版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
貴州省織金縣第一中學(xué)2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線過點(diǎn),,則該直線的傾斜角是()A. B.C. D.2.已知點(diǎn)F為拋物線C:的焦點(diǎn),點(diǎn),若點(diǎn)Р為拋物線C上的動點(diǎn),當(dāng)取得最大值時,點(diǎn)P恰好在以F,為焦點(diǎn)的橢圓上,則該橢圓的離心率為()A. B.C. D.3.黃金矩形是寬()與長()的比值為黃金分割比的矩形,如圖所示,把黃金矩形分割成一個正方形和一個黃金矩形,再把矩形分割出正方形.在矩形內(nèi)任取一點(diǎn),則該點(diǎn)取自正方形內(nèi)的概率是A. B.C. D.4.在等差數(shù)列中,,且,,,構(gòu)成等比數(shù)列,則公差()A.0或2 B.2C.0 D.0或5.已知數(shù)列滿足,且,那()A.19 B.31C.52 D.1046.如圖,在四面體OABC中,,,,點(diǎn)在線段上,且,為的中點(diǎn),則等于()A. B.C. D.7.如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為、,其中,.如果這時氣球的高度,則河流的寬度BC為()A. B.C. D.8.已知點(diǎn)到直線:的距離為1,則等于()A. B.C. D.9.已知,,若,則()A.6 B.11C.12 D.2210.已知斜三棱柱所有棱長均為2,,點(diǎn)、滿足,,則()A. B.C.2 D.11.函數(shù)區(qū)間上有()A.極大值為27,極小值為-5 B.無極大值,極小值為-5C.極大值為27,無極小值 D.無極大值,無極小值12.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若,,,四點(diǎn)中恰有三點(diǎn)在橢圓上,則橢圓C的方程為________.14.已知橢圓的左、右頂點(diǎn)分別為A,B,橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)為橢圓C的下頂點(diǎn),直線MA與MB的斜率之積為.(1)求橢圓C的方程;(2)設(shè)點(diǎn)P,Q為橢圓C上位于x軸下方的兩點(diǎn),且,求四邊形面積的最大值.15.已知點(diǎn)在拋物線上,那么點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時,點(diǎn)的坐標(biāo)為______16.已知,且,則的最小值為____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為0的等差數(shù)列的前項(xiàng)和為,且,,成等比數(shù)列,且.(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.18.(12分)為增強(qiáng)市民的環(huán)境保護(hù)意識,某市面向全市征召若干名宣傳志愿者,成立環(huán)境保護(hù)宣傳小組,現(xiàn)把該小組的成員按年齡分成、、、、這組,得到的頻率分布直方圖如圖所示,已知年齡在內(nèi)的人數(shù)為.(1)若用分層抽樣的方法從年齡在、、內(nèi)的志愿者中抽取名參加某社區(qū)的宣傳活動,再從這名志愿者中隨機(jī)抽取名志愿者做環(huán)境保護(hù)知識宣講,求這名環(huán)境保護(hù)知識宣講志愿者中至少有名年齡在內(nèi)的概率;(2)在(1)的條件下,記抽取的名志愿者分別為甲、乙,該社區(qū)為了感謝甲、乙作為環(huán)境保護(hù)知識宣講的志愿者,給甲、乙各隨機(jī)派發(fā)價值元、元、元的紀(jì)念品一件,求甲的紀(jì)念品不比乙的紀(jì)念品價值高的概率.19.(12分)在中,,,請?jiān)購臈l件①、條件②這兩個條件中選擇一個作為已知,然后解答下列問題.(1)求角的大??;(2)求的面積.條件①:;條件②:.20.(12分)已知橢圓的長軸長是,以其短軸為直徑的圓過橢圓的左右焦點(diǎn),.(1)求橢圓E的方程;(2)過橢圓E左焦點(diǎn)作不與坐標(biāo)軸垂直的直線,交橢圓于M,N兩點(diǎn),線段MN的垂直平分線與y軸負(fù)半軸交于點(diǎn)Q,若點(diǎn)Q的縱坐標(biāo)的最大值是,求面積的取值范圍.21.(12分)已知各項(xiàng)均為正數(shù)的等比數(shù)列前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求22.(10分)已知數(shù)列滿足,,設(shè).(1)證明數(shù)列為等比數(shù)列,并求通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)直線的斜率公式即可求得答案.【詳解】設(shè)該直線的傾斜角為,該直線的斜率,即.故選:C2、D【解析】過點(diǎn)P引拋物線準(zhǔn)線的垂線,交準(zhǔn)線于D,根據(jù)拋物線的定義可知,記,根據(jù)題意,當(dāng)最小,即直線與拋物線相切時滿足題意,進(jìn)而解出此時P的坐標(biāo),解得答案即可.【詳解】如圖,易知點(diǎn)在拋物線C的準(zhǔn)線上,作PD垂直于準(zhǔn)線,且與準(zhǔn)線交于點(diǎn)D,記,則.由拋物線定義可知,.由圖可知,當(dāng)取得最大值時,最小,此時直線與拋物線相切,設(shè)切線方程為,代入拋物線方程并化簡得:,,方程化為:,代入拋物線方程解得:,即,則,.于是,橢圓的長軸長,半焦距,所以橢圓的離心率.故選:D.3、C【解析】設(shè)矩形的長,寬分別為,所以,把黃金矩形分割成一個正方形和一個黃金矩形,所以,設(shè)矩形的面積為,正方形的面積為,設(shè)在矩形內(nèi)任取一點(diǎn),則該點(diǎn)取自正方形內(nèi)的概率是,則,故本題選C.【詳解】本題考查了幾何概型,考查了運(yùn)算能力.4、A【解析】根據(jù)等比中項(xiàng)的性質(zhì)和等差數(shù)列的通項(xiàng)公式建立方程,可解得公差d得選項(xiàng).【詳解】解:因?yàn)樵诘炔顢?shù)列中,,且,,,構(gòu)成等比數(shù)列,所以,即,所以,解得或,故選:A.5、D【解析】根據(jù)等比數(shù)列的定義,結(jié)合等比數(shù)列的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)?,所以有,因此?shù)列是公比的等比數(shù)列,因?yàn)?,所以,故選:D6、D【解析】利用空間向量的加法與減法可得出關(guān)于、、的表達(dá)式.【詳解】.故選:D.7、D【解析】由題意得,,,然后在和求出,從而可求出的值【詳解】如圖,由題意得,,,在中,,在中,,所以,故選:D8、D【解析】利用點(diǎn)到直線的距離公式,即可求得參數(shù)的值.【詳解】因?yàn)辄c(diǎn)到直線:的距離為1,故可得,整理得,解得.故選:.9、C【解析】根據(jù)遞推關(guān)系式計(jì)算即可求出結(jié)果.【詳解】因?yàn)?,,,則,,,故選:C.10、D【解析】以向量為基底向量,則,根據(jù)條件由向量的數(shù)量積的運(yùn)算性質(zhì),兩邊平方可得答案.【詳解】以向量為基底向量,所以所以故選:D11、B【解析】求出得出的單調(diào)區(qū)間,從而可得答案.【詳解】當(dāng)時,,單調(diào)遞減.當(dāng)時,,單調(diào)遞增.所以當(dāng)時,取得極小值,極小值為,無極大值.故選:B12、C【解析】利用函數(shù)在上單調(diào)遞減即可求解.【詳解】解:因?yàn)楹瘮?shù)在上單調(diào)遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由于,關(guān)于軸對稱,故由題設(shè)知C經(jīng)過,兩點(diǎn),C不經(jīng)過點(diǎn),然后求出a,b,即可得到橢圓的方程.【詳解】解:由于,關(guān)于軸對稱,故由題設(shè)知經(jīng)過,兩點(diǎn),所以.又由知,不經(jīng)過點(diǎn),所以點(diǎn)在上,所以.因此,故方程為.故答案為:.【點(diǎn)睛】求橢圓的標(biāo)準(zhǔn)方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結(jié)合焦點(diǎn)位置可寫出橢圓方程②待定系數(shù)法:若焦點(diǎn)位置明確,則可設(shè)出橢圓的標(biāo)準(zhǔn)方程,結(jié)合已知條件求出,;若焦點(diǎn)位置不明確,則需要分焦點(diǎn)在軸上和軸上兩種情況討論,也可設(shè)橢圓的方程為14、(1)(2)【解析】(1)由斜率之積求得,再由已知條件得,從而得橢圓方程;(2)延長QF2交橢圓于N點(diǎn),連接,,設(shè)直線,,.直線方程代入橢圓方程,應(yīng)用韋達(dá)定理得,結(jié)合不等式的性質(zhì)、函數(shù)的單調(diào)性可得的范圍,再計(jì)算出四邊形面積得結(jié)論【小問1詳解】由題知:,,,又,∴橢圓.【小問2詳解】延長QF2交橢圓于N點(diǎn),連接,,如下圖所示:,∴設(shè)直線,,.由,得,,,.,由勾形函數(shù)的單調(diào)性得,根據(jù)對稱性得:,且,,∴四邊形面積的最大值為.15、【解析】由拋物線定義可得,由此可知當(dāng)為與拋物線的交點(diǎn)時,取得最小值,進(jìn)而求得點(diǎn)坐標(biāo).【詳解】由題意得:拋物線焦點(diǎn)為,準(zhǔn)線為作,垂直于準(zhǔn)線,如下圖所示:由拋物線定義知:(當(dāng)且僅當(dāng)三點(diǎn)共線時取等號)即的最小值為,此時為與拋物線的交點(diǎn)故答案為【點(diǎn)睛】本題考查拋物線線上的點(diǎn)到焦點(diǎn)的距離與到定點(diǎn)距離之和最小的相關(guān)問題的求解,關(guān)鍵是能夠熟練應(yīng)用拋物線定義確定最值取得的位置.16、16【解析】根據(jù),且,利用“1”的代換將,轉(zhuǎn)化為,再利用基本不等式求解.【詳解】因?yàn)?,且,所以,?dāng)且僅當(dāng),,即時,取等號.所以的最小值為16.故答案為:16【點(diǎn)睛】本題主要考查基本不等式求最值,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)等差數(shù)列的通項(xiàng)公式和等比中項(xiàng),可得,再根據(jù)等差數(shù)列的前項(xiàng)和公式,即可求出,,進(jìn)而求出結(jié)果;(2)由(1)得,結(jié)合等比數(shù)列前項(xiàng)和公式和對數(shù)運(yùn)算性質(zhì),利用分組求和,即可求出結(jié)果.【小問1詳解】解:設(shè)的公差為,由,,成等比數(shù)列可知,即,化簡得.由可得,所以.將代入,得,,所以.小問2詳解】解:由(1)得,所以.18、(1);(2).【解析】(1)將名志愿者進(jìn)行編號,列舉出所有的基本事件,并確定所求事件所包含的基本事件數(shù),利用古典概型的概率公式可求得所求事件的概率;(2)列舉出甲、乙獲得紀(jì)念品價值的所有情況,并確定所求事件所包含的情況,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:因?yàn)橹驹刚吣挲g在、、內(nèi)的頻率分別為、、,所以用分層抽樣的方法抽取的名志愿者年齡在、、內(nèi)的人數(shù)分別為、、.記年齡在內(nèi)的名志愿者分別記為、、,年齡在的名志愿者分別記為、,年齡在內(nèi)的名志愿者記為,則從中抽取名志愿者的情況有、、、、、、、、、、、、、、,共種可能;而至少有名志愿者的年齡在內(nèi)的情況有、、、、、、、、,共種可能.所以至少有名志愿者的年齡在內(nèi)的概率為.【小問2詳解】解:甲、乙獲得紀(jì)念品價值的情況有、、、、、、、、,共種可能;而甲的紀(jì)念品不比乙的紀(jì)念品價值高的情況有、、、、、,共種可能.故甲的紀(jì)念品不比乙的紀(jì)念品價值高的概率為.19、(1)條件選擇見解析,(2)【解析】(1)選①,利用余弦定理求出的值,結(jié)合角的取值范圍,即可求得角的值;選②,利用余弦定理可求出的值,并利用余弦定理求出的值,結(jié)合角的取值范圍,即可求得角的值;(2)利用三角形的面積公式可求得的面積.【小問1詳解】解:選①,,由余弦定理可得,,所以,.選②,,整理可得,,解得,由余弦定理可得,,所以,.【小問2詳解】解:由三角形的面積公式可得.20、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合列式計(jì)算即可作答.(2)設(shè)出直線MN的方程,與橢圓方程聯(lián)立并結(jié)合已知求出m的范圍,再借助韋達(dá)定理求出面積函數(shù),利用函數(shù)單調(diào)性計(jì)算作答.【小問1詳解】令橢圓半焦距為c,依題意,,解得,所以橢圓E的方程為.【小問2詳解】由(1)知,橢圓E左焦點(diǎn)為,設(shè)過橢圓E左焦點(diǎn)的直線為(存在且不為0),由消去x得,,設(shè),則,線段的中點(diǎn)為,因此線段的垂直平分線為,由得的縱坐標(biāo)為,依題意,且,解得,由(1)知,,,令,在上單調(diào)遞減,當(dāng),即時,,當(dāng),即時,,所以面積的取值范圍.【點(diǎn)睛】結(jié)論點(diǎn)睛:過定點(diǎn)的直線l:y=kx+b交圓錐曲線于點(diǎn),,則面積;過定點(diǎn)直線l:x=ty+a交圓錐曲線于點(diǎn),,則面積21、(1)(2)9【解析】(1)根據(jù)題意列出關(guān)于等比數(shù)列首項(xiàng)、公比的方程組即可解決;(2)利用等比數(shù)列的前項(xiàng)和的公式,解方程即可解決.【小問1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 住宅退租協(xié)議及法律要點(diǎn)
- 2025年區(qū)塊鏈技術(shù)于碳交易市場生態(tài)構(gòu)建報(bào)告
- 2026年廣西金融職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試題庫參考答案詳解
- 2026年撫順職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫及答案詳解一套
- 2026年廣西職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫及完整答案詳解1套
- 2026年河北女子職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性考試題庫及答案詳解1套
- 2026年朝陽師范高等??茖W(xué)校單招職業(yè)傾向性考試題庫及參考答案詳解
- 2026年重慶電力高等??茖W(xué)校單招職業(yè)技能測試題庫帶答案詳解
- 2026年隨州職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試題庫及答案詳解1套
- 2026年山東經(jīng)貿(mào)職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試題庫及參考答案詳解
- 印刷消防應(yīng)急預(yù)案(3篇)
- 高校桶裝水合同范本
- 一年級語文上冊第六單元復(fù)習(xí)課件
- 初中信息技術(shù)義務(wù)教育版(2024)七年級全一冊第四單元 校園活動線上展教學(xué)設(shè)計(jì)及反思
- (人教A版)必修一高一數(shù)學(xué)上學(xué)期第5章 三角函數(shù) 章末測試(基礎(chǔ))(原卷版)
- 醫(yī)藥代表轉(zhuǎn)正述職報(bào)告
- 2025全國青少年文化遺產(chǎn)知識大賽試題答案
- 家裝水電施工流程
- 智算中心項(xiàng)目施工方案
- 2025年西藏公務(wù)員考試試題真題
- 民航招飛面試常見的面試問題及答案
評論
0/150
提交評論