版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省安慶市五校聯(lián)盟2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末達(dá)標(biāo)檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)到與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列、這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23則該數(shù)列的第100項為()A.4862 B.4962C.4852 D.49522.若曲線f(x)=x2的一條切線l與直線平行,則l的方程為()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=03.已知數(shù)列的前n項和為,,,則=()A. B.C. D.4.若,則=()A.244 B.1C. D.5.已知函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是()A. B.C. D.6.在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做“等和數(shù)列”,這個數(shù)叫做數(shù)列的公和.已知等和數(shù)列{an}中,,公和為5,則()A.2 B.﹣2C.3 D.﹣37.已知數(shù)列滿足,,記數(shù)列的前n項和為,若對于任意,不等式恒成立,則實數(shù)k的取值范圍為()A. B.C. D.8.在正方體中,與直線和都垂直,則直線與的關(guān)系是()A.異面 B.平行C.垂直不相交 D.垂直且相交9.已知的二項展開式的各項系數(shù)和為32,則二項展開式中的系數(shù)為A5 B.10C.20 D.4010.已知數(shù)列通項公式,則()A.6 B.13C.21 D.3111.已知直線與直線垂直,則實數(shù)a為()A. B.或C. D.或12.已知橢圓的長軸長,短軸長,焦距長成等比數(shù)列,則橢圓離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.分別過橢圓的左、右焦點、作兩條互相垂直的直線、,它們的交點在橢圓的內(nèi)部,則橢圓的離心率的取值范圍是________14.直線恒過定點,則定點坐標(biāo)為________15.已知橢圓的右焦點為,短軸的一個端點為,直線交橢圓于兩點.若,點到直線的距離不小于,則橢圓的離心率的取值范圍是______________16.已知、是空間內(nèi)兩個單位向量,且,如果空間向量滿足,且,,則對于任意的實數(shù)、,的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2的周長為6,離心率等于.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(4,0)的直線l交橢圓C于M、N兩點,且OM⊥ON,求直線l的方程.18.(12分)2021年11月初某市出現(xiàn)新冠病毒感染者,該市教育局部署了“停課不停學(xué)”的行動,老師們立即開展了線上教學(xué).某中學(xué)為了解教學(xué)效果,于11月30日復(fù)課第一天安排了測試,數(shù)學(xué)教師為了調(diào)查高二年級學(xué)生這次測試的數(shù)學(xué)成績與每天在線學(xué)習(xí)數(shù)學(xué)的時長之間的相關(guān)關(guān)系,對在校高二學(xué)生隨機(jī)抽取45名進(jìn)行調(diào)查,了解到其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時,并得到如下的統(tǒng)計圖:(1)根據(jù)統(tǒng)計圖填寫下面列聯(lián)表,是否有95%的把握認(rèn)為“高二學(xué)生的這次摸底考試數(shù)學(xué)成績與其每天在線學(xué)習(xí)數(shù)學(xué)的時長有關(guān)”;數(shù)學(xué)成績不超過120分?jǐn)?shù)學(xué)成績超過120分總計每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時25每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時總計45(2)從被抽查的,且這次數(shù)學(xué)成績超過120分的學(xué)生中,按分層抽樣的方法抽取5名,再從這5名同學(xué)中隨機(jī)抽取2名,求這兩名同學(xué)中至多有一名每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時的概率附:,其中.參考數(shù)據(jù):0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)已知橢圓C:的左右焦點分別為,,點P是橢圓C上位于第二象限的任一點,直線l是的外角平分線,過左焦點作l的垂線,垂足為N,延長交直線于點M,(其中O為坐標(biāo)原點),橢圓C的離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過右焦點的直線交橢圓C于A,B兩點,點T在線段AB上,且,點B關(guān)于原點的對稱點為R,求面積的取值范圍.20.(12分)已知橢圓,四點中,恰有三點在橢圓上(1)求橢圓的方程;(2)設(shè)直線不經(jīng)過點,且與橢圓相交于不同的兩點.若直線與直線的斜率之和為,證明:直線過一定點,并求此定點坐標(biāo)21.(12分)已知,(1)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;(2)當(dāng)時,,求實數(shù)a的取值范圍22.(10分)在直角坐標(biāo)系中,以坐標(biāo)原點O為圓心的圓與直線相切.(1)求圓O的方程;(2)設(shè)圓O交x軸于A,B兩點,點P在圓O內(nèi),且是、的等比中項,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意可得數(shù)列2,3,5,8,12,17,23,,滿足:,,從而利用累加法即可求出,進(jìn)一步即可得到的值【詳解】2,3,5,8,12,17,23,后項減前項可得1,2,3,4,5,6,所以,所以.所以.故選:D2、D【解析】設(shè)切點為,則切線的斜率為,然后根據(jù)條件可得的值,然后可得答案.【詳解】設(shè)切點為,因為,所以切線的斜率為因為曲線f(x)=x2的一條切線l與直線平行,所以,即所以l的方程為,即故選:D3、D【解析】利用公式計算得到,得到答案【詳解】由已知得,即,而,所以故選:D4、D【解析】分別令代入已知關(guān)系式,再兩式求和即可求解.【詳解】根據(jù),令時,整理得:令x=2時,整理得:由①+②得,,所以.故選:D.5、A【解析】由題意,在上恒成立,只需滿足即可求解.【詳解】解:因為,所以,因為函數(shù)在上單調(diào)遞減,所以在上恒成立,只需滿足,即,解得故選:A.6、C【解析】利用已知即可求得,再利用已知可得:,問題得解【詳解】解:根據(jù)題意,等和數(shù)列{an}中,,公和為5,則,即可得,又由an﹣1+an=5,則,則3;故選C【點睛】本題主要考查了新概念知識,考查理解能力及轉(zhuǎn)化能力,還考查了數(shù)列的周期性,屬于中檔題7、C【解析】由已知得,根據(jù)等比數(shù)列的定義得數(shù)列是首項為,公比為的等比數(shù)列,由此求得,然后利用裂項求和法求得,進(jìn)而求得的取值范圍.【詳解】解:依題意,當(dāng)時,,則,所以數(shù)列是首項為,公比為的等比數(shù)列,,即,所以,所以,所以的取值范圍是.故選:C.8、B【解析】以為坐標(biāo)原點,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,根據(jù)向量垂直的坐標(biāo)表示求出,再利用向量的坐標(biāo)運算可得,根據(jù)共線定理即可判斷.【詳解】設(shè)正方體的棱長為1.以為坐標(biāo)原點,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則.設(shè),則,取.,.故選:B【點睛】本題考查了空間向量垂直的坐標(biāo)表示、空間向量的坐標(biāo)表示、空間向量共線定理,屬于基礎(chǔ)題.9、B【解析】首先根據(jù)二項展開式的各項系數(shù)和,求得,再根據(jù)二項展開式的通項為,求得,再求二項展開式中的系數(shù).【詳解】因為二項展開式的各項系數(shù)和,所以,又二項展開式的通項為=,,所以二項展開式中的系數(shù)為.答案選擇B【點睛】本題考查二項式展開系數(shù)、通項等公式,屬于基礎(chǔ)題10、C【解析】令即得解.【詳解】解:令得.故選:C11、B【解析】由題可得,即得.【詳解】∵直線與直線垂直,∴,解得或.故選:B.12、A【解析】由題意,,結(jié)合,求解即可【詳解】∵橢圓的長軸長,短軸長,焦距長成等比數(shù)列∴∴又∵∴∴,即∴e=又在橢圓e>0∴e=故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)條件可知以為直徑的圓在橢圓的內(nèi)部,可得,再根據(jù),即可求得離心率的取值范圍.【詳解】根據(jù)條件可知,以為直徑的圓與橢圓沒有交點,即,即,,即.故填:.【點睛】本題考查橢圓離心率的取值范圍,求橢圓離心率是??碱}型,涉及的方法包含1.根據(jù)直接求,2.根據(jù)條件建立關(guān)于的齊次方程求解,3.根據(jù)幾何關(guān)系找到的等量關(guān)系求解.14、【解析】解方程組可求得定點坐標(biāo).【詳解】直線方程可化為,由,可得.故直線恒過定點.故答案為:.15、【解析】設(shè)左焦點為,連接,.則四邊形是平行四邊形,可得.設(shè),由點M到直線l的距離不小于,即有,解得.再利用離心率計算公式即可得出范圍【詳解】設(shè)左焦點為,連接,.則四邊形是平行四邊形,故,所以,所以,設(shè),則,故,從而,,,所以,即橢圓的離心率的取值范圍是【點睛】本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、點到直線的距離公式、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題16、【解析】根據(jù)已知可設(shè),,,根據(jù)已知條件求出、、的值,將向量用坐標(biāo)加以表示,利用空間向量的模長公式可求得的最小值.【詳解】因為、是空間內(nèi)兩個單位向量,且,所以,,因為,則,不妨設(shè),,設(shè),則,,解得,則,因為,可得,則,所以,,當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立,因此,對于任意的實數(shù)、,的最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)由條件得,再結(jié)合,可求得橢圓方程;(2)由題意設(shè)直線l:x=my+4,設(shè)M(x1,y1),N(x2,y2),直線方程與橢圓方程聯(lián)立方程組,消去,整理后利用根與系的關(guān)系可得,,再由OM⊥ON,可得x1x2+y1y2=0,從而可列出關(guān)于的方程,進(jìn)而可求出的值,即可得到直線的方程【詳解】(1)由條件知,解得,則故橢圓的方程為(2)顯然直線l的斜率存在,且斜率不為0,設(shè)直線l:x=my+4交橢圓C于M(x1,y1),N(x2,y2),由,當(dāng)=(24m)2-4(3m2+4)×36>0時,有,,由條件OM⊥ON可得,,即x1x2+y1y2=0,從而有(my1+4)(my2+4)+y1y2=0,(m2+1)y1y2+4m(y1+y2)+16=0,,解得,故且滿足>0從而直線l方程為或18、(1)表格見解析,有(2)【解析】(1)根據(jù)統(tǒng)計圖計算填表即可;(2)根據(jù)古典概型計算公式計算即可.【小問1詳解】根據(jù)統(tǒng)計圖可得:每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時數(shù)學(xué)成績不超過120分的有人,每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時數(shù)學(xué)成績超過120分的有人,每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時數(shù)學(xué)成績不超過120分的有人,每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時數(shù)學(xué)成績超過120分的有人,可得列聯(lián)表如下:數(shù)學(xué)成績不超過120分?jǐn)?shù)學(xué)成績超過120分總計每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時151025每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時51520總計202545根據(jù)列聯(lián)表中的數(shù)據(jù),所以有95%的把握認(rèn)為“高二學(xué)生的這次摸底考試數(shù)學(xué)成績與其每天在線學(xué)習(xí)數(shù)學(xué)的時長有關(guān)”【小問2詳解】由列聯(lián)表可得,被抽查學(xué)生中這次數(shù)學(xué)成績超過120分的有25人,其中每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時的有10人,每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時的有15人,人數(shù)比為2∶3,按分層抽樣每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時的抽2人,記為:1,2;每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時的抽3人,記為:a,b,c.所有可能結(jié)果如下:,共計10種.設(shè)事件A為“兩名同學(xué)中至多有一名每天在線學(xué)習(xí)數(shù)學(xué)時長超過一小時”包含這7種可能結(jié)果所以19、(1)(2)【解析】(1)根據(jù)題意可得到的值,結(jié)合橢圓的離心率,即可求得b,求得答案;(2)由可得,進(jìn)一步推得,于是設(shè)直線方程和橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系,求得弦長,表示出三角形AOB的面積,利用換元法結(jié)合二次函數(shù)的性質(zhì)求其范圍.【小問1詳解】由題意可知:為的中點,為的中點,為的中位線,,,又,故,即,,又,,,橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】由題意可知,,,①當(dāng)過的直線與軸垂直時,,,②當(dāng)過的直線不與軸垂直時,可設(shè),,直線方程為,聯(lián)立,可得:.,,,由弦長公式可知,到距離為,故,令,則原式變?yōu)?,令,原式變?yōu)楫?dāng)時,故,由①②可知.【點睛】本題考查了橢圓方程的求解,以及直線和橢圓相交時的三角形的面積問題,考查學(xué)生的計算能力和數(shù)學(xué)素養(yǎng),解答的關(guān)鍵是計算三角形面積時要理清運算的思路,準(zhǔn)確計算.20、(1)(2)證明見解析,定點【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設(shè)斜率存在,設(shè)出直線,利用斜率之和為,求出之間的關(guān)系,即可求出定點,再說明斜率不存在時,直線仍過該點即可.【小問1詳解】由對稱性同時在橢圓上或同時不在橢圓上,從而在橢圓上,因此不在橢圓上,故在橢圓上,將,代入橢圓的方程,解得,所以橢圓的方程為【小問2詳解】當(dāng)直線斜率存在時,令方程為,由得所以得方程為,過定點當(dāng)直線斜率不存在時,令方程為,由,即解得此時直線方程為,也過點綜上,直線過定點.【點睛】本題關(guān)鍵點在于先假設(shè)斜率存在,設(shè)出直線,利用題目所給條件得到之間的關(guān)系,即可求出定點,再說明斜率不存在時,直線仍過該點即可,屬于定點問題的常見解法,注意積累掌握.21、(1)(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再解導(dǎo)函數(shù)的不等式,即可求出函數(shù)的單調(diào)遞減區(qū)間;(2)依題意可得當(dāng)時,當(dāng)時,顯然成立,當(dāng)時只需,參變分離得到,令,,利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,即可求出參數(shù)的取值范圍;【小問1詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年金融科技公司成立項目可行性研究報告
- 2025年現(xiàn)代化農(nóng)業(yè)種植科技項目可行性研究報告
- 2025年快遞物流無接觸配送系統(tǒng)可行性研究報告
- 2025年智能穿戴設(shè)備市場分析與開發(fā)項目可行性研究報告
- 2025年公共交通服務(wù)優(yōu)化可行性研究報告
- 中梵簽約協(xié)議書
- 浙江國貿(mào)合同范本
- 2025年房產(chǎn)中介服務(wù)平臺建設(shè)項目可行性研究報告
- 高三歷史上學(xué)期期中考試卷題庫試題附答案完整版
- 論工程造價的合理確定
- 勞務(wù)派遣公司工作方案
- 物理趣味題目試題及答案
- 華師大版數(shù)學(xué)七年級上冊《4.3 立體圖形的表面展開圖》聽評課記錄
- 2023-2024學(xué)年四川省成都市高二上學(xué)期期末調(diào)研考試地理試題(解析版)
- 陜西單招數(shù)學(xué)試題及答案
- 應(yīng)收賬款債權(quán)轉(zhuǎn)讓協(xié)議
- 四川省宜賓市長寧縣2024-2025學(xué)年九年級上學(xué)期期末化學(xué)試題(含答案)
- CNAS-CC01:2015 管理體系認(rèn)證機(jī)構(gòu)要求
- 可行性報告商業(yè)計劃書
- 甲流防控知識培訓(xùn)課件
- 借住合同范本(2篇)
評論
0/150
提交評論