版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省淮安市盱眙縣馬壩高級中學(xué)2026屆數(shù)學(xué)高二第一學(xué)期期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個高階等差數(shù)列,其前7項分別為1,5,11,21,37,61,95,則該數(shù)列的第7項為()A.101 B.99C.95 D.912.將一顆骰子先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.3.下列導(dǎo)數(shù)運算正確的是()A. B.C. D.4.已知等比數(shù)列{an}的前n項和為S,若,且,則S3等于()A.28 B.26C.28或-12 D.26或-105.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.6.過雙曲線-=1(a>0,b>0)的左焦點F(-c,0)作圓O:x2+y2=a2的切線,切點為E,延長FE交雙曲線于點P,若E為線段FP的中點,則雙曲線的離心率為()A. B.C.+1 D.7.命題“,”的否定是()A., B.,C, D.,8.設(shè)變量,滿足約束條件則的最小值為()A.3 B.-3C.2 D.-29.已知直線過點,,則直線的方程為()A. B.C. D.10.已知函數(shù),則曲線在點處的切線與坐標軸圍成的三角形的面積是()A B.C. D.11.如圖,在正方體ABCD-EFGH中,P在棱BC上,BP=x,平行于BD的直線l在正方形EFGH內(nèi),點E到直線l的距離記為d,記二面角為A-l-P為θ,已知初始狀態(tài)下x=0,d=0,則()A.當(dāng)x增大時,θ先增大后減小 B.當(dāng)x增大時,θ先減小后增大C.當(dāng)d增大時,θ先增大后減小 D.當(dāng)d增大時,θ先減小后增大12.函數(shù),若實數(shù)是函數(shù)的零點,且,則()A. B.C. D.無法確定二、填空題:本題共4小題,每小題5分,共20分。13.在梯形中,,,.將梯形繞所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為______.14.在數(shù)列中,,,,若數(shù)列是遞減數(shù)列,數(shù)列是遞增數(shù)列,則______15.復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù)______16.如圖所示,在正方體中,點是底面內(nèi)(含邊界)的一點,且平面,則異面直線與所成角的取值范圍為____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線經(jīng)過兩條直線和的交點,且與直線垂直(1)求直線的一般式方程;(2)若圓的圓心為點,直線被該圓所截得的弦長為,求圓的標準方程18.(12分)如圖,已知圓錐SO底面圓的半徑r=1,直徑AB與直徑CD垂直,母線SA與底面所成的角為.(1)求圓錐SO的側(cè)面積;(2)若E為母線SA的中點,求二面角E-CD-B的大小.(結(jié)果用反三角函數(shù)值表示)19.(12分)已知的離心率為,短軸長為2,F(xiàn)為右焦點(1)求橢圓的方程;(2)在x軸上是否存在一點M,使得過F的任意一條直線l與橢圓的兩個交點A,B,恒有,若存在求出M的坐標,若不存在,說明理由20.(12分)如圖,四棱錐的底面為正方形,底面,設(shè)平面與平面的交線為.(1)證明:;(2)已知,為直線上的點,求與平面所成角的正弦值的最大值.21.(12分)王同學(xué)入讀某大學(xué)金融專業(yè),過完年剛好得到紅包6000元,她計劃以此作為啟動資金進行理投資,每月月底獲得的投資收益是該月月初投入資金的20%,并從中拿出1000元作為自己的生活費,余款作為資金全部投入下個月,如此繼續(xù).設(shè)第n個月月底的投資市值為an.(1)求證:數(shù)列{-5000}為等比數(shù)列;(2)如果王同學(xué)想在第二年過年的時候給奶奶買一臺全身按摩椅(商場標價為12899元),將一年后投資市值全部取出來是否足夠?22.(10分)已知數(shù)列為等差數(shù)列,是公比為2的等比數(shù)列,且滿足(1)求數(shù)列和的通項公式;(2)令求數(shù)列的前n項和;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)所給數(shù)列找到規(guī)律:兩次后項減前項所得數(shù)列為公差為2的數(shù)列,進而反向確定原數(shù)列的第7項.【詳解】根據(jù)所給定義,用數(shù)列的后一項減去前一項得到一個數(shù)列,得到的數(shù)列也用后一項減去前一項得到一個數(shù)列,即得到了一個等差數(shù)列,如圖:故選:C.2、B【解析】基本事件總數(shù),再利用列舉法求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個數(shù),由此能求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點數(shù)之和,基本事件總數(shù),點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個,則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B3、B【解析】利用基本初等函數(shù)的導(dǎo)數(shù)和復(fù)合函數(shù)的導(dǎo)數(shù),依次分析即得解【詳解】選項A,,錯誤;選項B,,正確;選項C,,錯誤;選項D,,錯誤故選:B4、C【解析】根據(jù)等比數(shù)列的通項公式列出方程求解,直接計算S3即可.【詳解】由可得,即,所以,又,解得,所以,即,當(dāng)時,,所以,當(dāng)時,,所以,故選:C5、B【解析】根據(jù)正方體的性質(zhì)確定3條棱兩兩互為異面直線的情況數(shù),結(jié)合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.6、A【解析】設(shè)F′為雙曲線的右焦點,連接OE,PF′,根據(jù)圓的切線性質(zhì)和三角形中位線得到|OE|=a,|PF′|=2a,利用雙曲線的定義求得|PF|=4a,得到|EF|=2a,在Rt△OEF中,利用勾股定理建立關(guān)系即可求得離心率的值.【詳解】不妨設(shè)E在x軸上方,F(xiàn)′為雙曲線的右焦點,連接OE,PF′,如圖所示:因為PF是圓O的切線,所以O(shè)E⊥PE,又E,O分別為PF,F(xiàn)F′的中點,所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根據(jù)雙曲線的定義,|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故選A.【點睛】本題考查雙曲線的離心率的求法,聯(lián)想到雙曲線的另一個焦點,作輔助線,利用雙曲線的定義是求解離心率問題的有效方法.7、D【解析】由含量詞命題否定的定義,寫出命題的否定即可【詳解】命題“,”的否定是:,,故選:D.8、D【解析】轉(zhuǎn)化為,則最小即直線在軸上的截距最大,作出不等式組表示的可行域,數(shù)形結(jié)合即得解【詳解】轉(zhuǎn)化為,則最小即直線在軸上的截距最大作出不等式組表示的可行域如圖中陰影部分所示,作出直線,平移該直線,當(dāng)直線經(jīng)過時,在軸上的截距最大,最小,此時,故選:D9、C【解析】根據(jù)兩點的坐標和直線的兩點式方程計算化簡即可.【詳解】由直線的兩點式方程可得,直線l的方程為,即故選:C10、B【解析】根據(jù)導(dǎo)數(shù)的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B11、C【解析】以F為坐標原點,F(xiàn)B,F(xiàn)G,F(xiàn)E所在直線為x軸,y軸,z軸建立空間直角坐標系,設(shè)正方體的棱長為2,則P(2,x,0),A(2,0,2),設(shè)直線l與EF,EH交于點M、N,,求得平面AMN的法向量為,平面PMN的法向量,由空間向量的夾角公式表示出,對于A,B選項,令d=0,則,由函數(shù)的單調(diào)性可判斷;對于C,D,當(dāng)x=0時,則,令,利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性可判斷.【詳解】解:由題意,以F為坐標原點,F(xiàn)B,F(xiàn)G,F(xiàn)E所在直線為x軸,y軸,z軸建立空間直角坐標系如圖所示,設(shè)正方體的棱長為2,則P(2,x,0),A(2,0,2),設(shè)直線l與EF,EH交于點M、N,則,所以,,設(shè)平面AMN的法向量為,則,即,令,則,設(shè)平面PMN的法向量為,則,即,令,則,,對于A,B選項,令d=0,則,顯示函數(shù)在是為減函數(shù),即減小,則增大,故選項A,B錯誤;對于C,D,對于給定的,如圖,過作,垂足為,過作,垂足為,過作,垂足為,當(dāng)在下方時,,設(shè),則對于給定的,為定值,此時設(shè)二面角為,二面角為,則二面角為,且,故,而,故即,當(dāng)時,為減函數(shù),故為增函數(shù),當(dāng)時,為增函數(shù),故為減函數(shù),故先增后減,故D錯誤.當(dāng)在上方時,,則對于給定的,為定值,則有二面角為,且,因,故為增函數(shù),故為減函數(shù),綜上,對于給定的,隨的增大而減少,故選:C.12、A【解析】利用函數(shù)在遞減求解.【詳解】因為函數(shù)在遞減,又實數(shù)是函數(shù)的零點,即,又因為,所以,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】畫出幾何體的直觀圖,利用已知條件,求解幾何體的體積即可【詳解】梯形ABCD:由題意可知空間幾何體的直觀圖如圖:旋轉(zhuǎn)體是底面半徑為1,高為2的圓柱,挖去一個相同底面高為1的圓錐,幾何體的體積為:故答案為:14、【解析】根據(jù)所給條件可歸納出當(dāng)時,,利用迭代法即可求解.【詳解】因為,,,所以,即,,且是遞減數(shù)列,數(shù)列是遞增數(shù)列或(舍去),,,故可得當(dāng)時,,故答案為:15、##【解析】根據(jù)共軛復(fù)數(shù)的概念,即可得答案.【詳解】由題意可知:復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù),故答案為:16、【解析】過作平面平面,得到在與平面的交線上,連接,證得平面平面,得到點在上,設(shè)正方體的棱長為,且,得到,,設(shè)與所成角為,利用向量的夾角公式,求得,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】過作平面平面,因為點是底面內(nèi)(含邊界)的一點,且平面,則平面,即在與平面的交線上,連接,因為且,所以四邊形是平行四邊形,所以,平面,同理可證平面,所以平面平面,則平面即為,點在線段上,設(shè)正方體的棱長為,且,則,,可得,設(shè)與所成角為,則,當(dāng)時,取得最小值,最小值為,當(dāng)或時,取得最大值,最大值為故答案為三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意求出兩直線的交點,再求出所求直線的斜率,用點斜式寫出直線的方程;(2)根據(jù)題意求出圓的半徑,由圓心寫出圓的標準方程【小問1詳解】解:由題意知,解得,直線和的交點為;設(shè)直線的斜率為,與直線垂直,;直線的方程為,化為一般形式為;【小問2詳解】解:設(shè)圓的半徑為,則圓心為到直線的距離為,由垂徑定理得,解得,圓的標準方程為18、(1)(2)【解析】(1)先根據(jù)母線與底面的夾角求出圓錐的母線長,然后根據(jù)圓錐的側(cè)面積公式即可(2)利用三角形的中位線性質(zhì),先求出二面角,然后利用二面角與二面角的互補關(guān)系即可求得【小問1詳解】根據(jù)母線SA與底面所成的角為,且底面圓的半徑可得:則圓錐的側(cè)面積為:【小問2詳解】如圖所示,過點作底面的垂線交于,連接,則為的中位線則有:,,易知,則,又直徑AB與直徑CD垂直,則則有:為二面角可得:又二面角與二面角互為補角,則二面角的余弦值為故二面角大小為19、(1);(2)存在點M滿足條件,點M的坐標為.【解析】(1)根據(jù)給定條件直接計算出即可求解作答.(2)假定存在點,當(dāng)直線l與x軸不重合時,設(shè)出l的方程,與橢圓C的方程聯(lián)立,借助、斜率互為相反數(shù)計算得解,再驗證直線l與x軸重合的情況即可作答.【小問1詳解】依題意,,而離心率,即,解得,所以橢圓C的方程為:.【小問2詳解】由(1)知,,假定存在點滿足條件,當(dāng)直線與x軸不重合時,設(shè)l的方程為:,由消去x并整理得:,設(shè),則有,因,則直線、斜率互為相反數(shù),于是得:,整理得,即,則有,即,而m為任意實數(shù),則,當(dāng)直線l與x軸重合時,點A,B為橢圓長軸的兩個端點,點也滿足,所以存在點M滿足條件,點M的坐標為.【點睛】思路點睛:解答直線與橢圓相交的問題,常把直線與橢圓的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系.20、(1)證明見解析(2)【解析】(1)由可證得平面,根據(jù)線面平行的性質(zhì)可證得結(jié)論;(2)以為坐標原點建立空間直角坐標系,設(shè),利用線面角的向量求法可表示出,分別在、和三種情況下,結(jié)合基本不等式求得所求最大值.【小問1詳解】四邊形為正方形,,又平面,平面,平面,又平面,平面平面,.【小問2詳解】以為坐標原點,為軸可建立如圖所示空間直角坐標系,則,,,,由(1)知:,則可設(shè),,,,設(shè)平面的法向量,則,令,則,,,設(shè)直線與平面所成角為,;當(dāng)時,;當(dāng)時,(當(dāng)且僅當(dāng),即時取等號);當(dāng)時,;綜上所述:直線與平面所成角正弦值的最大值為.21、(1)證明見解析(2)足夠【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 畹町燒烤活動方案策劃(3篇)
- 打井建房施工方案(3篇)
- 大堂換燈施工方案(3篇)
- 天津?qū)I(yè)活動策劃方案(3篇)
- 社團冬至活動策劃方案(3篇)
- 物流行業(yè)運輸與配送規(guī)范
- 2025年老齡服務(wù)行業(yè)護理操作規(guī)范
- 醫(yī)院開業(yè)廣告投放方案
- 給排水技術(shù)培訓(xùn)
- 2025年大學(xué)大二(管理學(xué))專業(yè)核心能力測試題及解析
- 校園小導(dǎo)游測試卷(單元測試)2025-2026學(xué)年二年級數(shù)學(xué)上冊(人教版)
- 2025年西藏公開遴選公務(wù)員筆試試題及答案解析(綜合類)
- 揚州市梅嶺中學(xué)2026屆八年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析
- 末梢血標本采集指南
- GB/T 46156-2025連續(xù)搬運設(shè)備安全規(guī)范通用規(guī)則
- AI賦能的虛擬仿真教學(xué)人才培養(yǎng)模式創(chuàng)新報告
- 數(shù)據(jù)管理能力成熟度評估模型(DCMM)評估師資格培訓(xùn)試題及答案
- 工程變更簽證培訓(xùn)課件
- 自然分娩的好處
- 教練技術(shù)一階段課件
- 國企跟投管理辦法
評論
0/150
提交評論