版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025年重慶市江津區(qū)第六中學高二上數(shù)學期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列的公比為,則“是遞增數(shù)列”的一個充分條件是()A. B.C. D.2.如圖,把橢圓的長軸分成6等份,過每個分點作x軸的垂線交橢圓的上半部分于點,F(xiàn)是橢圓C的右焦點,則()A.20 B.C.36 D.303.若拋物線的焦點與橢圓的右焦點重合,則的值為A. B.C. D.4.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點,過F1的直線與雙曲線左、右兩支分別交于點P、Q.若,M為PQ的中點,且,則雙曲線的離心率為()A. B.C. D.5.過拋物線的焦點F的直線l與拋物線交于PQ兩點,若以線段PQ為直徑的圓與直線相切,則()A.8 B.7C.6 D.56.“且”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知雙曲線,過左焦點且與軸垂直的直線與雙曲線交于、兩點,若弦的長恰等于實鈾的長,則雙曲線的離心率為()A. B.C. D.8.設直線與雙曲線(,)的兩條漸近線分別交于,兩點,若點滿足,則該雙曲線的離心率是()A. B.C. D.9.等差數(shù)列的公差,且,,則的通項公式是()A. B.C. D.10.已知點B是A(3,4,5)在坐標平面xOy內(nèi)的射影,則||=()A. B.C.5 D.511.命題:“,”的否定形式為()A., B.,C., D.,12.已知直線與直線垂直,則()A. B.C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點處的切線的方程為__________.14.已知某農(nóng)場某植物高度,且,如果這個農(nóng)場有這種植物10000棵,試估計該農(nóng)場這種植物高度在區(qū)間上的棵數(shù)為______.參考數(shù)據(jù):若,則,,.15.已知雙曲線的右焦點為,過點作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點.若,則雙曲線的離心率為___________.16.四棱錐A-BCDE中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,側(cè)面ABE⊥底面BCDE,BC=2,CD=4(I)證明:AB⊥面BCDE;(II)若AD=2,求二面角C-AD-E的正弦值三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,底面,.點,,分別為棱,,的中點,是線段的中點,,(1)求證:平面;(2)求二面角的正弦值;(3)已知點在棱上,且直線與直線所成角的余弦值為,求線段的長18.(12分)已知橢圓C:的離心率為,點和點都在橢圓C上,直線PA交x軸于點M(1)求橢圓C的方程,并求點M的坐標(用m,n表示);(2)設O為原點,點B與點A關于x軸對稱,直線PB交x軸于點N,問:y軸上是否存在點Q(不與O重合),使得?若存在,求點Q的坐標,若不存在,說明理由19.(12分)在等比數(shù)列中,是與的等比中項,與的等差中項為6(1)求的通項公式;(2)設,求數(shù)列前項和20.(12分)如圖,四邊形是一塊邊長為4km正方形地域,地域內(nèi)有一條河流,其經(jīng)過的路線是以中點為頂點且開口向右的拋物線的一部分(河流寬度忽略不計),某公司準備投資一個大型矩形游樂場.(1)設,矩形游樂園的面積為,求與之間的函數(shù)關系;(2)試求游樂園面積的最大值.21.(12分)如圖甲是由正方形,等邊和等邊組成的一個平面圖形,其中,將其沿,,折起得三棱錐,如圖乙.(1)求證:平面平面;(2)過棱作平面交棱于點,且三棱錐和的體積比為,求直線與平面所成角的正弦值.22.(10分)已知直線,直線,直線(1)若與的傾斜角互補,求m的值;(2)當m為何值時,三條直線能圍成一個直角三角形
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由等比數(shù)列滿足遞增數(shù)列,可進行和兩項關系的比較,從而確定和的大小關系.【詳解】由等比數(shù)列是遞增數(shù)列,若,則,得;若,則,得;所以等比數(shù)列是遞增數(shù)列,或,;故等比數(shù)列是遞增數(shù)列是遞增數(shù)列的一個充分條件為,.故選:D.2、D【解析】由橢圓的對稱性可知,,代入計算可得答案.【詳解】設橢圓左焦點為,連接由橢圓的對稱性可知,,所以.故選:D.3、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D4、D【解析】由題干條件得到,設出,利用雙曲線定義表達出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關系,求出離心率.【詳解】因為M為PQ的中點,且,所以△為等腰三角形,即,因為,設,則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D5、C【解析】依據(jù)拋物線定義可以證明:以過拋物線焦點F的弦PQ為直徑的圓與其準線相切,則可以順利求得線段的長.【詳解】拋物線的焦點F,準線取PQ中點H,分別過P、Q、H作拋物線準線的垂線,垂足分別為N、M、E則四邊形為直角梯形,為梯形中位線,由拋物線定義可知,,,則故,即點H到拋物線準線的距離為的一半,則以線段PQ為直徑的圓與拋物線的準線相切.又以線段PQ為直徑的圓與直線相切,則以線段PQ為直徑的圓的直徑等于直線與直線間的距離.即故選:C6、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當且時,成立,反過來,當時,例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點睛】本題考查充分不必要條件的判斷,重點考查基本判斷方法,屬于基礎題型.7、B【解析】求出,進而求出,之間的關系,即可求解結(jié)論【詳解】解:由題意,直線方程為:,其中,因此,設,,,,解得,得,,弦的長恰等于實軸的長,,,故選:B8、C【解析】先求出,的坐標,再求中點坐標,利用點滿足,可得,從而求雙曲線的離心率.【詳解】解:由雙曲線方程可知,漸近線為,分別于聯(lián)立,解得:,,所以中點坐標為,因為點滿足,所以,所以,即,所以.故選:C.【點睛】本題考查雙曲線的離心率,考查直線與雙曲線的位置關系,考查學生的計算能力,屬于中檔題.9、C【解析】由于數(shù)列為等差數(shù)列,所以,再由可得可以看成一元二次方程的兩個根,由可知,所以,從而可求出,可得到通項公式.【詳解】解:因為數(shù)列為等差數(shù)列,所以,因為,所以可以看成一元二次方程的兩個根,因為,所以,所以,解得,所以故選:C【點睛】此題考查的是等差數(shù)列的通項公式和性質(zhì),屬于基礎題.10、C【解析】先求出B(3,4,0),由此能求出||【詳解】解:∵點B是點A(3,4,5)在坐標平面Oxy內(nèi)的射影,∴B(3,4,0),則||==5故選:C11、D【解析】根據(jù)含一個量詞的命題的否定方法直接得到結(jié)果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結(jié)論.12、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出導函數(shù),得切線斜率后可得切線方程【詳解】,∴切線斜率為,切線方程為故答案為:14、1359【解析】由已知求得,則,結(jié)合已知求得,乘以10000得答案【詳解】解:由,得,又,,則,估計該農(nóng)場這種植物高度在區(qū)間,上的棵數(shù)為故答案為:135915、【解析】按題意求得,兩點坐標,以代數(shù)式表達出條件,即可得到關于的關系式,進而解得雙曲線的離心率.【詳解】雙曲線的右焦點為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:16、(Ⅰ)詳見解析;(Ⅱ).【解析】(Ⅰ)推導出BE⊥BC,從而BE⊥平面ABC,進而BE⊥AB,由面ABE⊥面BCDE,得AB⊥BC,由此能證明AB⊥面BCDE(Ⅱ)以B為原點,所在直線分別為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角C﹣AD﹣E的正弦值【詳解】由側(cè)面底面,且交線為,底面為矩形所以平面,又平面,所以由面面,同理可證,又面在底面中,,由面,故,以為原點,所在直線分別為軸建立空間直角坐標系,則,設平面的法向量,則,取所以平面的法向量,同理可求得平面的法向量.設二面角的平面角為,則故所求二面角的正弦值為.【點睛】本題考查線面垂直的證明,考查二面角的正弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3)或【解析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運算求解能力和推理論證能力.首先要建立空間直角坐標系,寫出相關點的坐標,證明線面平行只需求出平面的法向量,計算直線對應的向量與法向量的數(shù)量積為0,求二面角只需求出兩個半平面對應的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點,分別以,,方向為x軸、y軸、z軸正方向建立空間直角坐標系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設,為平面BDE的法向量,則,即.不妨設,可得.又=(1,2,),可得.因為平面BDE,所以MN//平面BDE.(2)解:易知為平面CEM的一個法向量.設為平面EMN的法向量,則,因為,,所以.不妨設,可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設AH=h(),則H(0,0,h),進而可得,.由已知,得,整理得,解得,或.所以,線段AH的長為或.【考點】直線與平面平行、二面角、異面直線所成角【名師點睛】空間向量是解決空間幾何問題的銳利武器,不論是求空間角、空間距離還是證明線面關系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準,特別是借助平面的法向量求線面角,二面角或點到平面的距離都很容易.18、(1),;(2)存在或,使得,理由見解析.【解析】(1)根據(jù)離心率,及求出,,進而得到橢圓方程及用m,n表示點M的坐標;(2)假設存在,根據(jù)得到,表達出點坐標,得到,結(jié)合得到,從而求出答案.【小問1詳解】由離心率可知:,又,,解得:,,故橢圓C:,直線PA為:,令得:,所以;【小問2詳解】存在或,使得,理由如下:假設,使得,則,其中,直線:,令得:,則,,解得:,其中,故,所以,所以或19、(1);(2).【解析】(1)設出等比數(shù)列的公比,根據(jù)給定條件列出方程求解作答.(2)由(1)的結(jié)論求出,再利用分組求和法計算作答.【小問1詳解】設等比數(shù)列公比為,依題意,,即,解得,所以的通項公式【小問2詳解】由(1)知,,.20、(1)(2)【解析】(1)首先建立直角坐標系,求出拋物線的方程,利用,求出點的坐標,表示出的面積為即可;(2)利用導數(shù)求函數(shù)的最值即可.【小問1詳解】以為原點,所在直線為軸,垂直于的直線為軸建立直角坐標系,則,設拋物線的方程為,將點代入方程可得,解得,則拋物線方程為,由已知得,則點的縱坐標為,點的橫坐標為,則,【小問2詳解】,令,解得,當時,,所以函數(shù)在上單調(diào)遞增,當時,,所以函數(shù)在上單調(diào)遞減,因此函數(shù)時,有最大值,21、(1)證明見解析;(2).【解析】(1)取的中點為,連接,,證明,,即證平面,即證得面面垂直;(2)建立如圖空間直角坐標系,寫出對應點的坐標和向量的坐標,再計算平面法向量,利用所求角的正弦為即得結(jié)果.【詳解】(1)證明:如圖,取的中點為,連接,.∵,∴.∵,,∴,同理.又,∴,∴.∵,,平面,∴平面.又平面,∴平面平面;(2)解:如圖建立空間直角坐標系,根據(jù)邊長關系可知,,,,,∴,.∵三棱錐和的體積比為,∴,∴,∴.設平面的法向量為,則,令,得.設直線與平面所成角為,則.∴直線與平面所成角的正弦值為.【點睛】方法點睛:求空間中直線與平面所成角的常見方法為:(1)定義法:直接作平面的垂線,找到線面成角;(2)等體積法:不作垂
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甲乙酮裝置操作工安全培訓效果評優(yōu)考核試卷含答案
- 2026年IT項目經(jīng)理考試大綱含答案
- 大型土石方工程機械開挖施工方案
- 網(wǎng)絡推廣方案與SEO優(yōu)化指南
- 2025年區(qū)塊鏈技術于碳交易市場倫理問題研究報告
- 2026年浙江工業(yè)大學之江學院單招職業(yè)傾向性考試題庫附答案詳解
- 2026年運城師范高等??茖W校單招職業(yè)傾向性考試題庫及參考答案詳解一套
- 2026年湖南三一工業(yè)職業(yè)技術學院單招綜合素質(zhì)考試題庫參考答案詳解
- 2026年遵義職業(yè)技術學院單招職業(yè)傾向性考試題庫及完整答案詳解1套
- 2026年廣東省汕尾市單招職業(yè)適應性考試題庫及參考答案詳解一套
- 北京市西城區(qū)2024-2025學年七年級上學期期末道德與法治試卷
- 年生產(chǎn)加工鈉離子電池負極材料8000 噸、鋰離子電池負極材料3000噸項目環(huán)境風險專項評價報告環(huán)評報告
- (正式版)DB37∕T 4899-2025 《深遠海養(yǎng)殖管理工作指南》
- 拖拉機運輸協(xié)議合同范本
- 如何開展護理科研
- 深圳市坪山區(qū)高標準農(nóng)田建設規(guī)劃(2021-2030年)(草案以及編輯說明)
- 勞動仲裁授課課件
- 新工廠工作匯報
- 山西低空經(jīng)濟發(fā)展現(xiàn)狀
- 汽車電子工程師崗位面試問題及答案
- 錢乙完整版本
評論
0/150
提交評論