版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
云南省大理市2025年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的定義域是,,對任意,,則不等式的解集為()A. B.C.或 D.或2.設(shè)正實數(shù),滿足(其中為正常數(shù)),若的最大值為3,則()A.3 B.C. D.3.已知雙曲線的左、右焦點分別為,,P為雙曲線C上一點,,直線與y軸交于點Q,若,則雙曲線C的漸近線方程為()A. B.C. D.4.在矩形中,,在該矩形內(nèi)任取一點M,則事件“”發(fā)生的概率為()A. B.C. D.5.已知是定義在上的函數(shù),其導(dǎo)函數(shù)為,且,且,則不等式的解集為()A. B.C. D.6.已知等比數(shù)列{an}的前n項和為S,若,且,則S3等于()A.28 B.26C.28或-12 D.26或-107.等差數(shù)列中,,,則()A.6 B.7C.8 D.98.在等比數(shù)列中,,,則()A.2 B.4C.6 D.89.世界上最早在理論上計算出“十二平均律”的是我國明代杰出的律學(xué)家朱載堉,他當(dāng)時稱這種律制為“新法密率”十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它前一個單音的頻率的比都相等,且最后一個單音是第一個單音頻率的2倍.已知第十個單音的頻率,則與第四個單音的頻率最接近的是()A.880 B.622C.311 D.22010.我國古代數(shù)學(xué)論著中有如下敘述:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈二百五十四.”思如下:一座7層塔共掛了254盞燈,且相鄰兩層下一層所掛燈數(shù)是上一層所掛燈數(shù)的2倍.下列結(jié)論不正確的是()A.底層塔共掛了128盞燈B.頂層塔共掛了2盞燈C.最下面3層塔所掛燈的總盞數(shù)比最上面3層塔所掛燈的總盞數(shù)多200D.最下面3層塔所掛燈的總盞數(shù)是最上面3層塔所掛燈的總盞數(shù)的16倍11.函數(shù)在上的極大值點為()A. B.C. D.12.已知直線,,若,則實數(shù)等于()A.0 B.1C. D.1或二、填空題:本題共4小題,每小題5分,共20分。13.已知平面的法向量為,平面的法向量為,若,則___________.14.已知F1,F(xiàn)2是雙曲線C:﹣y2=1(a>0)的左、右焦點,點P是雙曲線C上的任意一點(不是頂點),過F1作∠F1PF2的角平分線的垂線,垂足為H,O是坐標(biāo)原點.若|F1F2|=6|OH|,則雙曲線C的方程為____15.已知橢圓:的右焦點為,且經(jīng)過點(1)求橢圓的方程以及離心率;(2)若直線與橢圓相切于點,與直線相交于點.在軸是否存在定點,使?若存在,求出點的坐標(biāo);若不存在,說明理由16.已知點,拋物線的焦點為,點是拋物線上任意一點,則周長的最小值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某高校在今年的自主招生考試成績中隨機抽取100名考生的筆試成績,分為5組制出頻率分布表如圖所示.組號分組頻數(shù)頻率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學(xué)生進行面試,則每組應(yīng)各抽多少名學(xué)生?(3)在(2)的前提下,從抽到6名學(xué)生中再隨機抽取2名被甲考官面試,求這2名學(xué)生來自同一組的概率.18.(12分)已知:對任意,都有;:存在,使得(1)若“且”為真,求實數(shù)的取值范圍;(2)若“或”為真,“且”為假,求實數(shù)的取值范圍19.(12分)已知二項式的展開式中各二項式系數(shù)之和比各項系數(shù)之和小240.求:(1)n的值;(2)展開式中x項的系數(shù);(3)展開式中所有含x的有理項20.(12分)已知橢圓的方程為,雙曲線的左、右焦點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點(1)求雙曲線的方程;(2)若直線與雙曲線恒有兩個不同的交點和,且(其中為原點),求的取值范圍21.(12分)為讓“雙減”工作落實到位,某中學(xué)積極響應(yīng)上級號召,全面推進中小學(xué)生課后延時服務(wù),推行課后服務(wù)“”模式,開展了內(nèi)容豐富、形式多樣、有利于學(xué)生身心成長的活動.該中學(xué)初一共有700名學(xué)生其中男生400名、女生300名.為讓課后服務(wù)更受歡迎,該校準(zhǔn)備推行體育類與藝術(shù)類兩大類活動于2021年9月在初一學(xué)生中進行了問卷調(diào)查.(1)調(diào)查結(jié)果顯示:有的男學(xué)生和的女學(xué)生愿意參加體育類活動,其他男學(xué)生與女學(xué)生都不愿意參加體育類活動,請完成下邊列聯(lián)表.并判斷是否有的把握認(rèn)為愿意參加體育類活動與學(xué)生的性別相關(guān)?愿意參加體育活動情況性別愿意參加體育類活動不愿意參加體育類活動合計男學(xué)生女學(xué)生合計(2)在開展了兩個月活動課后,為了了解學(xué)生的活動課情況,在初一年級學(xué)生中按男女比例分層抽取7名學(xué)生調(diào)查情況,并從這7名學(xué)生中隨機選擇3名學(xué)生進行展示,用X表示選出進行展示的3名學(xué)生中女學(xué)生的人數(shù),求隨機變量X的分布列和數(shù)學(xué)期望.0.1000.0500.0250.0102.7063.8415.0246.635參考公式:,其中.22.(10分)(1)求函數(shù)的單調(diào)區(qū)間.(2)用向量方法證明:已知直線l,a和平面,,,,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】構(gòu)造函數(shù),結(jié)合已知條件可得恒成立,可得為上的減函數(shù),再由,從而將不等式轉(zhuǎn)換為,根據(jù)單調(diào)性即可求解.【詳解】構(gòu)造函數(shù),因為,所以為上的增函數(shù)又因為,所以原不等式轉(zhuǎn)化為,即,解得.所以原不等式的解集為,故選:A.2、D【解析】由于,,為正數(shù),且,所以利用基本不等式可求出結(jié)果【詳解】解:因為正實數(shù),滿足(其中為正常數(shù)),所以,則,所以,所以故選:D.3、B【解析】由題意可設(shè)且,即得a、b的數(shù)量關(guān)系,進而求雙曲線C的漸近線方程.【詳解】由題設(shè),,,又,P為雙曲線C上一點,∴,又,為的中點,∴,即,∴雙曲線C的漸近線方程為.故選:B.4、D【解析】利用幾何概型的概率公式,轉(zhuǎn)化為面積比直接求解.【詳解】以AB為直徑作圓,當(dāng)點M在圓外時,.所以事件“”發(fā)生的概率為.故選:D5、B【解析】令,再結(jié)合,和已知條件將問題轉(zhuǎn)化為,最后結(jié)合單調(diào)性求解即可.【詳解】解:令,則,因為,所以,即函數(shù)為上的增函數(shù),因為,不等式可化為,所以,故不等式的解集為故選:B6、C【解析】根據(jù)等比數(shù)列的通項公式列出方程求解,直接計算S3即可.【詳解】由可得,即,所以,又,解得,所以,即,當(dāng)時,,所以,當(dāng)時,,所以,故選:C7、C【解析】由等差數(shù)列的基本量法先求得公差,然后可得【詳解】設(shè)數(shù)列的公差為,則,,所以故選:C8、D【解析】由等比中項轉(zhuǎn)化得,可得,求解基本量,由等比數(shù)列通項公式即得解【詳解】設(shè)公比為,則由,得,即故,解得故選:D9、C【解析】依題意,每一個單音的頻率構(gòu)成一個等比數(shù)列,由,算出公比,結(jié)合,即可求出.【詳解】設(shè)第一個單音的頻率為,則最后一個單音的頻率為,由題意知,且每一個單音的頻率構(gòu)成一個等比數(shù)列,設(shè)公比為,則,解得:又,則與第四個單音的頻率最接近的是311,故選:C【點睛】關(guān)鍵點點睛:本題考查等比數(shù)列通項公式的運算,解題的關(guān)鍵是分析題意將其轉(zhuǎn)化為等比數(shù)列的知識,考查學(xué)生的計算能力,屬于基礎(chǔ)題.10、C【解析】由題設(shè)易知是公比為2的等比數(shù)列,應(yīng)用等比數(shù)列前n項和公式求,結(jié)合各選項的描述及等比數(shù)列通項公式、前n項和公式判斷正誤即可.【詳解】從上往下記每層塔所掛燈的盞數(shù)為,則數(shù)列是公比為2的等比數(shù)列,且,解得,所以頂層塔共掛了2盞燈,B正確;底層塔共掛了盞燈,A正確最上面3層塔所掛燈總盞數(shù)為14,最下面3層塔所掛燈的總盞數(shù)為224,C不正確,D正確故選:C.11、C【解析】求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可求出函數(shù)的極大值點【詳解】,∴當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,∴函數(shù)在的極大值點為故選:C12、C【解析】由題意可得,則由得,從而可求出的值【詳解】由題意可得,因為,,,所以,解得,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由,可兩平面的法向量也平行,從而可求出,進而可求得答案【詳解】因為平面的法向量為,平面的法向量為,,所以∥,所以存實數(shù)使,所以,所以,解得,所以,故答案為:214、8x2﹣y2=1【解析】延長F1H與PF2,交于K,連接OH,由三角形的中位線定理和雙曲線的定義、垂直平分線的性質(zhì),結(jié)合雙曲線的a,b,c的關(guān)系,可得雙曲線方程【詳解】解:延長F1H與PF2,交于K,連接OH,由題意可得PH為邊KF1的垂直平分線,則|PF1|=|PK|,且H為KF1的中點,|OH|=|KF2|,由雙曲線的定義可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,則|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又雙曲線C:﹣y2=1,知b=1,所以a=,所以雙曲線的方程為8x2﹣y2=1故答案為:8x2﹣y2=115、(1),;(2)存在定點,為【解析】(1)利用,,求解方程(2)設(shè)直線方程為,與橢圓聯(lián)立利用判別式等于0得,并求得切點坐標(biāo)及,假設(shè)存在點,利用化簡求值【詳解】(1)由已知得,,,,橢圓的方程為,離心率為;(2)在軸存在定點,為使,證明:設(shè)直線方程為代入得,化簡得由,得,,設(shè),則,,則,設(shè),則,則假設(shè)存在點解得所以在軸存在定點使【點睛】本題考查直線與橢圓的位置關(guān)系,考查切線的應(yīng)用,利用判別式等于0得坐標(biāo)是解決問題的關(guān)鍵,考查計算能力,是中檔題16、##【解析】利用拋物線的定義結(jié)合圖形即得.【詳解】拋物線的焦點為,準(zhǔn)線的方程為,過點作,垂足為,則,所以的周長為,當(dāng)且僅當(dāng)三點共線時等號成立.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,(2)第三組應(yīng)抽人,第四組應(yīng)抽人,第五組應(yīng)抽人(3)【解析】(1)根據(jù)頻率分布表的數(shù)據(jù)求出b,c,d的值;(2)三個組共有60人,從而利用分層抽樣抽樣方法抽取6名學(xué)生第三組應(yīng)抽3人,第四組應(yīng)抽2人,第五組應(yīng)抽1人;(3)記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,利用列舉法結(jié)合概率公式得出答案.【小問1詳解】由題意得,,【小問2詳解】三個組共有60人,所以第三組應(yīng)抽人,第四組應(yīng)抽人,第五組應(yīng)抽人.【小問3詳解】記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,從這6人中隨機抽取2人,基本事件包含,共15個基本事件.其中2人來自同一組的情況有,共4種.所以,2人來自同一組的概率為.18、(1).(2).【解析】(1)由已知得,均為真命題,分別求得為真命題,為真命題時,實數(shù)的取值范圍,再由集合的交集運算求得答案;(2)由已知得,一真一假,建立不等式組,求解即可.【小問1詳解】解:因為“且”為真命題,所以,均為真命題若為真命題,則,解得;若為真命題,則,當(dāng)且僅當(dāng),即時,等號成立,此時故實數(shù)的取值范圍是;【小問2詳解】解:若“或”為真,“且”為假,則,一真一假當(dāng)真,假時,則得;當(dāng)假,真時,則得故實數(shù)的取值范圍為19、(1)4(2)54(3)第1項,第3項,第5項【解析】(1)由題可得,解方程即得;(2)利用二項展開式的通項公式,即得;(3)利用二項展開式的通項公式,令,即求【小問1詳解】由已知,得,即,所以或(舍),∴【小問2詳解】設(shè)展開式的第項為令,得,則含x項的系數(shù)為【小問3詳解】由(2)可知,令,則有,2,4,所以含x的有理項為第1項,第3項,第5項20、(1);(2)【解析】(1)求出橢圓的焦點和頂點,即得雙曲線的頂點和焦點,從而易求得標(biāo)準(zhǔn)方程;(2)將代入,得由直線與雙曲線交于不同的兩點,得的取值范圍,設(shè),由韋達(dá)定理得則代入可求得的范圍【詳解】(1)設(shè)雙曲線的方程為,則,再由,得故的方程為(2)將代入,得由直線與雙曲線交于不同的兩點,得①設(shè)則又,得,,即,解得②由①②得<k2<1,故的取值范圍【點睛】本題考查雙曲線的標(biāo)準(zhǔn)方程,考查直線與雙曲線相交中的范圍問題.應(yīng)注意:(1)利用圓錐曲線的幾何性質(zhì)或判別式構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍(2)利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的核心是建立兩個參數(shù)之間的等量關(guān)系(3)利用隱含的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍(4)利用已知的不等關(guān)系構(gòu)造不等式,從而求出參數(shù)的取值范圍(5)利用求函數(shù)的值域的方法將待求量表示為其他變量的函數(shù),求其值域,從而確定參數(shù)的取值范圍21、(1)詳見解析;(2)詳見解析.【解析】(1)根據(jù)初一男生數(shù)和女生數(shù),結(jié)合有的男學(xué)生和的女學(xué)生,愿意參加體育類活動求解;計算的值,再與臨界值表對照下結(jié)論;(2)根據(jù)這7名學(xué)生中男生有4名,女生有3名,隨機選擇3名由抽到女學(xué)生的人數(shù)X可能為0,1,2,3,分別求得其概率,列出分布列,再求期望.【小問1詳解】解:因為初一共有700名學(xué)生其中男生400名、女生300名,且有的男學(xué)生和的女學(xué)生,所以愿意參加體育類活動的男生有300名,女生有200名,則列聯(lián)表如下:愿意參加體育活動情況性別愿意參加體育類活動不愿意參加體育類活動合計男學(xué)生300100400女學(xué)生200100300合計50
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物探技能考試試題及答案
- 防災(zāi)減災(zāi)救災(zāi)答題知識競賽附答案
- 2026年中藥學(xué)類之中藥學(xué)(士)題庫與答案
- 口腔執(zhí)業(yè)醫(yī)師練習(xí)題及答案
- 基礎(chǔ)護理期末考試題及答案
- 中醫(yī)專業(yè)測試題及答案
- 民勤縣輔警招聘公安基礎(chǔ)知識考試題庫及答案
- 2025行政執(zhí)法人員考試題庫(附答案)
- 實時開發(fā)面試題庫及答案
- 2025年食品安全管理員考試題庫及參考答案大全
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會成熟人才招聘備考題庫及答案詳解參考
- 郵政服務(wù)操作流程與規(guī)范(標(biāo)準(zhǔn)版)
- 2025年年輕人生活方式洞察報告-海惟智庫
- 2026昆山鈔票紙業(yè)有限公司校園招聘15人備考題庫及1套完整答案詳解
- 南瑞9622型6kV變壓器差動保護原理及現(xiàn)場校驗實例培訓(xùn)課件
- 2026年重慶市江津區(qū)社區(qū)專職人員招聘(642人)考試參考題庫及答案解析
- 統(tǒng)編版(2024)七年級上冊道德與法治期末復(fù)習(xí)必背知識點考點清單
- 新華資產(chǎn)招聘筆試題庫2026
- 造口常用護理用品介紹
- 溝通技巧與情商提升
- 2024屆新疆維吾爾自治區(qū)烏魯木齊市高三上學(xué)期第一次質(zhì)量監(jiān)測生物試題【含答案解析】
評論
0/150
提交評論