重慶市巴南區(qū)2025年數(shù)學高二第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
重慶市巴南區(qū)2025年數(shù)學高二第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
重慶市巴南區(qū)2025年數(shù)學高二第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
重慶市巴南區(qū)2025年數(shù)學高二第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
重慶市巴南區(qū)2025年數(shù)學高二第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

重慶市巴南區(qū)2025年數(shù)學高二第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從0,2中選一個數(shù)字,從1,3,5中選兩個數(shù)字,組成無重復數(shù)字的三位數(shù),其中偶數(shù)的個數(shù)為()A.24 B.18C.12 D.62.已知函數(shù),那么“”是“在上為增函數(shù)”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知向量a→=(1,1,k),A. B.C. D.4.已知平面,的法向量分別為,,則()A. B.C.,相交但不垂直 D.,的位置關系不確定5.某中學舉行黨史學習教育知識競賽,甲隊有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時現(xiàn)場從中隨機抽出名選手答題,則至少有名女同學被選中的概率是()A. B.C. D.6.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.7.已知橢圓C:()的長軸的長為4,焦距為2,則C的方程為()A B.C. D.8.已知等比數(shù)列的各項均為正數(shù),且,則()A. B.C. D.9.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.點到直線的距離為2,則的值為()A.0 B.C.0或 D.0或11.設拋物線的焦點為,準線與軸的交點為,是上一點,若,則()A. B.C. D.12.若圓與直線相切,則實數(shù)的值為()A. B.或3C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,直線與橢圓交于兩點,且,則該橢圓的離心率為__________.14.已知AB為圓O:的直徑,點P為橢圓上一動點,則的最小值為______15.曲線在點處的切線方程是______.16.已知數(shù)列的前項和為,且滿足,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,已知橢圓的離心率為,且短軸長為2.(1)求橢圓C的方程;(2)設橢圓C的上頂點為B,右焦點為F,直線l與橢圓交于M,N兩點,問是否存在直線l,使得F為的垂心,若存在,求出直線l的方程;若不存在,說明理由.18.(12分)已知p:關于x的方程至多有一個實數(shù)解,.(1)若命題p為真命題,求實數(shù)a的取值范圍;(2)若p是q的充分不必要條件,求實數(shù)m的取值范圍.19.(12分)如圖,已知橢圓:()的左、右焦點分別為、,離心率為.過的直線與橢圓的一個交點為,過垂直于的直線與橢圓的一個交點為,.(1)求橢圓的方程和點的軌跡的方程;(2)若曲線上的動點到直線:的最大距離為,求的值.20.(12分)已知橢圓的一個焦點與拋物線的焦點重合,橢圓上的動點到焦點的最大距離為.(1)求橢圓的標準方程;(2)過作一條不與坐標軸垂直的直線交橢圓于兩點,弦的中垂線交軸于,當變化時,是否為定值?若是,定值為多少?21.(12分)已知橢圓,其上頂點與左右焦點圍成的是面積為的正三角形.(1)求橢圓的方程;(2)過橢圓的右焦點的直線(的斜率存在)交橢圓于兩點,弦的垂直平分線交軸于點,問:是否是定值?若是,求出定值:若不是,說明理由.22.(10分)已知圓:,直線:.圓與圓關于直線對稱(1)求圓的方程;(2)點是圓上的動點,過點作圓的切線,切點分別為、.求四邊形面積的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意,結(jié)合計數(shù)原理中的分步計算,以及排列組合公式,即可求解.【詳解】根據(jù)題意,要使組成無重復數(shù)字的三位數(shù)為偶數(shù),則從0,2中選一個數(shù)字為個位數(shù),有種可能,從1,3,5中選兩個數(shù)字為十位數(shù)和百位數(shù),有種可能,故這個無重復數(shù)字的三位數(shù)為偶數(shù)的個數(shù)為.故選:C.2、A【解析】對函數(shù)進行求導得,進而得時,,在上為增函數(shù),然后判斷充分性和必要性即可.【詳解】解:因為的定義域是,所以,當時,,在上為增函數(shù).所以在上為增函數(shù),是充分條件;反之,在上為增函數(shù)或,不是必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,屬于中檔題.3、D【解析】根據(jù)向量的坐標運算和向量垂直數(shù)量積為0可解.【詳解】解:根據(jù)題意,易得a→∵與兩向量互相垂直,∴0+2+k+2=0,解得.故選:D4、C【解析】利用向量法判斷平面與平面的位置關系.【詳解】因為平面,的法向量分別為,,所以,即不垂直,則,不垂直,因為,即即不平行,則,不平行,所以,相交但不垂直,故選:C5、D【解析】現(xiàn)場選名選手,共種情況,設,,,四位同學為男同學則沒有女同學被選中的情況,共有6種,利用對立事件進行求解,即可得到答案;【詳解】現(xiàn)場選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設,,,四位同學為男同學則沒有女同學被選中的情況是:,,,,,共種,則至少有一名女同學被選中的概率為.故選:.6、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結(jié)果.【詳解】.故選:D7、D【解析】由題設可得求出橢圓參數(shù),即可得方程.【詳解】由題設,知:,可得,則,∴C的方程為.故選:D.8、B【解析】利用對數(shù)的運算性質(zhì),結(jié)合等比數(shù)列的性質(zhì)可求得結(jié)果.【詳解】是各項均為正數(shù)的等比數(shù)列,,,,.故選:B9、A【解析】根據(jù)直線垂直求出的范圍即可得出.【詳解】由直線垂直可得,解得或1,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.10、C【解析】根據(jù)點到直線的距離公式即可得出答案.【詳解】解:點到直線的距離為,解得或.故選:C.11、D【解析】求出拋物線的準線方程,可得出點的坐標,利用拋物線的定義可求得點的坐標,再利用兩點間的距離公式可求得結(jié)果.【詳解】易知拋物線焦點為,準線方程為,可得準線與軸的交點,設點,由拋物線的性質(zhì),,可得,所以,,解得,即點,所以.故選:D.12、D【解析】利用圓心到直線的距離等于半徑可得答案.【詳解】若圓與直線相切,則到直線的距離為,所以,解得,或.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直線與橢圓相交,求交點,利用列式求解即可.【詳解】聯(lián)立方程得,因為,所以,即,所以,.故答案為:.14、2【解析】方法一:通過對稱性取特殊位置,設出P的坐標,利用向量的數(shù)量積轉(zhuǎn)化求解最小值即可方法二:利用向量的數(shù)量積,轉(zhuǎn)化為向量的和與差的平方,通過圓的特殊性,轉(zhuǎn)化求解即可【詳解】解:方法一:依據(jù)對稱性,不妨設直徑AB在x軸上,x,,,從而故答案為2方法二:,而,則答案2故答案為2【點睛】本題考查直線與圓的位置關系、橢圓方程的幾何性質(zhì)考查轉(zhuǎn)化思想以及計算能力15、x-y-2=0【解析】解:因為曲線在點(1,-1)處的切線方程是由點斜式可知為x-y-2=016、【解析】先求出,然后當時,由,得,兩式相減可求出,再驗證,從而可得數(shù)列為等比數(shù)列,進而可求出,再將問題轉(zhuǎn)化為在上恒成立,所以,從而可求出實數(shù)的取值范圍【詳解】當時,,得,當時,由,得,兩式相減得,得,滿足此式,所以,因為,所以數(shù)列是以為公比,為首項的等比數(shù)列,所以,所以對于任意的,不等式恒成立,可轉(zhuǎn)化為對于任意的,恒成立,即在上恒成立,所以,解得或,所以實數(shù)的取值范圍為故答案為:【點睛】關鍵點點睛:此題考查數(shù)列通項公的求法,等比數(shù)列求和公式的應用,考查不等式恒成立問題,解題的關鍵是求出數(shù)列的通項公式后求得,再將問題轉(zhuǎn)化為在上恒成立求解即可,考查數(shù)學轉(zhuǎn)化思想,屬于較難題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】(1)根據(jù)離心率及短軸長,利用橢圓中的關系可以求出橢圓方程;(2)設直線的方程,與橢圓方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關系,結(jié)合已知和斜率公式,可以求出直線的方程.【小問1詳解】,,,,橢圓的標準方程為.【小問2詳解】由已知可得,,,∴,∵,設直線的方程為:,代入橢圓方程整理得,設,,則,,∵,∴.即,因為,,即..所以,或.又時,直線過點,不合要求,所以.故存在直線:滿足題設條件.18、(1)(2)【解析】(1)根據(jù)命題p為真命題,可得,解之即可得解;(2)若p是q的充分不必要條件,則,列出不等式組,解之即可得出答案.【小問1詳解】解:命題p:關于x的方程至多有一個實數(shù)解,∴,解得,∴實數(shù)a的取值范圍是;【小問2詳解】解:命題,∵p是q的充分不必要條件,∴,∴,且兩式等號不能同時取得,解得,∴實數(shù)m的取值范圍是.19、(1)橢圓的方程為,點的軌跡的方程為(2)【解析】(1)由題意可得,求出,再結(jié)合,求出,從而可得橢圓的方程,設,則由題意可得,坐標代入化簡可得點的軌跡的方程,(2)由題意結(jié)合點到直線的距離公式可得,設,將直線方程代入橢圓方程中消去,整理利用根與系數(shù)的關系,由,可得,因為,代入化簡計算可求得答案【小問1詳解】由題意得,解得,則,所以橢圓的方程,設,則由題意可得,所以,所以,所以點軌跡的方程為【小問2詳解】由(1)知曲線是以原點為圓心,1為半徑的圓,因為曲線上的動點到直線:的最大距離為,所以,得,設,由,得,所以,,因為,所以,所以,所以,因為,所以,所以,,所以,得,得(舍去),或20、(1)(2)是,【解析】(1)由拋物線方程求出其焦點坐標,結(jié)合橢圓的幾何性質(zhì)列出,的方程,解方程求,由此可得橢圓方程,(2)聯(lián)立直線橢圓橢圓方程,求出弦的長和其中垂線方程,再計算,由此完成證明.【小問1詳解】拋物線的交點坐標為(1,0),,又,又,∴,橢圓的標準方程為.【小問2詳解】設直線的斜率為,則直線的方程為,聯(lián)立消元得到,顯然,,∴,又的中點坐標為,直線的中垂線的斜率為∴直線的中垂線方程為,令,,(常數(shù)).【點睛】求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值21、(1);(2)是定值,定值為4【解析】(1)根據(jù)正三角形性質(zhì)與面積可求得即可求得方程;(2)當直線斜率不為0時,設其方程代入橢圓方程利用韋達定理求得兩根關系式,進而求得的表達式,最后求比值即可;當直線斜率為0時直接求解即可【詳解】(1)為正三角形,,可得,且,∴橢圓的方程為.(2)分以下兩種情況討論:①當直線斜率不為0時,設其方程為,且,聯(lián)立,消去得,則,且,∴弦的中點的坐標為,則弦的垂直平分線為,令,得,,又,;②當直線斜率為0時,則,,則.綜合①②得是定值且為4【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值22、(1)(2)【解析】(1)圓關于直線對稱,半徑不變,只需求出圓心對稱的坐標即可.(2)將四邊形面積分成兩個全等的直角三角形,利用直角三角形的性質(zhì),一條直角邊不變時,斜邊與另外一條直角邊的大小成正相關,從而得到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論