處的切線方程為.故選:A10、D【解析】根據三個實數(shù)構成一個等比數(shù)列,解得,然后分,討論求解.【詳解】因為三個實數(shù)構成一個等比數(shù)列,所以,解得,當時,方程表示焦點在x軸上的橢圓,所以,所以,當時,方程表示焦點在y軸上的雙曲線,所以,所以,故選:D11、D【解析】根據橢圓定義求解【詳解】由橢圓定義得△的周長是,故選:D.12、B【解析】由雙曲線的漸近線方程為:,化簡即可得到答案.【詳解】雙曲線的漸近線方程為:,即,漸近線的斜率是.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出平面的法向量,再利用點到面的距離公式計算即可.【詳解】設平面的法向量為,點到平面的距離為,,,即,令,得故答案為:.14、##【解析】曲線圍成圖形關于軸,軸對稱,故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發(fā)生改變,故曲線關于軸,軸對稱,因此只需求出第一象限的面積即可.當,時,曲線可化為:,表示的圖形為一個半圓,圍成的面積為,故曲線圍成的圖形的面積為.故答案:.15、【解析】分甲解決乙不能解決,甲不能解決乙能解決,甲能解決乙也能解決三類,利用獨立事件的概率求解.【詳解】因為甲能解決的概率是,乙能解決的概率是,所以問題得到解決的概率是,故答案為:16、【解析】求解定義域,由導函數(shù)小于0得到遞減區(qū)間,進而得到不等式組,求出實數(shù)的取值范圍.【詳解】顯然,且,由,以及考慮定義域x>0,解得:.在區(qū)間,上單調遞減,∴,解得:.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)y=1;(2)x+y-2=0;(3).【解析】(1)將圓的一般方程化為圓的標準方程,結合圖形即可求出結果;(2)根據題意可知直線過圓心,利用直線的兩點式方程計算即可得出結果;(3)設圓E的圓心E(a,1),根據題意可得圓E的半徑為,結合圓與圓的位置關系和兩點距離公式計算求出,進而得出圓的標準方程.【小問1詳解】圓,即,其圓心為,半徑為1.因為點(2,1)在圓上,如圖,所以切線方程為y=1;【小問2詳解】由題意得,圓的直徑為2,所以直線過圓心,由直線的兩點式方程,得,即直線的方程為x+y-2=0;【小問3詳解】因為圓E的圓心在直線y=1上,設圓E的圓心E(a,1),由圓E與y軸相切,得R=a()又圓E與圓相外切,所以,由兩點距離公式得,所以,解得,所以圓心,,所以圓E的方程為.18、(1)證明見解析(2)【解析】建立如圖所示空間直角坐標系,得到相關點和相關向量的坐標,(1)求出平面的法向量,利用證明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夾角公式即可求解.【小問1詳解】證明:三棱錐中,,,∴分別以,,,,軸建立如圖所示空間直角坐標系∵,,點M是PA的中點,點D是AC的中點,點N在PB上且∴,,,,,設平面的法向量,,,,由得令得∴∵∴又平面∴平面;【小問2詳解】,,∴平面∴為平面的法向量則與的夾角的補角是平面與平面所成二面角的平面角.∴平面與平面所成角的余弦值為.19、(1)見詳解(1).(2)16【解析】(1)證線面垂直從而證線線垂直.(2)把面體看成兩個錐體,由已知線面垂直得高,并進一步可求錐體底面邊長,從而得解.【小問1詳解】因為,所以共面,連接、,因為和均為等邊三角形,D是的中點,所以,,,所以面平,平面,【小問2詳解】因為,,四邊形是平行四邊形,和均為等邊三角形,D是的中點,所以,,平行四邊形是正方形形,,.20、(1);(2)最大值為,最小值為【解析】(1)求出導函數(shù),由即可解得;(2)求出函數(shù)的單調區(qū)間,進而可以求出函數(shù)的最值.【詳解】解:(1)由題意,可得,得.(2),令,得或(舍去)當變化時,與變化如下遞增遞減所以函數(shù)在上的最大值為,最小值為.21、(1)證明見解析,(2)4【解析】(1)由,得到,利用等比數(shù)列的定義求解;(2)由(1)得到,然后利用錯位相減法求解.【小問1詳解】證明:由,得,∴,∴數(shù)列是以3為公比,以為首項的等比數(shù)列,∴,即.【小問2詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026廣西桂林市象山區(qū)兵役登記參考考試題庫及答案解析
- 深度解析(2026)《GBT 26004-2010表面噴涂用特種導電涂料》(2026年)深度解析
- 2025四川雅安市滎經縣縣屬國有企業(yè)招聘14人備考考試試題及答案解析
- 2025年大慶高新區(qū)公益性崗位招聘10人參考筆試題庫附答案解析
- 古典戲曲“才子佳人”模式中的性別協(xié)商與倫理沖突
- 2025廣東工業(yè)大學物理與光電工程學院高層次人才招聘備考筆試試題及答案解析
- 2025湖北武漢市蔡甸區(qū)公立小學招聘教師1人參考考試題庫及答案解析
- 2025年南昌市第一醫(yī)院編外專技人才自主招聘1人備考筆試試題及答案解析
- 《克、千克的認識》數(shù)學課件教案
- 2025浙江嘉興市海寧市中心醫(yī)院招聘2人備考筆試題庫及答案解析
- 小學美術活動策劃方案
- 2025至2030中國醫(yī)用多參數(shù)監(jiān)護儀行業(yè)項目調研及市場前景預測評估報告
- 重要客戶開發(fā)匯報
- 2025化工和危險化學品生產經營單位重大生產安全事故隱患判定標準解讀
- 2025-2030中國物流園區(qū)陸港型國家物流樞紐申報與建設指南報告
- (完整版)混凝土質量缺陷修補專項方案
- 公安派出所建筑外觀形象設計規(guī)范
- 阿特拉斯空壓機培訓課件
- DB42T 1771-2021 湖北省河湖健康評估導則
- 征兵體檢內科標準與流程
- GB/T 192-2025普通螺紋牙型
評論
0/150
提交評論